Next Issue
Volume 17, February
Previous Issue
Volume 16, December
 
 
ijms-logo

Journal Browser

Journal Browser

Int. J. Mol. Sci., Volume 17, Issue 1 (January 2016) – 134 articles

Cover Story (view full-size image): The Helix pomatia Cd-metallothionein (HpCdMT) is a paradigmatic Cd-specific MT. This work studies how the amino acid sequence of the linker connecting the two nine-Cys HpCdMT moieties influences its ability for metal coordination. Hence, we characterized the metal complexes yielded by two HpCdMT constructs containing longer linkers than the -KT- dipeptide of the wild type form. One mutant reproduced the linker sequence of another gastropod MT, the limpet M. crenulata, with a clear polar character; and the other derived from a plant MT (wheat Ec-1), had a clear apolar composition. Image provided by Òscar Palacios.View this article.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

813 KiB  
Editorial
Acknowledgement to Reviewers of International Journal of Molecular Sciences in 2015
by International Journal of Molecular Sciences Editorial Office
Int. J. Mol. Sci. 2016, 17(1), 142; https://doi.org/10.3390/ijms17010142 - 21 Jan 2016
Viewed by 10531
Abstract
The editors of International Journal of Molecular Sciences would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2015. [...] Full article

Research

Jump to: Editorial, Review

8826 KiB  
Article
Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects
by Laura Roland, Michael Grau, Julia Matena, Michael Teske, Matthias Gieseke, Andreas Kampmann, Martin Beyerbach, Hugo Murua Escobar, Heinz Haferkamp, Nils-Claudius Gellrich and Ingo Nolte
Int. J. Mol. Sci. 2016, 17(1), 1; https://doi.org/10.3390/ijms17010001 - 22 Dec 2015
Cited by 11 | Viewed by 6659
Abstract
For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material [...] Read more.
For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death. Full article
(This article belongs to the Special Issue Biomaterials for Tissue Engineering)
Show Figures

Figure 1

806 KiB  
Article
The Development of Neuroendocrine Disturbances over Time: Longitudinal Findings in Patients after Traumatic Brain Injury and Subarachnoid Hemorrhage
by Anna Kopczak, Carmen Krewer, Manfred Schneider, Ilonka Kreitschmann-Andermahr, Harald Jörn Schneider and Günter Karl Stalla
Int. J. Mol. Sci. 2016, 17(1), 2; https://doi.org/10.3390/ijms17010002 - 22 Dec 2015
Cited by 7 | Viewed by 5857
Abstract
Previous reports suggest that neuroendocrine disturbances in patients with traumatic brain injury (TBI) or aneurysmal subarachnoid hemorrhage (SAH) may still develop or resolve months or even years after the trauma. We investigated a cohort of n = 168 patients (81 patients after TBI [...] Read more.
Previous reports suggest that neuroendocrine disturbances in patients with traumatic brain injury (TBI) or aneurysmal subarachnoid hemorrhage (SAH) may still develop or resolve months or even years after the trauma. We investigated a cohort of n = 168 patients (81 patients after TBI and 87 patients after SAH) in whom hormone levels had been determined at various time points to assess the course and pattern of hormonal insufficiencies. Data were analyzed using three different criteria: (1) patients with lowered basal laboratory values; (2) patients with lowered basal laboratory values or the need for hormone replacement therapy; (3) diagnosis of the treating physician. The first hormonal assessment after a median time of three months after the injury showed lowered hormone laboratory test results in 35% of cases. Lowered testosterone (23.1% of male patients), lowered estradiol (14.3% of female patients) and lowered insulin-like growth factor I (IGF-I) values (12.1%) were most common. Using Criterion 2, a higher prevalence rate of 55.6% of cases was determined, which correlated well with the prevalence rate of 54% of cases using the physicians’ diagnosis as the criterion. Intraindividual changes (new onset insufficiency or recovery) were predominantly observed for the somatotropic axis (12.5%), the gonadotropic axis in women (11.1%) and the corticotropic axis (10.6%). Patients after TBI showed more often lowered IGF-I values at first testing, but normal values at follow-up (p < 0.0004). In general, most patients remained stable. Stable hormone results at follow-up were obtained in 78% (free thyroxine (fT4) values) to 94.6% (prolactin values). Full article
(This article belongs to the Special Issue Neurological Injuries’ Monitoring, Tracking and Treatment)
Show Figures

Figure 1

2975 KiB  
Article
Cloning, Characterization and Expression Pattern Analysis of a Cytosolic Copper/Zinc Superoxide Dismutase (SaCSD1) in a Highly Salt Tolerant Mangrove (Sonneratia alba)
by Enze Yang, Shanze Yi, Fang Bai, Dewei Niu, Junjie Zhong, Qiuhong Wu, Shufang Chen, Renchao Zhou and Feng Wang
Int. J. Mol. Sci. 2016, 17(1), 4; https://doi.org/10.3390/ijms17010004 - 22 Dec 2015
Cited by 10 | Viewed by 5724
Abstract
Mangroves are critical marine resources for their remarkable ability to tolerate seawater. Antioxidant enzymes play an especially significant role in eliminating reactive oxygen species and conferring abiotic stress tolerance. In this study, a cytosolic copper/zinc superoxide dismutase (SaCSD1) cDNA of Sonneratia [...] Read more.
Mangroves are critical marine resources for their remarkable ability to tolerate seawater. Antioxidant enzymes play an especially significant role in eliminating reactive oxygen species and conferring abiotic stress tolerance. In this study, a cytosolic copper/zinc superoxide dismutase (SaCSD1) cDNA of Sonneratia alba, a mangrove species with high salt tolerance, was successfully cloned and then expressed in Escherichia coli Rosetta-gami (designated as SaCSD1). SaCSD1 comprised a complete open reading frame (ORF) of 459 bp which encoded a protein of 152 amino acids. Its mature protein is predicted to be 15.32 kDa and the deduced isoelectric point is 5.78. SaCSD1 has high sequence similarity (85%–90%) with the superoxide dismutase (CSD) of some other plant species. SaCSD1 was expressed with 30.6% yield regarding total protein content after being introduced into the pET-15b (Sma I) vector for expression in Rosetta-gami and being induced with IPTG. After affinity chromatography on Ni-NTA, recombinant SaCSD1 was obtained with 3.2-fold purification and a specific activity of 2200 U/mg. SaCSD1 showed good activity as well as stability in the ranges of pH between 3 and 7 and temperature between 25 and 55 °C. The activity of recombinant SaCSD1 was stable in 0.25 M NaCl, Dimethyl Sulphoxide (DMSO), glycerol, and chloroform, and was reduced to a great extent in β-mercaptoethanol, sodium dodecyl sulfate (SDS), H2O2, and phenol. Moreover, the SaCSD1 protein was very susceptive to pepsin digestion. Real-time Quantitative Polymerase Chain Reaction (PCR) assay demonstrated that SaCSD1 was expressed in leaf, stem, flower, and fruit organs, with the highest expression in fruits. Under 0.25 M and 0.5 M salt stress, the expression of SaCSD1 was down-regulated in roots, but up-regulated in leaves. Full article
(This article belongs to the Special Issue Plant Molecular Biology)
Show Figures

Graphical abstract

1337 KiB  
Article
Verification of SNPs Associated with Growth Traits in Two Populations of Farmed Atlantic Salmon
by Hsin Y. Tsai, Alastair Hamilton, Derrick R. Guy, Alan E. Tinch, Steve C. Bishop and Ross D. Houston
Int. J. Mol. Sci. 2016, 17(1), 5; https://doi.org/10.3390/ijms17010005 - 22 Dec 2015
Cited by 21 | Viewed by 5997
Abstract
Understanding the relationship between genetic variants and traits of economic importance in aquaculture species is pertinent to selective breeding programmes. High-throughput sequencing technologies have enabled the discovery of large numbers of SNPs in Atlantic salmon, and high density SNP arrays now exist. A [...] Read more.
Understanding the relationship between genetic variants and traits of economic importance in aquaculture species is pertinent to selective breeding programmes. High-throughput sequencing technologies have enabled the discovery of large numbers of SNPs in Atlantic salmon, and high density SNP arrays now exist. A previous genome-wide association study (GWAS) using a high density SNP array (132K SNPs) has revealed the polygenic nature of early growth traits in salmon, but has also identified candidate SNPs showing suggestive associations with these traits. The aim of this study was to test the association of the candidate growth-associated SNPs in a separate population of farmed Atlantic salmon to verify their effects. Identifying SNP-trait associations in two populations provides evidence that the associations are true and robust. Using a large cohort (N = 1152), we successfully genotyped eight candidate SNPs from the previous GWAS, two of which were significantly associated with several growth and fillet traits measured at harvest. The genes proximal to these SNPs were identified by alignment to the salmon reference genome and are discussed in the context of their potential role in underpinning genetic variation in salmon growth. Full article
(This article belongs to the Special Issue Fish Molecular Biology)
Show Figures

