Latest Articles

Open AccessArticle
Modified Aloe Polysaccharide Restores Chronic Stress-Induced Immunosuppression in Mice
Int. J. Mol. Sci. 2016, 17(10), 1660; doi:10.3390/ijms17101660 (registering DOI) -
Abstract
Chronic stress generally experienced in our daily lives; is known to augment disease vulnerability by suppressing the host immune system. In the present study; the effect of modified Aloe polysaccharide (MAP) on chronic stress-induced immunosuppression was studied; this Aloe compound was characterized [...] Read more.
Chronic stress generally experienced in our daily lives; is known to augment disease vulnerability by suppressing the host immune system. In the present study; the effect of modified Aloe polysaccharide (MAP) on chronic stress-induced immunosuppression was studied; this Aloe compound was characterized in our earlier study. Mice were orally administered with MAP for 24 days and exposed to electric foot shock (EFS; duration; 3 min; interval; 10 s; intensity; 2 mA) for 17 days. The stress-related immunosuppression and restorative effect of MAP were then analyzed by measuring various immunological parameters. MAP treatment alleviated lymphoid atrophy and body weight loss. The numbers of lymphocyte subsets were significantly normalized in MAP-treated mice. Oral administration of MAP also restored the proliferative activities of lymphocytes; ovalbumin (OVA)-specific T cell proliferation; antibody production; and the cell killing activity of cytotoxic T lymphocytes. In summary; oral administration of MAP ameliorated chronic EFS stress-induced immunosuppression. Full article
Figures

Open AccessArticle
The Cluster Variation Method: A Primer for Neuroscientists
Brain Sci. 2016, 6(4), 44; doi:10.3390/brainsci6040044 (registering DOI) -
Abstract
Effective Brain–Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM [...] Read more.
Effective Brain–Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables, is defined in terms of a single interaction enthalpy parameter (h) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found. Full article
Figures

Figure 1

Open AccessReview
Berry Fruit Consumption and Metabolic Syndrome
Antioxidants 2016, 5(4), 34; doi:10.3390/antiox5040034 (registering DOI) -
Abstract
Metabolic Syndrome is a cluster of risk factors which often includes central obesity, dyslipidemia, insulin resistance, glucose intolerance, hypertension, endothelial dysfunction, as well as a pro-inflammatory, pro-oxidant, and pro-thrombotic environment. This leads to a dramatically increased risk of developing type II diabetes [...] Read more.
Metabolic Syndrome is a cluster of risk factors which often includes central obesity, dyslipidemia, insulin resistance, glucose intolerance, hypertension, endothelial dysfunction, as well as a pro-inflammatory, pro-oxidant, and pro-thrombotic environment. This leads to a dramatically increased risk of developing type II diabetes mellitus and cardiovascular disease, which is the leading cause of death both in the United States and worldwide. Increasing evidence suggests that berry fruit consumption has a significant potential in the prevention and treatment of most risk factors associated with Metabolic Syndrome and its cardiovascular complications in the human population. This is likely due to the presence of polyphenols with known antioxidant and anti-inflammatory effects, such as anthocyanins and/or phenolic acids. The present review summarizes the findings of recent dietary interventions with berry fruits on human subjects with or at risk of Metabolic Syndrome. It also discusses the potential role of berries as part of a dietary strategy which could greatly reduce the need for pharmacotherapy, associated with potentially deleterious side effects and constituting a considerable financial burden. Full article
Figures

Figure 1

Open AccessReview
Resilience Thinking as an Interdisciplinary Guiding Principle for Energy System Transitions
Resources 2016, 5(4), 30; doi:10.3390/resources5040030 (registering DOI) -
Abstract
Resource usage and environmental consequences of most current energy systems exceed planetary boundaries. The transition to sustainable energy systems is accompanied by a multitude of research methods, as energy systems are complex structures of technical, economical, social and ecological interactions. The description [...] Read more.
Resource usage and environmental consequences of most current energy systems exceed planetary boundaries. The transition to sustainable energy systems is accompanied by a multitude of research methods, as energy systems are complex structures of technical, economical, social and ecological interactions. The description of different discipline’s perspectives in this paper show that a more mutual understanding between disciplines of their respective focus is necessary as they partly create internally competitive views arising from differing emphasis of connected matters. The purpose of this paper is to present a framework for interdisciplinary proceeding in a complex energy system transition process. Resilience thinking is chosen as a core concept for a more holistic view on sustainable energy system development. It is shown that it is already widely used in different disciplines connected to energy system research and is especially suitable due to its wide application across disciplines. The seven principles of resilience thinking (maintain redundancy and diversity, manage connectivity, manage slow variables and feedback, foster complex adaptive systems thinking, encourage learning, broaden participation, and promote polycentric governance systems) are chosen as the basis for a procedure that can be utilized to increase the interdisciplinary perspectives of energy system transitions. For energy transition processes based on scenario development, backcasting and pathway definition, resilience thinking principles are used to assess the resilience of the target energy system, the pathway resilience and the design of the scenario process with respect to the probability of a resilient outcome. The described procedure consisting of questions and parameters can be applied as a first attempt for a resilience assessment of energy transition processes. The perspective of resilience in sustainable energy systems strengthens the importance of diversity, redundancy and flexibility, which reduces the current dominant focus on efficiency of the overall system. Full article
Figures

