Latest Articles

Open AccessArticle
The VP1u Receptor Restricts Parvovirus B19 Uptake to Permissive Erythroid Cells
Viruses 2016, 8(10), 265; doi:10.3390/v8100265 (registering DOI) -
Abstract
Parvovirus B19 (B19V) is a small non-enveloped virus and known as the causative agent for the mild childhood disease erythema infectiosum. B19V has an extraordinary narrow tissue tropism, showing only productive infection in erythroid precursor cells in the bone marrow. We [...] Read more.
Parvovirus B19 (B19V) is a small non-enveloped virus and known as the causative agent for the mild childhood disease erythema infectiosum. B19V has an extraordinary narrow tissue tropism, showing only productive infection in erythroid precursor cells in the bone marrow. We recently found that the viral protein 1 unique region (VP1u) contains an N-terminal receptor-binding domain (RBD), which mediates the uptake of the virus into cells of the erythroid lineage. To further investigate the role of the RBD in connection with a B19V-unrelated capsid, we chemically coupled the VP1u of B19V to the bacteriophage MS2 capsid and tested the internalization capacity of the bioconjugate on permissive cells. In comparison, we studied the cellular uptake and infection of B19V along the erythroid differentiation. The results showed that the MS2-VP1u bioconjugate mimicked the specific internalization of the native B19V into erythroid precursor cells, which further coincides with the restricted infection profile. The successful mimicry of B19V uptake demonstrates that the RBD in the VP1u is sufficient for the endocytosis of the viral capsid. Furthermore, the recombinant VP1u competed with B19V uptake into permissive cells, thus excluding a significant alternative uptake mechanism by other receptors. Strikingly, the VP1u receptor appeared to be expressed only on erythropoietin-dependent erythroid differentiation stages that also provide the necessary intracellular factors for a productive infection. Taken together, these findings suggest that the VP1u binds to a yet-unknown erythroid-specific cellular receptor and thus restricts the virus entry to permissive cells. Full article
Open AccessArticle
A Physically Constrained Calibration Database for Land Surface Temperature Using Infrared Retrieval Algorithms
Remote Sens. 2016, 8(10), 808; doi:10.3390/rs8100808 (registering DOI) -
Abstract
Land surface temperature (LST) is routinely retrieved from remote sensing instruments using semi-empirical relationships between top of atmosphere (TOA) radiances and LST, using ancillary data such as total column water vapor or emissivity. These algorithms are calibrated using a set of forward [...] Read more.
Land surface temperature (LST) is routinely retrieved from remote sensing instruments using semi-empirical relationships between top of atmosphere (TOA) radiances and LST, using ancillary data such as total column water vapor or emissivity. These algorithms are calibrated using a set of forward radiative transfer simulations that return the TOA radiances given the LST and the thermodynamic profiles. The simulations are done in order to cover a wide range of surface and atmospheric conditions and viewing geometries. This study analyzes calibration strategies while considering some of the most critical factors that need to be taken into account when building a calibration dataset, covering the full dynamic range of relevant variables. A sensitivity analysis of split-windows and single channel algorithms revealed that selecting a set of atmospheric profiles that spans the full range of surface temperatures and total column water vapor combinations that are physically possible seems beneficial for the quality of the regression model. However, the calibration is extremely sensitive to the low-level structure of the atmosphere, indicating that the presence of atmospheric boundary layer features such as temperature inversions or strong vertical gradients of thermodynamic properties may affect LST retrievals in a non-trivial way. This article describes the criteria established in the EUMETSAT Land Surface Analysis—Satellite Application Facility to calibrate its LST algorithms, applied both for current and forthcoming sensors. Full article
Figures