Graphical abstract

1285 KiB  
Article
Does Variation of the Inter-Domain Linker Sequence Modulate the Metal Binding Behaviour of Helix pomatia Cd-Metallothionein?
by Selene Gil-Moreno, Elena Jiménez-Martí, Òscar Palacios, Oliver Zerbe, Reinhard Dallinger, Mercè Capdevila and Sílvia Atrian
Int. J. Mol. Sci. 2016, 17(1), 6; https://doi.org/10.3390/ijms17010006 - 22 Dec 2015
Cited by 4 | Viewed by 5937
Abstract
Snail metallothioneins (MTs) constitute an ideal model to study structure/function relationships in these metal-binding polypeptides. Helix pomatia harbours three MT isoforms: the highly specific CdMT and CuMT, and an unspecific Cd/CuMT, which represent paralogous proteins with extremely different metal binding preferences while sharing [...] Read more.
Snail metallothioneins (MTs) constitute an ideal model to study structure/function relationships in these metal-binding polypeptides. Helix pomatia harbours three MT isoforms: the highly specific CdMT and CuMT, and an unspecific Cd/CuMT, which represent paralogous proteins with extremely different metal binding preferences while sharing high sequence similarity. Preceding work allowed assessing that, although, the Cys residues are responsible for metal ion coordination, metal specificity or preference is achieved by diversification of the amino acids interspersed between them. The metal-specific MT polypeptides fold into unique, energetically-optimized complexes of defined metal content, when binding their cognate metal ions, while they produce a mixture of complexes, none of them representing a clear energy minimum, with non-cognate metal ions. Another critical, and so far mostly unexplored, region is the stretch linking the individual MT domains, each of which represents an independent metal cluster. In this work, we have designed and analyzed two HpCdMT constructs with substituted linker segments, and determined their coordination behavior when exposed to both cognate and non-cognate metal ions. Results unequivocally show that neither length nor composition of the inter-domain linker alter the features of the Zn(II)- and Cd(II)-complexes, but surprisingly that they influence their ability to bind Cu(I), the non-cognate metal ion. Full article
(This article belongs to the Special Issue Metal Metabolism in Animals)
Show Figures

Graphical abstract

1768 KiB  
Article
The Flaxseed-Derived Lignan Phenolic Secoisolariciresinol Diglucoside (SDG) Protects Non-Malignant Lung Cells from Radiation Damage
by Anastasia Velalopoulou, Sonia Tyagi, Ralph A. Pietrofesa, Evguenia Arguiri and Melpo Christofidou-Solomidou
Int. J. Mol. Sci. 2016, 17(1), 7; https://doi.org/10.3390/ijms17010007 - 22 Dec 2015
Cited by 32 | Viewed by 7317
Abstract
Plant phenolic compounds are common dietary antioxidants that possess antioxidant and anti-inflammatory properties. Flaxseed (FS) has been reported to be radioprotective in murine models of oxidative lung damage. Flaxseed’s protective properties are attributed to its main biphenolic lignan, secoisolariciresinol diglucoside (SDG). SDG is [...] Read more.
Plant phenolic compounds are common dietary antioxidants that possess antioxidant and anti-inflammatory properties. Flaxseed (FS) has been reported to be radioprotective in murine models of oxidative lung damage. Flaxseed’s protective properties are attributed to its main biphenolic lignan, secoisolariciresinol diglucoside (SDG). SDG is a free radical scavenger, shown in cell free systems to protect DNA from radiation-induced damage. The objective of this study was to investigate the in vitro radioprotective efficacy of SDG in murine lung cells. Protection against irradiation (IR)-induced DNA double and single strand breaks was assessed by γ-H2AX labeling and alkaline comet assay, respectively. The role of SDG in modulating the levels of cytoprotective enzymes was evaluated by qPCR and confirmed by Western blotting. Additionally, effects of SDG on clonogenic survival of irradiated cells were evaluated. SDG protected cells from IR-induced death and ameliorated DNA damage by reducing mean comet tail length and percentage of γ-H2AX positive cells. Importantly, SDG significantly increased gene and protein levels of antioxidant HO-1, GSTM1 and NQO1. Our results identify the potent radioprotective properties of the synthetic biphenolic SDG, preventing DNA damage and enhancing the antioxidant capacity of normal lung cells; thus, rendering SDG a potential radioprotector against radiation exposure. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Show Figures

Graphical abstract

9356 KiB  
Article
Cell Density-Dependent Upregulation of PDCD4 in Keratinocytes and Its Implications for Epidermal Homeostasis and Repair
by Tao Wang, Shuang Long, Na Zhao, Yu Wang, Huiqin Sun, Zhongmin Zou, Junping Wang, Xinze Ran and Yongping Su
Int. J. Mol. Sci. 2016, 17(1), 8; https://doi.org/10.3390/ijms17010008 - 23 Dec 2015
Cited by 34 | Viewed by 5628
Abstract
Programmed cell death 4 (PDCD4) is one multi-functional tumor suppressor inhibiting neoplastic transformation and tumor invasion. The role of PDCD4 in tumorigenesis has attracted more attention and has been systematically elucidated in cutaneous tumors. However, the normal biological function of PDCD4 in skin [...] Read more.
Programmed cell death 4 (PDCD4) is one multi-functional tumor suppressor inhibiting neoplastic transformation and tumor invasion. The role of PDCD4 in tumorigenesis has attracted more attention and has been systematically elucidated in cutaneous tumors. However, the normal biological function of PDCD4 in skin is still unclear. In this study, for the first time, we find that tumor suppressor PDCD4 is uniquely induced in a cell density-dependent manner in keratinocytes. To determine the potential role of PDCD4 in keratinocyte cell biology, we show that knockdown of PDCD4 by siRNAs can promote cell proliferation in lower cell density and partially impair contact inhibition in confluent HaCaT cells, indicating that PDCD4 serves as an important regulator of keratinocytes proliferation and contact inhibition in vitro. Further, knockdown of PDCD4 can induce upregulation of cyclin D1, one key regulator of the cell cycle. Furthermore, the expression patterns of PDCD4 in normal skin, different hair cycles and the process of wound healing are described in detail in vivo, which suggest a steady-state regulatory role of PDCD4 in epidermal homeostasis and wound healing. These findings provide a novel molecular mechanism for keratinocytes’ biology and indicate that PDCD4 plays a role in epidermal homeostasis. Full article
(This article belongs to the Special Issue Molecular Research of Epidermal Stem Cells 2015)
Show Figures

