Latest Articles

Open AccessArticle
Microinjection of Antibodies Targeting the Lamin A/C Histone-Binding Site Blocks Mitotic Entry and Reveals Separate Chromatin Interactions with HP1, CenpB and PML
Cells 2017, 6(2), 9; doi:10.3390/cells6020009 (registering DOI) -
Abstract
Lamins form a scaffold lining the nucleus that binds chromatin and contributes to spatial genome organization; however, due to the many other functions of lamins, studies knocking out or altering the lamin polymer cannot clearly distinguish between direct and indirect effects. To overcome
[...] Read more.
Lamins form a scaffold lining the nucleus that binds chromatin and contributes to spatial genome organization; however, due to the many other functions of lamins, studies knocking out or altering the lamin polymer cannot clearly distinguish between direct and indirect effects. To overcome this obstacle, we specifically targeted the mapped histone-binding site of A/C lamins by microinjecting antibodies specific to this region predicting that this would make the genome more mobile. No increase in chromatin mobility was observed; however, interestingly, injected cells failed to go through mitosis, while control antibody-injected cells did. This effect was not due to crosslinking of the lamin polymer, as Fab fragments also blocked mitosis. The lack of genome mobility suggested other lamin-chromatin interactions. To determine what these might be, mini-lamin A constructs were expressed with or without the histone-binding site that assembled into independent intranuclear structures. HP1, CenpB and PML proteins accumulated at these structures for both constructs, indicating that other sites supporting chromatin interactions exist on lamin A. Together, these results indicate that lamin A-chromatin interactions are highly redundant and more diverse than generally acknowledged and highlight the importance of trying to experimentally separate their individual functions. Full article
Figures

Figure 1

Open AccessArticle
Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models
Remote Sens. 2017, 9(4), 309; doi:10.3390/rs9040309 (registering DOI) -
Abstract
Leaf area index (LAI) is an important indicator of plant growth and yield that can be monitored by remote sensing. Several models were constructed using datasets derived from SRS and STR sampling methods to determine the optimal model for soybean (multiple strains) LAI
[...] Read more.
Leaf area index (LAI) is an important indicator of plant growth and yield that can be monitored by remote sensing. Several models were constructed using datasets derived from SRS and STR sampling methods to determine the optimal model for soybean (multiple strains) LAI inversion for the whole crop growth period and a single growth period. Random forest (RF), artificial neural network (ANN), and support vector machine (SVM) regression models were compared with a partial least-squares regression (PLS) model. The RF model yielded the highest precision, accuracy, and stability with V-R2, SDR2, V-RMSE, and SDRMSE values of 0.741, 0.031, 0.106, and 0.005, respectively, over the whole growth period based on STR sampling. The ANN model had the highest precision, accuracy, and stability (0.452, 0.132, 0.086, and 0.009, respectively) over a single growth phase based on STR sampling. The precision, accuracy, and stability of the RF, ANN, and SVM models were improved by inclusion of STR sampling. The RF model is suitable for estimating LAI when sample plots and variation are relatively large (i.e., the whole growth period or more than one growth period). The ANN model is more appropriate for estimating LAI when sample plots and variation are relatively low (i.e., a single growth period). Full article
Figures

Open AccessArticle
Tailoring Climate Parameters to Information Needs for Local Adaptation to Climate Change
Climate 2017, 5(2), 25; doi:10.3390/cli5020025 (registering DOI) -
Abstract
Municipalities are important actors in the field of local climate change adaptation. Stakeholders need scientifically sound information tailored to their needs to make local assessment of climate change effects. To provide tailored data to support municipal decision-making, climate scientists must know the state
[...] Read more.
Municipalities are important actors in the field of local climate change adaptation. Stakeholders need scientifically sound information tailored to their needs to make local assessment of climate change effects. To provide tailored data to support municipal decision-making, climate scientists must know the state of municipal climate change adaptation, and the climate parameters relevant to decisions about such adaptation. The results of an empirical study in municipalities in the state of Baden-Wuerttemberg in Southwestern Germany showed that adaptation is a relatively new topic, but one of increasing importance. Therefore, past weather events that caused problems in a municipality can be a starting point in adaptation considerations. Deduction of tailored climate parameters has shown that, for decisions on the implementation of specific adaptation measures, it also is necessary to have information on specific parameters not yet evaluated in climate model simulations. We recommend intensifying the professional exchange between climate scientists and stakeholders in collaborative projects with the dual goals of making practical adaptation experience and knowledge accessible to climate science, and providing municipalities with tailored information about climate change and its effects. Full article
Figures