Open AccessArticle
Study of Non-Isothermal Crystallization of Polydioxanone and Analysis of Morphological Changes Occurring during Heating and Cooling Processes
Polymers 2016, 8(10), 351; doi:10.3390/polym8100351 (registering DOI) -
Abstract
Non-isothermal crystallization kinetics of polydioxanone (PDO), a polymer with well-established applications as bioabsorbable monofilar suture, was investigated by Avrami, Mo, and isoconversional methodologies. Results showed Avrami exponents appearing in a relatively narrow range (i.e., between 3.76 and 2.77), which suggested a three-dimensional [...] Read more.
Non-isothermal crystallization kinetics of polydioxanone (PDO), a polymer with well-established applications as bioabsorbable monofilar suture, was investigated by Avrami, Mo, and isoconversional methodologies. Results showed Avrami exponents appearing in a relatively narrow range (i.e., between 3.76 and 2.77), which suggested a three-dimensional spherulitic growth and instantaneous nucleation at high cooling rates. The nucleation mechanism changed to sporadic at low rates, with both crystallization processes being detected in the differential scanning calorimetry (DSC) cooling traces. Formation of crystals was hindered as the material crystallized because of a decrease in the motion of molecular chains. Two secondary nucleation constants were derived from calorimetric data by applying the methodology proposed by Vyazovkin and Sbirrazzuoli through the estimation of effective activation energies. In fact, typical non-isothermal crystallization analysis based on the determination of crystal growth by optical microscopy allowed secondary nucleation constants of 3.07 × 105 K2 and 1.42 × 105 K2 to be estimated. Microstructure of sutures was characterized by a stacking of lamellae perpendicularly oriented to the fiber axis and the presence of interlamellar and interfibrillar amorphous regions. The latter became enhanced during heating treatments due to loss of partial chain orientation and decrease of electronic density. Degradation under various pH media revealed different macroscopic morphologies and even a distinct evolution of lamellar microstructure during subsequent heating treatments. Full article
Figures

Open AccessArticle
Microstructure of Sheared Entangled Solutions of Semiflexible Polymers
Polymers 2016, 8(10), 353; doi:10.3390/polym8100353 (registering DOI) -
Abstract
We study the influence of finite shear deformations on the microstructure and rheology of solutions of entangled semiflexible polymers theoretically and by numerical simulations and experiments with filamentous actin. Based on the tube model of semiflexible polymers, we predict that large finite [...] Read more.
We study the influence of finite shear deformations on the microstructure and rheology of solutions of entangled semiflexible polymers theoretically and by numerical simulations and experiments with filamentous actin. Based on the tube model of semiflexible polymers, we predict that large finite shear deformations strongly affect the average tube width and curvature, thereby exciting considerable restoring stresses. In contrast, the associated shear alignment is moderate, with little impact on the average tube parameters, and thus expected to be long-lived and detectable after cessation of shear. Similarly, topologically preserved hairpin configurations are predicted to leave a long-lived fingerprint in the shape of the distributions of tube widths and curvatures. Our numerical and experimental data support the theory. Full article
Figures