Graphical abstract

6029 KiB  
Article
Fibroblast Growth Factor 21 Suppresses Adipogenesis in Pig Intramuscular Fat Cells
by Yongliang Wang, Xinyi Liu, Liming Hou, Wangjun Wu, Shuhong Zhao and Yuanzhu Xiong
Int. J. Mol. Sci. 2016, 17(1), 11; https://doi.org/10.3390/ijms17010011 - 23 Dec 2015
Cited by 23 | Viewed by 6939
Abstract
Fibroblast growth factor 21 (FGF21) plays an important role in the treatment of disease associated with muscle insulin resistance which is characterized by various factors, such as intramuscular triglyceride (IMT) content. Studies have also shown that FGF21 inhibits triglyceride synthesis in [...] Read more.
Fibroblast growth factor 21 (FGF21) plays an important role in the treatment of disease associated with muscle insulin resistance which is characterized by various factors, such as intramuscular triglyceride (IMT) content. Studies have also shown that FGF21 inhibits triglyceride synthesis in vivo. However, the precise mechanism whereby FGF21 regulates triglyceride metabolism in intramuscular fat (IMF), which may influence the muscle insulin sensitivity, is not clearly understood. In order to understand the role of FGF21 in IMF deposition, we performed FGF21 overexpression in IMF cells by stable transfection. Our results showed that FGF21 inhibited the key adipogenesis gene mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein (CEBP) family by reducing lysine-specific demethylase 1 (LSD1) expression which led to significant decline in lipid accumulation, and the result was confirmed by Western blot. Moreover, triggered by FGF21, parts of the adipokines—fatty acid-binding protein 4 (FABP4), glucose transporter 4 (GLUT4), adiponectin (ADIPOQ), and perilipin (PLIN1)—were also down-regulated. Furthermore, FGF21 gene expression was suppressed by transcription factor CEBP beta (CEBPB) which contributed strongly to triglyceride synthesis. Taken together, our study is the first to experimentally demonstrate FGF21 emerging as an efficient blockade of adipogenesis in IMF, thus also providing a new understanding of the mechanism whereby FGF21 improves insulin sensitivity. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

1359 KiB  
Article
Identification of the Avian Pasteurella multocida phoP Gene and Evaluation of the Effects of phoP Deletion on Virulence and Immunogenicity
by Kangpeng Xiao, Qing Liu, Xueyan Liu, Yunlong Hu, Xinxin Zhao and Qingke Kong
Int. J. Mol. Sci. 2016, 17(1), 12; https://doi.org/10.3390/ijms17010012 - 23 Dec 2015
Cited by 18 | Viewed by 6087
Abstract
Pasteurella multocida (P. multocida) is an animal pathogen of worldwide economic significance that causes fowl cholera in poultry and wild birds. Global gene regulators, including PhoP are important in regulating bacterial virulence and are good targets for developing attenuated vaccines against [...] Read more.
Pasteurella multocida (P. multocida) is an animal pathogen of worldwide economic significance that causes fowl cholera in poultry and wild birds. Global gene regulators, including PhoP are important in regulating bacterial virulence and are good targets for developing attenuated vaccines against many pathogenic bacteria. However, the biological significance of phoP gene has not been identified in P. multocida. Here, we identified the phoP gene in P. multocida, and we evaluated the roles of phoP in P. multocida by deleting the phoP gene. The P. multocida phoP mutant exhibited similar growth curves and lipopolysaccharide and outer membrane protein profiles but displayed defective polymyxin resistance in vitro compared with the parent strain. Additionally, the phoP deletion resulted in decreased virulence. The LD50 of the ΔphoP mutant was 32- and 154-fold higher than the parent strain via the oral and intranasal routes, respectively. Transcriptome sequencing analysis showed that 161 genes were up-regulated and 173 genes were down-regulated in the absence of the phoP gene. Finally, the immunogenicity and protective efficacy of the ΔphoP mutant were evaluated. Immunized ducks produced significantly higher levels of serum IgY and bile IgA compared to the control ducks, and immunization with the ΔphoP mutant conferred 54.5% protection efficiency against challenge with the virulent P. multocida. This work provides a platform to dissect the function of phoP and develop a new vaccine against P. multocida. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

328 KiB  
Article
Prediction of Protein Structural Class Based on Gapped-Dipeptides and a Recursive Feature Selection Approach
by Taigang Liu, Yufang Qin, Yongjie Wang and Chunhua Wang
Int. J. Mol. Sci. 2016, 17(1), 15; https://doi.org/10.3390/ijms17010015 - 24 Dec 2015
Cited by 20 | Viewed by 4400
Abstract
The prior knowledge of protein structural class may offer useful clues on understanding its functionality as well as its tertiary structure. Though various significant efforts have been made to find a fast and effective computational approach to address this problem, it is still [...] Read more.
The prior knowledge of protein structural class may offer useful clues on understanding its functionality as well as its tertiary structure. Though various significant efforts have been made to find a fast and effective computational approach to address this problem, it is still a challenging topic in the field of bioinformatics. The position-specific score matrix (PSSM) profile has been shown to provide a useful source of information for improving the prediction performance of protein structural class. However, this information has not been adequately explored. To this end, in this study, we present a feature extraction technique which is based on gapped-dipeptides composition computed directly from PSSM. Then, a careful feature selection technique is performed based on support vector machine-recursive feature elimination (SVM-RFE). These optimal features are selected to construct a final predictor. The results of jackknife tests on four working datasets show that our method obtains satisfactory prediction accuracies by extracting features solely based on PSSM and could serve as a very promising tool to predict protein structural class. Full article
(This article belongs to the Section Physical Chemistry, Theoretical and Computational Chemistry)
Show Figures

Figure 1

4463 KiB  
Article
CHMP4C Disruption Sensitizes the Human Lung Cancer Cells to Irradiation
by Kang Li, Jianxiang Liu, Mei Tian, Gang Gao, Xuesong Qi, Yan Pan, Jianlei Ruan, Chunxu Liu and Xu Su
Int. J. Mol. Sci. 2016, 17(1), 18; https://doi.org/10.3390/ijms17010018 - 24 Dec 2015
Cited by 19 | Viewed by 7104
Abstract
Human lung cancer is highly invasive and the most malignant among human tumors. Adenocarcinoma as a specific type of non-small cell lung cancer occurs with high frequency and is also highly resistant to radiation therapy. Thus, how to avoid radiation resistance and improve [...] Read more.
Human lung cancer is highly invasive and the most malignant among human tumors. Adenocarcinoma as a specific type of non-small cell lung cancer occurs with high frequency and is also highly resistant to radiation therapy. Thus, how to avoid radiation resistance and improve radiotherapy effectiveness is a crucial question. In the present study, human lung cancer A549 and H1299 cells were irradiated using γ-rays from a Co60 irradiator. Protein expression was detected by Western blotting. Cell cycle and apoptosis were measured by flow cytometry. Surviving fraction was determined by colony formation assay. γH2AX and 53BP1 foci formation were examined by fluorescence microscopy. In the results, we show that CHMP4C, a subunit of Endosomal sorting complex-III (ESCRT-III), is involved in radiation-induced cellular response. Radiation-induced Aurora B expression enhances CHMP4C phosphorylation in non-small cell lung cancer (NSCLC) cells, maintaining cell cycle check-point and cellular viability as well as resisting apoptosis. CHMP4C depletion enhances cellular sensitivity to radiation, delays S-phase of cell cycle and reduces ionizing radiation (IR)-induced γH2AX foci formation. We found that Aurora B targets CHMP4C and inhibition of Aurora B exhibits similar effects with silencing of CHMP4C in radioresistance. We also confirm that CHMP4C phosphorylation is elevated after IR both in p53-positive and-negative cells, indicating that the close correlation between CHMP4C and Aurora B signaling pathway in mediating radiation resistance is not p53 dependent. Together, our work establishes a new function of CHMP4C in radiation resistance, which will offer a potential strategy for non-small cell lung cancer by disrupting CHMP4C. Full article
(This article belongs to the Special Issue Molecular Classification of Human Cancer: Diagnosis and Treatment)
Show Figures

Graphical abstract

2198 KiB  
Article
Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco
by Yun-Peng Wang, Zheng-Yi Wei, Xiao-Fang Zhong, Chun-Jing Lin, Yu-Hong Cai, Jian Ma, Yu-Ying Zhang, Yan-Zhi Liu and Shao-Chen Xing
Int. J. Mol. Sci. 2016, 17(1), 19; https://doi.org/10.3390/ijms17010019 - 23 Dec 2015
Cited by 36 | Viewed by 6740
Abstract
Basic fibroblast growth factor (bFGF) is a multifunctional factor in acceleration of cell proliferation, differentiation and transference, and therefore widely used in clinical applications. In this study, expression vector pWX-Nt03 harboring a codon-optimized bFGF gene was constructed and introduced into the tobacco chloroplasts [...] Read more.
Basic fibroblast growth factor (bFGF) is a multifunctional factor in acceleration of cell proliferation, differentiation and transference, and therefore widely used in clinical applications. In this study, expression vector pWX-Nt03 harboring a codon-optimized bFGF gene was constructed and introduced into the tobacco chloroplasts by particle bombardment. After four rounds of selection, bFGF was proved to integrate into the chloroplast genome of regenerated plants and two of four transgenic plants were confirmed to be homoplastomic by PCR and Southern hybridization. ELISA assay indicated that bFGF represented approximately 0.1% of total soluble protein in the leaves of transplastomic tobacco plants. This is the first report of bFGF expression via chloroplast transformation in model plant, providing an additional option for the production of chloroplast-produced therapeutic proteins. Full article
(This article belongs to the Special Issue Plant Proteomic Research)
Show Figures