Figure 1

Open AccessArticle
A Methodology for the Reconstruction of 2D Horizontal Wind Fields of Wind Turbine Wakes Based on Dual-Doppler Lidar Measurements
Remote Sens. 2016, 8(10), 809; doi:10.3390/rs8100809 (registering DOI) -
Abstract
Dual-Doppler lidar is a powerful remote sensing technique that can accurately measure horizontal wind speeds and enable the reconstruction of two-dimensional wind fields based on measurements from two separate lidars. Previous research has provided a framework of dual-Doppler algorithms for processing both [...] Read more.
Dual-Doppler lidar is a powerful remote sensing technique that can accurately measure horizontal wind speeds and enable the reconstruction of two-dimensional wind fields based on measurements from two separate lidars. Previous research has provided a framework of dual-Doppler algorithms for processing both radar and lidar measurements, but their application to wake measurements has not been addressed in detail yet. The objective of this paper is to reconstruct two-dimensional wind fields of wind turbine wakes and assess the performance of dual-Doppler lidar scanning strategies, using the newly developed Multiple-Lidar Wind Field Evaluation Algorithm (MuLiWEA). This processes non-synchronous dual-Doppler lidar measurements and solves the horizontal wind field with a set of linear equations, also considering the mass continuity equation. MuLiWEA was applied on simulated measurements of a simulated wind turbine wake, with two typical dual-Doppler lidar measurement scenarios. The results showed inaccuracies caused by the inhomogeneous spatial distribution of the measurements in all directions, related to the ground-based scanning of a wind field at wind turbine hub height. Additionally, MuLiWEA was applied on a real dual-Doppler lidar measurement scenario in the German offshore wind farm “alpha ventus”. It was concluded that the performance of both simulated and real lidar measurement scenarios in combination with MuLiWEA is promising. Although the accuracy of the reconstructed wind fields is compromised by the practical limitations of an offshore dual-Doppler lidar measurement setup, the performance shows sufficient accuracy to serve as a basis for 10 min average steady wake model validation. Full article
Figures

Open AccessArticle
Effects of n-3 PUFAs on Intestinal Mucosa Innate Immunity and Intestinal Microbiota in Mice after Hemorrhagic Shock Resuscitation
Nutrients 2016, 8(10), 609; doi:10.3390/nu8100609 (registering DOI) -
Abstract
n-3 polyunsaturated fatty acids (PUFAs) can improve the function of the intestinal barrier after damage from ischemia-reperfusion or hemorrhagic shock resuscitation (HSR). However, the effects of n-3 PUFAs on intestinal microbiota and the innate immunity of the intestinal mucosa after [...] Read more.
n-3 polyunsaturated fatty acids (PUFAs) can improve the function of the intestinal barrier after damage from ischemia-reperfusion or hemorrhagic shock resuscitation (HSR). However, the effects of n-3 PUFAs on intestinal microbiota and the innate immunity of the intestinal mucosa after HSR remain unclear. In the present study, 40 C57BL/6J mice were randomly assigned to five groups: control, sham, HSR, HSR + n-3 PUFAs and HSR + n-6 PUFAs. Mice were sacrificed 12 h after HSR. Liver, spleen, mesenteric lymph nodes and terminal ileal tissues were collected. Intestinal mucosae were scraped aseptically. Compared with the HSR group, the number of goblet cells increased, expression of mucin 2 was restored and disturbed intestinal microbiota were partly stabilized in the PUFA-administered groups, indicating that both n-3 and n-6 PUFAs reduced overproliferation of Gammaproteobacteria while promoting the growth of Bacteroidetes. Notably, n-3 PUFAs had an advantage over n-6 PUFAs in improving ileal tissue levels of lysozyme after HSR. Thus, PUFAs, especially n-3 PUFAs, partly improved the innate immunity of intestinal mucosa in mice after HSR. These findings suggest a clinical rationale for providing n-3 PUFAs to patients recovering from ischemia-reperfusion. Full article
Figures