Figure 1

Open AccessArticle
Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates
Risks 2017, 5(2), 21; doi:10.3390/risks5020021 (registering DOI) -
Abstract
This study considers the forecasting of mortality rates in multiple populations. We propose a model that combines mortality forecasting and functional data analysis (FDA). Under the FDA framework, the mortality curve of each year is assumed to be a smooth function of age.
[...] Read more.
This study considers the forecasting of mortality rates in multiple populations. We propose a model that combines mortality forecasting and functional data analysis (FDA). Under the FDA framework, the mortality curve of each year is assumed to be a smooth function of age. As with most of the functional time series forecasting models, we rely on functional principal component analysis (FPCA) for dimension reduction and further choose a vector error correction model (VECM) to jointly forecast mortality rates in multiple populations. This model incorporates the merits of existing models in that it excludes some of the inherent randomness with the nonparametric smoothing from FDA, and also utilizes the correlation structures between the populations with the use of VECM in mortality models. A nonparametric bootstrap method is also introduced to construct interval forecasts. The usefulness of this model is demonstrated through a series of simulation studies and applications to the age-and sex-specific mortality rates in Switzerland and the Czech Republic. The point forecast errors of several forecasting methods are compared and interval scores are used to evaluate and compare the interval forecasts. Our model provides improved forecast accuracy in most cases. Full article
Figures

Figure 1

Open AccessReview
Borate-Based Ultraviolet and Deep-Ultraviolet Nonlinear Optical Crystals
Crystals 2017, 7(4), 95; doi:10.3390/cryst7040095 (registering DOI) -
Abstract
Borates have long been recognized as a very important family of nonlinear optical (NLO) crystals, and have been widely used in the laser frequency-converting technology in ultraviolet (UV) and deep-ultraviolet (DUV) regions. In this work, the borate-based UV and DUV NLO crystals discovered
[...] Read more.
Borates have long been recognized as a very important family of nonlinear optical (NLO) crystals, and have been widely used in the laser frequency-converting technology in ultraviolet (UV) and deep-ultraviolet (DUV) regions. In this work, the borate-based UV and DUV NLO crystals discovered in the recent decade are reviewed, and the structure–property relationship in the representative borate-based UV and DUV NLO crystals is analyzed. It is concluded that the optical properties of these crystals can be well explained directly from the types and spatial arrangements of B-O groups. The deduced mechanism understanding has significant implications for the exploration and design of new borate-based crystals with excellent UV and DUV NLO performance. Full article
Figures