Graphical abstract

1183 KiB  
Article
Detection of Interactions between Proteins through Rotation Forest and Local Phase Quantization Descriptors
by Leon Wong, Zhu-Hong You, Zhong Ming, Jianqiang Li, Xing Chen and Yu-An Huang
Int. J. Mol. Sci. 2016, 17(1), 21; https://doi.org/10.3390/ijms17010021 - 24 Dec 2015
Cited by 45 | Viewed by 5703
Abstract
Protein-Protein Interactions (PPIs) play a vital role in most cellular processes. Although many efforts have been devoted to detecting protein interactions by high-throughput experiments, these methods are obviously expensive and tedious. Targeting these inevitable disadvantages, this study develops a novel computational method to [...] Read more.
Protein-Protein Interactions (PPIs) play a vital role in most cellular processes. Although many efforts have been devoted to detecting protein interactions by high-throughput experiments, these methods are obviously expensive and tedious. Targeting these inevitable disadvantages, this study develops a novel computational method to predict PPIs using information on protein sequences, which is highly efficient and accurate. The improvement mainly comes from the use of the Rotation Forest (RF) classifier and the Local Phase Quantization (LPQ) descriptor from the Physicochemical Property Response (PR) Matrix of protein amino acids. When performed on three PPI datasets including Saccharomyces cerevisiae, Homo sapiens, and Helicobacter pylori, we obtained good results of average accuracies of 93.8%, 97.96%, and 89.47%, which are much better than in previous studies. Extensive validations have also been explored to evaluate the performance of the Rotation Forest ensemble classifier with the state-of-the-art Support Vector Machine classifier. These promising results indicate that the proposed method might play a complementary role for future proteomics research. Full article
(This article belongs to the Special Issue Protein Engineering)
Show Figures

Graphical abstract

3405 KiB  
Article
Novel Insights into Guide RNA 5′-Nucleoside/Tide Binding by Human Argonaute 2
by Munishikha Kalia, Sarah Willkomm, Jens Christian Claussen, Tobias Restle and Alexandre M. J. J. Bonvin
Int. J. Mol. Sci. 2016, 17(1), 22; https://doi.org/10.3390/ijms17010022 - 24 Dec 2015
Cited by 7 | Viewed by 5820
Abstract
The human Argonaute 2 (hAgo2) protein is a key player of RNA interference (RNAi). Upon complex formation with small non-coding RNAs, the protein initially interacts with the 5′-end of a given guide RNA through multiple interactions within the MID domain. This interaction has [...] Read more.
The human Argonaute 2 (hAgo2) protein is a key player of RNA interference (RNAi). Upon complex formation with small non-coding RNAs, the protein initially interacts with the 5′-end of a given guide RNA through multiple interactions within the MID domain. This interaction has been reported to show a strong bias for U and A over C and G at the 5′-position. Performing molecular dynamics simulations of binary hAgo2/OH–guide–RNA complexes, we show that hAgo2 is a highly flexible protein capable of binding to guide strands with all four possible 5′-bases. Especially, in the case of C and G this is associated with rather large individual conformational rearrangements affecting the MID, PAZ and even the N-terminal domains to different degrees. Moreover, a 5′-G induces domain motions in the protein, which trigger a previously unreported interaction between the 5′-base and the L2 linker domain. Combining our in silico analyses with biochemical studies of recombinant hAgo2, we find that, contrary to previous observations, hAgo2 is capable of functionally accommodating guide strands regardless of the 5′-base. Full article
(This article belongs to the Collection Regulation by Non-coding RNAs)
Show Figures

Graphical abstract

3696 KiB  
Article
Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments
by Fanchi Meng, Insung Na, Lukasz Kurgan and Vladimir N. Uversky
Int. J. Mol. Sci. 2016, 17(1), 24; https://doi.org/10.3390/ijms17010024 - 25 Dec 2015
Cited by 85 | Viewed by 9084
Abstract
The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA [...] Read more.
The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions. Full article
Show Figures

Graphical abstract

3199 KiB  
Article
Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures
by Yan Zhu, Xiao Chen, Zhan Liu, Yu-Ping Peng and Yi-Hua Qiu
Int. J. Mol. Sci. 2016, 17(1), 25; https://doi.org/10.3390/ijms17010025 - 28 Dec 2015
Cited by 42 | Viewed by 6290
Abstract
Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson’s disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures [...] Read more.
Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson’s disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h prior to LPS (50 ng/mL) treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2) were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor) were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2015)
Show Figures

Figure 1

7162 KiB  
Article
Resistance to Recombinant Human Erythropoietin Therapy in a Rat Model of Chronic Kidney Disease Associated Anemia
by Patrícia Garrido, Sandra Ribeiro, João Fernandes, Helena Vala, Petronila Rocha-Pereira, Elsa Bronze-da-Rocha, Luís Belo, Elísio Costa, Alice Santos-Silva and Flávio Reis
Int. J. Mol. Sci. 2016, 17(1), 28; https://doi.org/10.3390/ijms17010028 - 25 Dec 2015
Cited by 13 | Viewed by 13224
Abstract
This study aimed to elucidate the mechanisms explaining the persistence of anemia and resistance to recombinant human erythropoietin (rHuEPO) therapy in a rat model of chronic kidney disease (CKD)-associated anemia with formation of anti-rHuEPO antibodies. The remnant kidney rat model of CKD induced [...] Read more.
This study aimed to elucidate the mechanisms explaining the persistence of anemia and resistance to recombinant human erythropoietin (rHuEPO) therapy in a rat model of chronic kidney disease (CKD)-associated anemia with formation of anti-rHuEPO antibodies. The remnant kidney rat model of CKD induced by 5/6 nephrectomy was used to test a long-term (nine weeks) high dose of rHuEPO (200 UI/kg bw/week) treatment. Hematological and biochemical parameters were evaluated as well as serum and tissue (kidney, liver and/or duodenum) protein and/or gene expression of mediators of erythropoiesis, iron metabolism and tissue hypoxia, inflammation, and fibrosis. Long-term treatment with a high rHuEPO dose is associated with development of resistance to therapy as a result of antibodies formation. In this condition, serum EPO levels are not deficient and iron availability is recovered by increased duodenal absorption. However, erythropoiesis is not stimulated, and the resistance to endogenous EPO effect and to rHuEPO therapy results from the development of a hypoxic, inflammatory and fibrotic milieu in the kidney tissue. This study provides new insights that could be important to ameliorate the current therapeutic strategies used to treat patients with CKD-associated anemia, in particular those that become resistant to rHuEPO therapy. Full article
(This article belongs to the Special Issue Advances in Chronic Kidney Disease)
Show Figures