Figure 1

Open AccessArticle
Vitamin D Intake and Serum 25-Hydroxyvitamin D Levels in Korean Adults: Analysis of the 2009 Korea National Health and Nutrition Examination Survey (KNHANES IV-3) Using a Newly Established Vitamin D Database
Nutrients 2016, 8(10), 610; doi:10.3390/nu8100610 (registering DOI) -
Abstract
Vitamin D is important for maintaining bone health and may prevent various diseases (i.e., cardiovascular disease and cancer). The aim of this study was to estimate vitamin D intakes of Korean adults using the Korea National Health and Nutrition Examination Survey (KNHANES, [...] Read more.
Vitamin D is important for maintaining bone health and may prevent various diseases (i.e., cardiovascular disease and cancer). The aim of this study was to estimate vitamin D intakes of Korean adults using the Korea National Health and Nutrition Examination Survey (KNHANES, 2009) data and a newly established vitamin D database. KNHANES (2009) participants (n = 4541; 2021 men; 2520 women) aged ≥20 years were included. Dietary vitamin D intake, serum 25-hydroxyvitamin D (25(OH)D), and the relationship between vitamin D intake and serum 25(OH)D were evaluated. In men and women, vitamin D intakes were 4.00 ± 0.17 µg/day and 2.6 ± 0.1 µg/day respectively, and serum 25(OH)D concentrations were 19.78 ± 0.33 ng/mL and 17.10 ± 0.26 ng/mL respectively. Serum 25(OH)D concentrations of men aged <50 years and women aged >20 years were under 20 ng/mL. After adjusting for confounding factors, the positive relationship between vitamin D intake and serum 25(OH)D was observed in total subjects (p < 0.05), excluding participants ≥50 years old. The main food sources for vitamin D among Korean adults were fish/shellfish (71.34%) and egg (14.89%). Korean adults should increase their serum 25(OH)D concentrations by increasing vitamin D intake. Full article
Figures

Figure 1

Open AccessArticle
Fault Reactivation Can Generate Hydraulic Short Circuits in Underground Coal Gasification—New Insights from Regional-Scale Thermo-Mechanical 3D Modeling
Minerals 2016, 6(4), 101; doi:10.3390/min6040101 (registering DOI) -
Abstract
Underground coal gasification (UCG) has the potential to increase worldwide coal reserves by utilization of coal deposits not mineable by conventional methods. This involves combusting coal in situ to produce a synthesis gas, applicable for electricity generation and chemical feedstock production. Three-dimensional [...] Read more.
Underground coal gasification (UCG) has the potential to increase worldwide coal reserves by utilization of coal deposits not mineable by conventional methods. This involves combusting coal in situ to produce a synthesis gas, applicable for electricity generation and chemical feedstock production. Three-dimensional (3D) thermo-mechanical models already significantly contribute to UCG design by process optimization and mitigation of the environmental footprint. We developed the first 3D UCG model based on real structural geological data to investigate the impacts of using isothermal and non-isothermal simulations, two different pillar widths and four varying regional stress regimes on the spatial changes in temperature and permeability, ground surface subsidence and fault reactivation. Our simulation results demonstrate that non-isothermal processes have to be considered in these assessments due to thermally-induced stresses. Furthermore, we demonstrate that permeability increase is limited to the close reactor vicinity, although the presence of previously undetected faults can introduce formation of hydraulic short circuits between single UCG channels over large distances. This requires particular consideration of potentially present sub-seismic faults in the exploration and site selection stages, since the required pillar widths may be easily underestimated in presence of faults with different orientations with respect to the regional stress regime. Full article
Figures

Figure 1

Open AccessArticle
Study on the Thermal Conductivity Characteristics of Graphene Prepared by the Planetary Ball Mill
Metals 2016, 6(10), 234; doi:10.3390/met6100234 (registering DOI) -
Abstract
This study was designed to examine the physical disintegration of graphene (GN), an excellent heat conductor, by using the planetary ball mill, a simple and convenient means to produce particles arbitrarily. The conditions for the disintegration of GN were distinguished by the [...] Read more.
This study was designed to examine the physical disintegration of graphene (GN), an excellent heat conductor, by using the planetary ball mill, a simple and convenient means to produce particles arbitrarily. The conditions for the disintegration of GN were distinguished by the rotation of the planetary ball mill (200 rpm, 400 rpm, and 600 rpm) and by the duration of its operation (30 min, 60 min, and 90 min), respectively. From the results, we saw that, when experimental conditions are 200 rpm with 60 min, the particle size was the smallest (at 328 nm) and the results of thermal conductivity were the highest. In the absorbance results, GN was well dispersed because the value of its absorbance is high. Full article
Figures

News & Announcements

19 September 2016
Peer Review Week 2016

Follow MDPI

loading...

Jobs in Research

Selected Special Issues

Selected Collections

Institutional Membership

Member institutes benefit from discounts and convenient payment options.

Feedback

We are keen to hear what you think about MDPI. To leave us your feedback, suggestions or questions please click here.

See what our authors and guest editors say about us.

About MDPI

MDPI.com is a platform for peer-reviewed, scientific open-access journals operated by MDPI AG, based in Basel, Switzerland. Additional offices are located in Beijing and Wuhan (China) as well as in Barcelona (Spain).

Back to Top