Open AccessArticle
The VITAH Trial—Vitamin D Supplementation and Cardiac Autonomic Tone in Patients with End-Stage Kidney Disease on Hemodialysis: A Blinded, Randomized Controlled Trial
Nutrients 2016, 8(10), 608; doi:10.3390/nu8100608 (registering DOI) -
Abstract
End-stage kidney disease (ESKD) patients are at increased cardiovascular risk. Vitamin D deficiency is associated with depressed heart rate variability (HRV), a risk factor depicting poor cardiac autonomic tone and risk of cardiovascular death. Vitamin D deficiency and depressed HRV are highly [...] Read more.
End-stage kidney disease (ESKD) patients are at increased cardiovascular risk. Vitamin D deficiency is associated with depressed heart rate variability (HRV), a risk factor depicting poor cardiac autonomic tone and risk of cardiovascular death. Vitamin D deficiency and depressed HRV are highly prevalent in the ESKD population. We aimed to determine the effects of oral vitamin D supplementation on HRV ((low frequency (LF) to high frequency (HF) spectral ratio (LF:HF)) in ESKD patients on hemodialysis. Fifty-six subjects with ESKD requiring hemodialysis were recruited from January 2013–March 2015 and randomized 1:1 to either conventional (0.25 mcg alfacalcidol plus placebo 3×/week) or intensive (0.25 mcg alfacalcidol 3×/week plus 50,000 international units (IU) ergocalciferol 1×/week) vitamin D for six weeks. The primary outcome was the change in LF:HF. There was no difference in LF:HF from baseline to six weeks for either vitamin D treatment (conventional: p = 0.9 vs. baseline; intensive: p = 0.07 vs. baseline). However, participants who remained vitamin D-deficient (25-hydroxyvitamin D < 20 ng/mL) after treatment demonstrated an increase in LF:HF (conventional: n = 13, ∆LF:HF: 0.20 ± 0.06, p < 0.001 vs. insufficient and sufficient vitamin D groups; intensive: n = 8: ∆LF:HF: 0.15 ± 0.06, p < 0.001 vs. sufficient vitamin D group). Overall, six weeks of conventional or intensive vitamin D only augmented LF:HF in ESKD subjects who remained vitamin D-deficient after treatment. Our findings potentially suggest that while activated vitamin D, with or without additional nutritional vitamin D, does not appear to improve cardiac autonomic tone in hemodialysis patients with insufficient or sufficient baseline vitamin D levels, supplementation in patients with severe vitamin D deficiency may improve cardiac autonomic tone in this higher risk sub-population of ESKD. Trial Registration: ClinicalTrials.gov, NCT01774812. Full article
Figures

Figure 1

Open AccessReview
Research Contributing to Improvements in Controlling Florida’s Mosquitoes and Mosquito-borne Diseases
Insects 2016, 7(4), 50; doi:10.3390/insects7040050 (registering DOI) -
Abstract
Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state’s mosquito control capabilities. Research with Florida’s mosquitoes has resulted in the [...] Read more.
Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state’s mosquito control capabilities. Research with Florida’s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida’s east coast. This strategy, called Rotational Impoundment Management (RIM), has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being. Full article
Figures

Figure 1

Open AccessReview
Modeling Fragile X Syndrome Using Human Pluripotent Stem Cells
Genes 2016, 7(10), 77; doi:10.3390/genes7100077 (registering DOI) -
Abstract
Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from a loss-of-function mutation by a CGG repeat expansion at the 5′ untranslated region of the X-linked fragile X mental retardation 1 (FMR1) gene. Expansion of the [...] Read more.
Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from a loss-of-function mutation by a CGG repeat expansion at the 5′ untranslated region of the X-linked fragile X mental retardation 1 (FMR1) gene. Expansion of the CGG repeats beyond 200 copies results in protein deficiency by leading to aberrant methylation of the FMR1 promoter and the switch from active to repressive histone modifications. Additionally, the CGGs become increasingly unstable, resulting in high degree of variation in expansion size between and within tissues of affected individuals. It is still unclear how the FMR1 protein (FMRP) deficiency leads to disease pathology in neurons. Nor do we know the mechanisms by which the CGG expansion results in aberrant DNA methylation, or becomes unstable in somatic cells of patients, at least in part due to the lack of appropriate animal or cellular models. This review summarizes the current contribution of pluripotent stem cells, mutant human embryonic stem cells, and patient-derived induced pluripotent stem cells to disease modeling of FXS for basic and applied research, including the development of new therapeutic approaches. Full article
Figures