Graphical abstract

1243 KiB  
Article
Adiponectin Induces Oncostatin M Expression in Osteoblasts through the PI3K/Akt Signaling Pathway
by Chen-Ming Su, Wei-Lin Lee, Chin-Jung Hsu, Ting-Ting Lu, Li-Hong Wang, Guo-Hong Xu and Chih-Hsin Tang
Int. J. Mol. Sci. 2016, 17(1), 29; https://doi.org/10.3390/ijms17010029 - 25 Dec 2015
Cited by 30 | Viewed by 6249
Abstract
Rheumatoid arthritis (RA), a common autoimmune disorder, is associated with a chronic inflammatory response and unbalanced bone metabolism within the articular microenvironment. Adiponectin, an adipokine secreted by adipocytes, is involved in multiple functions, including lipid metabolism and pro-inflammatory activity. However, the mechanism of [...] Read more.
Rheumatoid arthritis (RA), a common autoimmune disorder, is associated with a chronic inflammatory response and unbalanced bone metabolism within the articular microenvironment. Adiponectin, an adipokine secreted by adipocytes, is involved in multiple functions, including lipid metabolism and pro-inflammatory activity. However, the mechanism of adiponectin performance within arthritic inflammation remains unclear. In this study, we observed the effect of adiponectin on the expression of oncostatin M (OSM), a pro-inflammatory cytokine, in human osteoblastic cells. Pretreatment of cells with inhibitors of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor (NF)-κB reduced the adiponectin-induced OSM expression in osteoblasts. Stimulation of the cells with adiponectin increased phosphorylation of PI3K, Akt, and p65. Adiponectin treatment of osteoblasts increased OSM-luciferase activity and p65 binding to NF-κB on the OSM promoter. Our results indicate that adiponectin increased OSM expression via the PI3K, Akt, and NF-κB signaling pathways in osteoblastic cells, suggesting that adiponectin is a novel target for arthritis treatment. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

9370 KiB  
Article
In Vivo Anti-Tumor Activity and Toxicological Evaluations of Perillaldehyde 8,9-Epoxide, a Derivative of Perillyl Alcohol
by Luciana Nalone Andrade, Ricardo Guimarães Amaral, Grace Anne Azevedo Dória, Cecília Santos Fonseca, Tayane Kayane Mariano Da Silva, Ricardo Luiz Cavalcante Albuquerque Júnior, Sara Maria Thomazzi, Lázaro Gomes Do Nascimento, Adriana Andrade Carvalho and Damião Pergentino De Sousa
Int. J. Mol. Sci. 2016, 17(1), 32; https://doi.org/10.3390/ijms17010032 - 4 Jan 2016
Cited by 24 | Viewed by 5323
Abstract
Recent studies have revealed the high cytotoxicity of p-menthane derivatives against human tumor cells. In this study, the substance perillaldehyde 8,9-epoxide, a p-menthane class derivative obtained from (S)-(−)-perillyl alcohol, was selected in order to assess antitumor activity against experimental [...] Read more.
Recent studies have revealed the high cytotoxicity of p-menthane derivatives against human tumor cells. In this study, the substance perillaldehyde 8,9-epoxide, a p-menthane class derivative obtained from (S)-(−)-perillyl alcohol, was selected in order to assess antitumor activity against experimental sarcoma 180 tumors. Toxicological effects related to the liver, spleen, kidneys and hematology were evaluated in mice submitted to treatment. The tumor growth inhibition rate was 38.4%, 58.7%, 35.3%, 45.4% and 68.1% at doses of 100 and 200 mg/kg/day for perillaldehyde 8,9-epoxide, perillyl alcohol and 25 mg/kg/day for 5-FU intraperitoneal treatments, respectively. No toxicologically significant effect was found in liver and kidney parameters analyzed in Sarcoma 180-inoculated mice treated with perillaldehyde 8,9-epoxide. Histopathological analyses of the liver, spleen, and kidneys were free from any morphological changes in the organs of the animals treated with perillaldehyde 8,9-epoxide. In conclusion, the data suggest that perillaldehyde 8,9-epoxide possesses significant antitumor activity without systemic toxicity for the tested parameters. By comparison, there was no statistical difference for the antitumor activity between perillaldehyde 8,9-epoxide and perillyl alcohol. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

4020 KiB  
Article
The Sequence Characteristics and Expression Models Reveal Superoxide Dismutase Involved in Cold Response and Fruiting Body Development in Volvariella volvacea
by Jun-Jie Yan, Lei Zhang, Rui-Qing Wang, Bin Xie, Xiao Li, Ren-Liang Chen, Li-Xian Guo and Bao-Gui Xie
Int. J. Mol. Sci. 2016, 17(1), 34; https://doi.org/10.3390/ijms17010034 - 14 Jan 2016
Cited by 28 | Viewed by 5592
Abstract
As the first defence for cells to counteract the toxicity of active oxygen, superoxide dismutase (SOD) plays an important role in the response of living organisms to stress and cell differentiation. One extracellular Cu-ZnSOD (ecCu-ZnSOD), and two MnSODs, were identified based on the [...] Read more.
As the first defence for cells to counteract the toxicity of active oxygen, superoxide dismutase (SOD) plays an important role in the response of living organisms to stress and cell differentiation. One extracellular Cu-ZnSOD (ecCu-ZnSOD), and two MnSODs, were identified based on the Volvariella volvacea genome sequence. All three genes have complicated alternative splicing modes during transcription; only when the fourth intron is retained can the Vv_Cu-Znsod1 gene be translated into a protein sequence with SOD functional domains. The expression levels of the three sod genes in the pilei are higher than in the stipe. The Vv_Cu-Znsod1 and the Vv_Mnsod2 are co-expressed in different developmental stages of the fruiting body, with the highest level of expression in the pilei of the egg stage, and they show a significant, positive correlation with the efficiency of karyogamy, indicating the potential role of these two genes during karyogamy. The expression of the ecCu-Znsod and two Vv_Mnsod genes showed a significant up-regulated when treated by cold stress for one hour; however, the lack of the intracellular Cu-ZnSOD encoding gene (icCu-Znsod) and the special locus of the ecCu-Znsod gene initiation codon suggested a possible reason for the autolysis phenomenon of V. volvacea in cold conditions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

2035 KiB  
Article
Serum Deprivation-Induced Human GM3 Synthase (hST3Gal V) Gene Expression Is Mediated by Runx2 in Human Osteoblastic MG-63 Cells
by Hyun-Kyoung Yoon, Ji-Won Lee, Kyoung-Sook Kim, Seo-Won Mun, Dong-Hyun Kim, Hyun-Jun Kim, Cheorl-Ho Kim and Young-Choon Lee
Int. J. Mol. Sci. 2016, 17(1), 35; https://doi.org/10.3390/ijms17010035 - 29 Dec 2015
Cited by 8 | Viewed by 5475
Abstract
Serum deprivation (SD) is well known to induce G0/G1 cell cycle arrest and apoptosis in various cells. In the present study, we firstly found that SD could induce G1 arrest and the differentiation of human osteoblastic MG-63 cells, as evidenced by the increase [...] Read more.
Serum deprivation (SD) is well known to induce G0/G1 cell cycle arrest and apoptosis in various cells. In the present study, we firstly found that SD could induce G1 arrest and the differentiation of human osteoblastic MG-63 cells, as evidenced by the increase of osteoblastic differentiation markers, such as bone morphogenetic protein-2 (BMP-2), osteocalcin and runt-related transcription factor 2 (Runx2). In parallel, gene expression of human GM3 synthase (hST3Gal V) catalyzing ganglioside GM3 biosynthesis was upregulated by SD in MG-63 cells. The 5′-flanking region of the hST3Gal V gene was functionally characterized to elucidate transcriptional regulation of hST3Gal V in SD-induced MG-63 cells. Promoter analysis using 5′-deletion constructs of the hST3Gal V gene demonstrated that the −432 to −177 region functions as the SD-inducible promoter. Site-directed mutagenesis revealed that the Runx2 binding sites located side-by-side at positions −232 and −222 are essential for the SD-induced expression of hST3Gal V in MG-63 cells. In addition, the chromatin immunoprecipitation assay also showed that Runx2 specifically binds to the hST3Gal V promoter region containing Runx2 binding sites. These results suggest that SD triggers upregulation of hST3Gal V gene expression through Runx2 activation by BMP signaling in MG-63 cells. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