Figure 1

Open AccessConference Report
Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology
Int. J. Mol. Sci. 2017, 18(4), 703; doi:10.3390/ijms18040703 (registering DOI) -
Abstract
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing
[...] Read more.
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on “Unconventional Protein and Membrane Traffic” (UPMT) during 4–7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes. Full article
Open AccessArticle
Fabrication and Characterization of AlxCoFeNiCu1−x High Entropy Alloys by Laser Metal Deposition
Coatings 2017, 7(4), 47; doi:10.3390/coatings7040047 (registering DOI) -
Abstract
High entropy alloys are multicomponent alloys that have at least five different principal elements as alloying elements. Each of these elements has an atomic percentage between 5% and 35%. Typically, they form body-centered cubic (bcc) or face-centered cubic (fcc) structure and are known
[...] Read more.
High entropy alloys are multicomponent alloys that have at least five different principal elements as alloying elements. Each of these elements has an atomic percentage between 5% and 35%. Typically, they form body-centered cubic (bcc) or face-centered cubic (fcc) structure and are known to possess excellent mechanical properties, corrosion resistance, excellent electric and magnetic properties. Owing to their excellent corrosion and wear resistance, researchers are focusing on employing these materials as coatings. In this research, Laser Metal Deposition (LMD) was used to fabricate AlxCoFeNiCu1−x (x = 0.25, 0.5, 0.75) high entropy alloys from elemental powder based feedstocks. Thin wall claddings fabricated via LMD were characterized by a variety of techniques. Data from X-ray Diffraction (XRD) and Electron Back Scatter Diffraction (EBSD) suggested that with increase in Al content and decrease in Cu content, a change in crystal structure from a predominantly fcc to a combined fcc and bcc structure can be observed. The microstructure of the material was observed to be columnar dendritic. Data from standard less EDS analysis showed that the dendritic phase was Fe and Co enriched while the matrix was Cu and Al enriched in all the considered high entropy alloy fabrications. The Vickers hardness data was used to estimate the mechanical properties of these deposits. Results also showed that with the increase in aluminum content, AlxCoFeNiCu1−x displayed higher hardness. The high hardness values imply potential applications in wear resistant coatings. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Visible-Light-Active TiO2-Based Hybrid Nanocatalysts for Environmental Applications
Catalysts 2017, 7(4), 100; doi:10.3390/catal7040100 (registering DOI) -
Abstract
Photocatalytic nanomaterials such as TiO2 are receiving a great deal of attention owing to their potential applications in environmental remediation. Nonetheless, the low efficiency of this class of materials in the visible range has, so far, hampered their large-scale application. The increasing
[...] Read more.
Photocatalytic nanomaterials such as TiO2 are receiving a great deal of attention owing to their potential applications in environmental remediation. Nonetheless, the low efficiency of this class of materials in the visible range has, so far, hampered their large-scale application. The increasing demand for highly efficient, visible-light-active photocatalysts can be addressed by hybrid nanostructured materials in which two or more units, each characterised by peculiar physical properties, surface chemistry and morphology, are combined together into a single nano-object with unprecedented chemical–physical properties. The present review intends to focus on hybrid nanomaterials, based on TiO2 nanoparticles able to perform visible-light-driven photocatalytic processes for environmental applications. We give a brief overview of the synthetic approaches recently proposed in the literature to synthesise hybrid nanocrystals and discuss the potential applications of such nanostructures in water remediation, abatement of atmospheric pollutants (including NOx and volatile organic compounds (VOCs)) and their use in self-cleaning surfaces. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
A Place to Call Home: An Analysis of the Bacterial Communities in Two Tethya rubra Samaai and Gibbons 2005 Populations in Algoa Bay, South Africa
Mar. Drugs 2017, 15(4), 95; doi:10.3390/md15040095 (registering DOI) -
Abstract
Sponges are important sources of bioactive secondary metabolites. These compounds are frequently synthesized by bacterial symbionts, which may be recruited from the surrounding seawater or transferred to the sponge progeny by the parent. In this study, we investigated the bacterial communities associated with
[...] Read more.
Sponges are important sources of bioactive secondary metabolites. These compounds are frequently synthesized by bacterial symbionts, which may be recruited from the surrounding seawater or transferred to the sponge progeny by the parent. In this study, we investigated the bacterial communities associated with the sponge Tethya rubra Samaai and Gibbons 2005. Sponge specimens were collected from Evans Peak and RIY Banks reefs in Algoa Bay, South Africa and taxonomically identified by spicule analysis and molecular barcoding. Crude chemical extracts generated from individual sponges were profiled by ultraviolet high performance liquid chromatography (UV-HPLC) and subjected to bioactivity assays in mammalian cells. Next-generation sequencing analysis of 16S rRNA gene sequences was used to characterize sponge-associated bacterial communities. T. rubra sponges collected from the two locations were morphologically and genetically indistinguishable. Chemical extracts from sponges collected at RIY banks showed mild inhibition of the metabolic activity of mammalian cells and their UV-HPLC profiles were distinct from those of sponges collected at Evans Peak. Similarly, the bacterial communities associated with sponges from the two locations were distinct with evidence of vertical transmission of symbionts from the sponge parent to its embryos. We conclude that these distinct bacterial communities may be responsible for the differences observed in the chemical profiles of the two Algoa Bay T. rubra Samaai and Gibbons 2005 populations. Full article
Figures

Figure 1a

News & Announcements

Follow MDPI

loading...

Jobs in Research

Selected Special Issues

Selected Collections

Institutional Membership

Member institutes benefit from discounts and convenient payment options.

Feedback

We are keen to hear what you think about MDPI. To leave us your feedback, suggestions or questions please click here.

See what our authors and guest editors say about us.

About MDPI

MDPI.com is a platform for peer-reviewed, scientific open-access journals operated by MDPI AG, based in Basel, Switzerland. Additional offices are located in Beijing and Wuhan (China) as well as in Barcelona (Spain).

Back to Top