Figure 1

Open AccessArticle
Impact of the Autism-Associated Long Noncoding RNA MSNP1AS on Neuronal Architecture and Gene Expression in Human Neural Progenitor Cells
Genes 2016, 7(10), 76; doi:10.3390/genes7100076 (registering DOI) -
Abstract
We previously identified the long noncoding RNA (lncRNA) MSNP1AS (moesin pseudogene 1, antisense) as a functional element revealed by genome wide significant association with autism spectrum disorder (ASD). MSNP1AS expression was increased in the postmortem cerebral cortex of individuals with ASD and [...] Read more.
We previously identified the long noncoding RNA (lncRNA) MSNP1AS (moesin pseudogene 1, antisense) as a functional element revealed by genome wide significant association with autism spectrum disorder (ASD). MSNP1AS expression was increased in the postmortem cerebral cortex of individuals with ASD and particularly in individuals with the ASD-associated genetic markers on chromosome 5p14.1. Here, we mimicked the overexpression of MSNP1AS observed in postmortem ASD cerebral cortex in human neural progenitor cell lines to determine the impact on neurite complexity and gene expression. ReNcell CX and SK-N-SH were transfected with an overexpression vector containing full-length MSNP1AS. Neuronal complexity was determined by the number and length of neuronal processes. Gene expression was determined by strand-specific RNA sequencing. MSNP1AS overexpression decreased neurite number and neurite length in both human neural progenitor cell lines. RNA sequencing revealed changes in gene expression in proteins involved in two biological processes: protein synthesis and chromatin remodeling. These data indicate that overexpression of the ASD-associated lncRNA MSNP1AS alters the number and length of neuronal processes. The mechanisms by which MSNP1AS overexpression impacts neuronal differentiation may involve protein synthesis and chromatin structure. These same biological processes are also implicated by rare mutations associated with ASD, suggesting convergent mechanisms. Full article
Figures

Figure 1

Open AccessArticle
Prenatal Ethanol Exposure and Whisker Clipping Disrupt Ultrasonic Vocalizations and Play Behavior in Adolescent Rats
Brain Sci. 2016, 6(4), 43; doi:10.3390/brainsci6040043 (registering DOI) -
Abstract
Prenatal ethanol exposure can result in social deficits in humans and animals, including altered social interaction and poor communication. Rats exposed to ethanol prenatally show reduced play fighting, and a combination of prenatal ethanol exposure and neonatal whisker clipping further reduces play [...] Read more.
Prenatal ethanol exposure can result in social deficits in humans and animals, including altered social interaction and poor communication. Rats exposed to ethanol prenatally show reduced play fighting, and a combination of prenatal ethanol exposure and neonatal whisker clipping further reduces play fighting compared with ethanol exposure alone. In this study, we explored whether expression of hedonic ultrasonic vocalizations (USVs) correlated with the number of playful attacks by ethanol-exposed rats, rats subjected to postnatal sensory deprivation by whisker clipping or both compared to control animals. In normally developing rats, hedonic USVs precede such interactions and correlate with the number of play interactions exhibited in dyads. Pregnant Long-Evans rats were fed an ethanol-containing liquid diet or a control diet. After birth, male and female pups from each litter were randomly assigned to the whisker-clipped or non-whisker-clipped condition. Animals underwent a social interaction test with a normally developing play partner during early or late-adolescence. USVs were recorded during play. Prenatal ethanol exposure reduced both play and hedonic USVs in early adolescence compared to control rats and persistently reduced social play. Interestingly, ethanol exposure, whisker clipping and the combination abolished the significant correlation between hedonic USVs and social play detected in control rats in early adolescence. This relationship remained disrupted in late adolescence only in rats subjected to both prenatal ethanol and whisker clipping. Thus, both insults more persistently disrupted the relationship between social communication and social play. Full article

News & Announcements

19 September 2016
Peer Review Week 2016

Follow MDPI

loading...

Jobs in Research

Selected Special Issues

Selected Collections

Institutional Membership

Member institutes benefit from discounts and convenient payment options.

Feedback

We are keen to hear what you think about MDPI. To leave us your feedback, suggestions or questions please click here.

See what our authors and guest editors say about us.

About MDPI

MDPI.com is a platform for peer-reviewed, scientific open-access journals operated by MDPI AG, based in Basel, Switzerland. Additional offices are located in Beijing and Wuhan (China) as well as in Barcelona (Spain).

Back to Top