4472 KiB  
Article
The Role of bFGF in the Excessive Activation of Astrocytes Is Related to the Inhibition of TLR4/NFκB Signals
by Libing Ye, Ying Yang, Xie Zhang, Pingtao Cai, Rui Li, Daqing Chen, Xiaojie Wei, Xuesong Zhang, Huazi Xu, Jian Xiao, Xiaokun Li, Li Lin and Hongyu Zhang
Int. J. Mol. Sci. 2016, 17(1), 37; https://doi.org/10.3390/ijms17010037 - 28 Dec 2015
Cited by 28 | Viewed by 6647
Abstract
Astrocytes have critical roles in immune defense, homeostasis, metabolism, and synaptic remodeling and function in the central nervous system (CNS); however, excessive activation of astrocytes with increased intermediate filaments following neuronal trauma, infection, ischemia, stroke, and neurodegenerative diseases results in a pro-inflammatory environment [...] Read more.
Astrocytes have critical roles in immune defense, homeostasis, metabolism, and synaptic remodeling and function in the central nervous system (CNS); however, excessive activation of astrocytes with increased intermediate filaments following neuronal trauma, infection, ischemia, stroke, and neurodegenerative diseases results in a pro-inflammatory environment and promotes neuronal death. As an important neurotrophic factor, the secretion of endogenous basic fibroblast growth factor (bFGF) contributes to the protective effect of neuronal cells, but the mechanism of bFGF in reactive astrogliosis is still unclear. In this study, we demonstrated that exogenous bFGF attenuated astrocyte activation by reducing the expression of glial fibrillary acidic protein (GFAP) and other markers, including neurocan and vimentin, but not nestin and decreased the levels of pro-inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), via the regulation of the upstream toll-like receptor 4/nuclear factor κB (TLR4/NFκB) signaling pathway. Our study suggests that the function of bFGF is not only related to the neuroprotective and neurotrophic effect but also involved in the inhibition of excessive astrogliosis and glial scarring after neuronal injury. Full article
(This article belongs to the Special Issue Molecular Machinery of Cell Growth Regulation)
Show Figures

Figure 1

2990 KiB  
Article
Aire-Overexpressing Dendritic Cells Induce Peripheral CD4+ T Cell Tolerance
by Dongbei Li, Haijun Li, Haiying Fu, Kunwei Niu, Yantong Guo, Chuan Guo, Jitong Sun, Yi Li and Wei Yang
Int. J. Mol. Sci. 2016, 17(1), 38; https://doi.org/10.3390/ijms17010038 - 29 Dec 2015
Cited by 24 | Viewed by 5403
Abstract
Autoimmune regulator (Aire) can promote the ectopic expression of peripheral tissue-restricted antigens (TRAs) in thymic medullary epithelial cells (mTECs), which leads to the deletion of autoreactive T cells and consequently prevents autoimmune diseases. However, the functions of Aire in the periphery, such as [...] Read more.
Autoimmune regulator (Aire) can promote the ectopic expression of peripheral tissue-restricted antigens (TRAs) in thymic medullary epithelial cells (mTECs), which leads to the deletion of autoreactive T cells and consequently prevents autoimmune diseases. However, the functions of Aire in the periphery, such as in dendritic cells (DCs), remain unclear. This study’s aim was to investigate the effect of Aire-overexpressing DCs (Aire cells) on the functions of CD4+ T cells and the treatment of type 1 diabetes (T1D). We demonstrated that Aire cells upregulated the mRNA levels of the tolerance-related molecules CD73, Lag3, and FR4 and the apoptosis of CD4+ T cells in STZ-T1D mouse-derived splenocytes. Furthermore, following insulin stimulation, Aire cells decreased the number of CD4+ IFN-γ+ T cells in both STZ-T1D and WT mouse-derived splenocytes and reduced the expression levels of TCR signaling molecules (Ca2+ and p-ERK) in CD4+ T cells. We observed that Aire cells-induced CD4+ T cells could delay the development of T1D. In summary, Aire-expressing DCs inhibited TCR signaling pathways and decreased the quantity of CD4+IFN-γ+ autoreactive T cells. These data suggest a mechanism for Aire in the maintenance of peripheral immune tolerance and provide a potential method to control autoimmunity by targeting Aire. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

3348 KiB  
Article
Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae)
by Yang Wang, Lian Wei, Dengbang Wei, Xiao Li, Lina Xu and Linna Wei
Int. J. Mol. Sci. 2016, 17(1), 39; https://doi.org/10.3390/ijms17010039 - 7 Jan 2016
Cited by 9 | Viewed by 10910
Abstract
Testis-specific lactate dehydrogenase (LDH-C4) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and [...] Read more.
Testis-specific lactate dehydrogenase (LDH-C4) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4), Lactate Dehydrogenase B4 (LDH-B4), and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L), LDH-B4 (Ki = 23.800 mmol/L), and LDH-C4 (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4. Full article
Show Figures

Graphical abstract

1765 KiB  
Article
Vaccination of Silver Sea Bream (Sparus sarba) against Vibrio alginolyticus: Protective Evaluation of Different Vaccinating Modalities
by Jun Li, Siyuan Ma and Norman Y. S. Woo
Int. J. Mol. Sci. 2016, 17(1), 40; https://doi.org/10.3390/ijms17010040 - 29 Dec 2015
Cited by 26 | Viewed by 6636
Abstract
In order to develop more effective immunological strategies to prevent vibriosis of farmed marine fish in Hong Kong and southern China, various vaccine preparations including formalin-, phenol-, chloroform- and heat-killed whole cell bacterins and subcellular lipopolysaccharides (LPS), as well as different administration routes, [...] Read more.
In order to develop more effective immunological strategies to prevent vibriosis of farmed marine fish in Hong Kong and southern China, various vaccine preparations including formalin-, phenol-, chloroform- and heat-killed whole cell bacterins and subcellular lipopolysaccharides (LPS), as well as different administration routes, were investigated. Fish immunized with the subcellular LPS exhibited the best protection [Relative Percent of Survival (RPS) = 100], while fish immunized with whole cell bacterins displayed varying degrees of protection (RPS ranged from 28 to 80), in descending order: formalin-killed > phenol-killed > heat-killed > chloroform-killed bacterins. Regarding various administration routes, fish immunized with two intraperitoneal (i.p.) injections exhibited the best protection, and the RPS values were 100 or 85 upon higher or lower doses of pathogenic V. alginolyticus challenges. Both oral vaccination and a combination of injection/immersion trial were also effective, which achieved relatively high protection (the RPS values ranged from 45 to 64.3). However, two hyperosmotic immersions could not confer satisfactory protection, especially when fish were exposed to the severe pathogenic bacteria challenge. Marked elevations of serum agglutinating antibody titer were detected in all immunized fish. Macrophage phagocytosis was enhanced significantly, especially in the fish immunized by formalin- and phenol-killed bacterins through various administration routes. Both adaptive (specific antibody) and innate (phagocytic activity) immunity elicited by different immunization strategies were in parallel with the degree of protection offered by each of them. Although all vaccination trials had no significant effect on the serum hematocrit and hemoglobin levels, the circulating lymphocyte counts were significantly elevated in the fish immunized with LPS, formalin- and phenol-killed bacterins. Serum cortisol levels appeared to be reduced in all immunized fish except the trial of hyperosmotic immersion, which indicated the stressful impact on vaccinated fish. Full article
(This article belongs to the Special Issue Fish Molecular Biology)
Show Figures

Figure 1

8030 KiB  
Article
Alisertib Induces Cell Cycle Arrest, Apoptosis, Autophagy and Suppresses EMT in HT29 and Caco-2 Cells
by Bao-Jun Ren, Zhi-Wei Zhou, Da-Jian Zhu, Yong-Le Ju, Jin-Hao Wu, Man-Zhao Ouyang, Xiao-Wu Chen and Shu-Feng Zhou
Int. J. Mol. Sci. 2016, 17(1), 41; https://doi.org/10.3390/ijms17010041 - 29 Dec 2015
Cited by 34 | Viewed by 14708
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS) is a selective Aurora kinase A (AURKA) inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and [...] Read more.
Colorectal cancer (CRC) is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS) is a selective Aurora kinase A (AURKA) inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and anticancer effect of ALS and explore the underlying mechanisms in HT29 and Caco-2 cells. ALS markedly arrested cells in G2/M phase in both cell lines, accompanied by remarkable alterations in the expression level of key cell cycle regulators. ALS induced apoptosis in HT29 and Caco-2 cells through mitochondrial and death receptor pathways. ALS also induced autophagy in HT29 and Caco-2 cells, with the suppression of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), but activation of 5′ AMP-activated protein kinase (AMPK) signaling pathways. There was a differential modulating effect of ALS on p38 MAPK signaling pathway in both cell lines. Moreover, induction or inhibition of autophagy modulated basal and ALS-induced apoptosis in both cell lines. ALS potently suppressed epithelial to mesenchymal transition (EMT) in HT29 and Caco-2 cells. Collectively, it suggests that induction of cell cycle arrest, promotion of apoptosis and autophagy, and suppression of EMT involving mitochondrial, death receptor, PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways contribute to the cancer cell killing effect of ALS on CRC cells. Full article
(This article belongs to the Special Issue Molecular Classification of Human Cancer: Diagnosis and Treatment)
Show Figures

Graphical abstract

6203 KiB  
Article
Comparative Transcriptome Profile of the Cytoplasmic Male Sterile and Fertile Floral Buds of Radish (Raphanus sativus L.)
by Shiyong Mei, Touming Liu and Zhiwei Wang
Int. J. Mol. Sci. 2016, 17(1), 42; https://doi.org/10.3390/ijms17010042 - 6 Jan 2016
Cited by 31 | Viewed by 8450
Abstract
Radish cytoplasmic male sterility (CMS) has been widely used for breeding in Raphanus and Brassica genera. However, the detailed regulation network of the male sterility remains to be determined. Our previous work has shown that the abnormalities in a CMS radish appeared shortly [...] Read more.
Radish cytoplasmic male sterility (CMS) has been widely used for breeding in Raphanus and Brassica genera. However, the detailed regulation network of the male sterility remains to be determined. Our previous work has shown that the abnormalities in a CMS radish appeared shortly after the tetrad stage when microspores were malformed and the tapetal cells grew abnormally large. In this work, histological analysis shows that anthers are at the tetrad stage when the radish buds are about 1.5 mm in length. Furthermore, a high throughput RNA sequencing technology was employed to characterize the transcriptome of radish buds with length about 1.5 mm from two CMS lines possessing the CMS-inducing orf138 gene and corresponding near-isogenic maintainer lines. A total of 67,140 unigenes were functionally annotated. Functional terms for these genes are significantly enriched in 55 Gene Ontology (GO) groups and 323 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The transcriptome detected transcripts for 72 out of a total of 79 protein genes encoded in the chloroplast genome from radish. In contrast, the radish mitochondrial genome contains 34 protein genes, but only 16 protein transcripts were detected from the transcriptome. The transcriptome comparison between CMS and near-isogenic maintainer lines revealed 539 differentially expressed genes (DEGs), indicating that the false positive rate for comparative transcriptome profiling was clearly decreased using two groups of CMS/maintainer lines with different nuclear background. The level of 127 transcripts was increased and 412 transcripts were decreased in the CMS lines. No change in levels of transcripts except CMS-inducing orf138 was identified from the mitochondrial and chloroplast genomes. Some DEGs which would be associated with the CMS, encoding MYB and bHLH transcription factors, pentatricopeptide repeat (PPR) proteins, heat shock transcription factors (HSFs) and heat shock proteins (HSPs), are discussed. The transcriptome dataset and comparative analysis will provide an important resource for further understanding anther development, the CMS mechanism and to improve molecular breeding in radish. Full article
(This article belongs to the Special Issue Plant Molecular Biology)
Show Figures

Graphical abstract

2041 KiB  
Article
Astaxanthin, a Carotenoid, Stimulates Immune Responses by Enhancing IFN-γ and IL-2 Secretion in Primary Cultured Lymphocytes in Vitro and ex Vivo
by Kuan-Hung Lin, Kao-Chang Lin, Wan-Jung Lu, Philip-Aloysius Thomas, Thanasekaran Jayakumar and Joen-Rong Sheu
Int. J. Mol. Sci. 2016, 17(1), 44; https://doi.org/10.3390/ijms17010044 - 29 Dec 2015
Cited by 68 | Viewed by 7092
Abstract
Astaxanthin, a potent antioxidant carotenoid, plays a major role in modulating the immune response. In this study, we examined the immunomodulatory effects of astaxanthin on cytokine production in primary cultured lymphocytes both in vitro and ex vivo. Direct administration of astaxanthin (70–300 [...] Read more.
Astaxanthin, a potent antioxidant carotenoid, plays a major role in modulating the immune response. In this study, we examined the immunomodulatory effects of astaxanthin on cytokine production in primary cultured lymphocytes both in vitro and ex vivo. Direct administration of astaxanthin (70–300 nM) did not produce cytotoxicity in lipopolysaccharide (LPS, 100 µg/ mL)- or concanavalin A (Con A, 10 µg/ mL)-activated lymphocytes, whereas astaxanthin alone at 300 nM induced proliferation of splenic lymphocytes (p < 0.05) in vitro. Although astaxanthin, alone or with Con A, had no apparent effect on interferon (INF-γ) and interleukin (IL-2) production in primary cultured lymphocytes, it enhanced LPS-induced INF-γ production. In an ex vivo experiment, oral administration of astaxanthin (0.28, 1.4 and 7 mg/kg/day) for 14 days did not cause alterations in the body or spleen weights of mice and also was not toxic to lymphocyte cells derived from the mice. Moreover, treatment with astaxanthin significantly increased LPS-induced lymphocyte proliferation ex vivo but not Con A-stimulated lymphocyte proliferation ex vivo. Enzyme linked immunosorbent assay (ELISA) analysis revealed that administration of astaxanthin significantly enhanced INF-γ production in response to both LPS and Con A stimulation, whereas IL-2 production increased only in response to Con A stimulation. Also, astaxanthin treatment alone significantly increased IL-2 production in lymphocytes derived from mice, but did not significantly change production of INF-γ. These findings suggest that astaxanthin modulates lymphocytic immune responses in vitro, and that it partly exerts its ex vivo immunomodulatory effects by increasing INF-γ and IL-2 production without inducing cytotoxicity. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Figure 1

7064 KiB  
Article
Effect of Greenhouse Gases Dissolved in Seawater
by Shigeki Matsunaga
Int. J. Mol. Sci. 2016, 17(1), 45; https://doi.org/10.3390/ijms17010045 - 30 Dec 2015
Cited by 8 | Viewed by 6749
Abstract
A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination [...] Read more.
A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region. Full article
(This article belongs to the Special Issue Solution Chemical Kinetics)
Show Figures

Figure 1

1201 KiB  
Article
Sulfasalazine Treatment Suppresses the Formation of HLA-B27 Heavy Chain Homodimer in Patients with Ankylosing Spondylitis
by Hui-Chun Yu, Ming-Chi Lu, Kuang-Yung Huang, Hsien-lu Huang, Su-Qin Liu, Hsien-Bin Huang and Ning-Sheng Lai
Int. J. Mol. Sci. 2016, 17(1), 46; https://doi.org/10.3390/ijms17010046 - 29 Dec 2015
Cited by 14 | Viewed by 5761
Abstract
Human leukocytic antigen-B27 heavy chain (HLA-B27 HC) has the tendency to fold slowly, in turn gradually forming a homodimer, (B27-HC)2 via a disulfide linkage to activate killer cells and T-helper 17 cells and inducing endoplasmic reticulum (ER) stress to trigger the IL-23/IL-17 [...] Read more.
Human leukocytic antigen-B27 heavy chain (HLA-B27 HC) has the tendency to fold slowly, in turn gradually forming a homodimer, (B27-HC)2 via a disulfide linkage to activate killer cells and T-helper 17 cells and inducing endoplasmic reticulum (ER) stress to trigger the IL-23/IL-17 axis for pro-inflammatory reactions. All these consequences lead to the pathogenesis of ankylosing spondylitis (AS). Sulfasalazine (SSA) is a common medication used for treatment of patients with AS. However, the effects of SSA treatment on (B27-HC)2 formation and on suppression of IL-23/IL-17 axis of AS patients remain to be determined. In the current study, we examine the (B27-HC)2 of peripheral blood mononuclear cells (PBMC), the mean grade of sarcoiliitis and lumbar spine Bath Ankylosing Spondylitis Radiology Index (BASRI) scores of 23 AS patients. The results indicated that AS patients without (B27-HC)2 on PBMC showed the lower levels of mean grade of sarcoiliitis and the lumbar spine BASRI scores. In addition, after treatment with SSA for four months, the levels of (B27-HC)2 on PBMCs were significantly reduced. Cytokines mRNA levels, including TNFα, IL-17A, IL-17F and IFNγ, were also significantly down-regulated in PBMCs. However, SSA treatment did not affect the levels of IL-23 and IL-23R mRNAs. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

2388 KiB  
Article
The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation
by Lucia Machova Urdzikova, Kristyna Karova, Jiri Ruzicka, Anna Kloudova, Craig Shannon, Jana Dubisova, Raj Murali, Sarka Kubinova, Eva Sykova, Meena Jhanwar-Uniyal and Pavla Jendelova
Int. J. Mol. Sci. 2016, 17(1), 49; https://doi.org/10.3390/ijms17010049 - 31 Dec 2015
Cited by 49 | Viewed by 6998
Abstract
Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal [...] Read more.
Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9–T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2015)
Show Figures

Graphical abstract

208 KiB  
Article
Pharmacotherapy Treatment Options for Insomnia: A Primer for Clinicians
by Gregory M. Asnis, Manju Thomas and Margaret A. Henderson
Int. J. Mol. Sci. 2016, 17(1), 50; https://doi.org/10.3390/ijms17010050 - 30 Dec 2015
Cited by 78 | Viewed by 15742
Abstract
Insomnia is a prevalent disorder with deleterious effects such as decreased quality of life, and a predisposition to a number of psychiatric disorders. Fortunately, numerous approved hypnotic treatments are available. This report reviews the state of the art of pharmacotherapy with a reference [...] Read more.
Insomnia is a prevalent disorder with deleterious effects such as decreased quality of life, and a predisposition to a number of psychiatric disorders. Fortunately, numerous approved hypnotic treatments are available. This report reviews the state of the art of pharmacotherapy with a reference to cognitive behavioral therapy for insomnia (CBT-I) as well. It provides the clinician with a guide to all the Food and Drug Administration (FDA) approved hypnotics (benzodiazepines, nonbenzodiazepines, ramelteon, low dose sinequan, and suvorexant) including potential side effects. Frequently, chronic insomnia lasts longer than 2 years. Cognizant of this and as a result of longer-term studies, the FDA has approved all hypnotics since 2005 without restricting the duration of use. Our manuscript also reviews off-label hypnotics (sedating antidepressants, atypical antipsychotics, anticonvulsants and antihistamines) which in reality, are more often prescribed than approved hypnotics. The choice of which hypnotic to choose is discussed partially being based on which segment of sleep is disturbed and whether co-morbid illnesses exist. Lastly, we discuss recent label changes required by the FDA inserting a warning about “sleep-related complex behaviors”, e.g., sleep-driving for all hypnotics. In addition, we discuss FDA mandated dose reductions for most zolpidem preparations in women due to high zolpidem levels in the morning hours potentially causing daytime carry-over effects. Full article
2540 KiB  
Article
Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey
by Jia Li, Xinxin You, Chao Bian, Hui Yu, Steven L. Coon and Qiong Shi
Int. J. Mol. Sci. 2016, 17(1), 51; https://doi.org/10.3390/ijms17010051 - 31 Dec 2015
Cited by 21 | Viewed by 8460
Abstract
All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT), the blood level of melatonin increases at night and decreases during daytime. [...] Read more.
All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT), the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD) led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2. Full article
(This article belongs to the Special Issue Fish Molecular Biology)
Show Figures

Graphical abstract

2409 KiB  
Article
Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells
by Camille C. Hanot, Young Suk Choi, Tareq B. Anani, Dharsan Soundarrajan and Allan E. David
Int. J. Mol. Sci. 2016, 17(1), 54; https://doi.org/10.3390/ijms17010054 - 31 Dec 2015
Cited by 54 | Viewed by 6899
Abstract
Superparamagnetic iron-oxide nanoparticles (SPIONs) show great promise for multiple applications in biomedicine. While a number of studies have examined their safety profile, the toxicity of these particles on reproductive organs remains uncertain. The goal of this study was to evaluate the cytotoxicity of [...] Read more.
Superparamagnetic iron-oxide nanoparticles (SPIONs) show great promise for multiple applications in biomedicine. While a number of studies have examined their safety profile, the toxicity of these particles on reproductive organs remains uncertain. The goal of this study was to evaluate the cytotoxicity of starch-coated, aminated, and PEGylated SPIONs on a cell line derived from Chinese Hamster ovaries (CHO-K1 cells). We evaluated the effect of particle diameter (50 and 100 nm) and polyethylene glycol (PEG) chain length (2k, 5k and 20k Da) on the cytotoxicity of SPIONs by investigating cell viability using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and sulforhodamine B (SRB) assays. The kinetics and extent of SPION uptake by CHO-K1 cells was also studied, as well as the resulting generation of intracellular reactive oxygen species (ROS). Cell toxicity profiles of SPIONs correlated strongly with their cellular uptake kinetics, which was strongly dependent on surface properties of the particles. PEGylation caused a decrease in both uptake and cytotoxicity compared to aminated SPIONs. Interestingly, 2k Da PEG-modifed SPIONs displayed the lowest cellular uptake and cytotoxicity among all studied particles. These results emphasize the importance of surface coatings when engineering nanoparticles for biomedical applications. Full article
(This article belongs to the Special Issue Developmental and Reproductive Toxicity of Iron Oxide Nanoparticles)
Show Figures

Graphical abstract

2425 KiB  
Article
Redox-Responsive Porphyrin-Based Polysilsesquioxane Nanoparticles for Photodynamic Therapy of Cancer Cells
by Daniel L. Vega, Patrick Lodge and Juan L. Vivero-Escoto
Int. J. Mol. Sci. 2016, 17(1), 56; https://doi.org/10.3390/ijms17010056 - 31 Dec 2015
Cited by 22 | Viewed by 7870
Abstract
The development of stimulus-responsive photosensitizer delivery systems that carry a high payload of photosensitizers is of great importance in photodynamic therapy. In this study, redox-responsive polysilsesquioxane nanoparticles (PSilQNPs) built by a reverse microemulsion approach using 5,10,15,20-tetrakis(carboxyphenyl) porphyrin (TCPP) silane derivatives as building blocks, [...] Read more.
The development of stimulus-responsive photosensitizer delivery systems that carry a high payload of photosensitizers is of great importance in photodynamic therapy. In this study, redox-responsive polysilsesquioxane nanoparticles (PSilQNPs) built by a reverse microemulsion approach using 5,10,15,20-tetrakis(carboxyphenyl) porphyrin (TCPP) silane derivatives as building blocks, were successfully fabricated. The structural properties of TCPP-PSilQNPs were characterized by dynamic light scattering (DLS)/ζ-potential, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The photophysical properties were determined by UV-vis and fluorescence spectroscopy. The quantity of singlet oxygen generated in solution was measured using 1,3-diphenylisobenzofuran. The redox-responsive release of TCPP molecules was successfully demonstrated in solution in the presence of a reducing agent. The internalization of TCPP-PSilQNPs in cancer cells was investigated using laser scanning confocal microscopy. Phototoxicity experiments in vitro showed that the redox-responsive TCPP-PSilQNPs exhibited an improved phototherapeutic effect on cervical cancer cells compared to a non-responsive TCPP-PSilQNP control material. Full article
(This article belongs to the Special Issue Advances in Photodynamic Therapy)
Show Figures

Graphical abstract

7297 KiB  
Article
Anion Channel Inhibitor NPPB-Inhibited Fluoride Accumulation in Tea Plant (Camellia sinensis) Is Related to the Regulation of Ca2+, CaM and Depolarization of Plasma Membrane Potential
by Xian-Chen Zhang, Hong-Jian Gao, Tian-Yuan Yang, Hong-Hong Wu, Yu-Mei Wang, Zheng-Zhu Zhang and Xiao-Chun Wan
Int. J. Mol. Sci. 2016, 17(1), 57; https://doi.org/10.3390/ijms17010057 - 5 Jan 2016
Cited by 149 | Viewed by 6150
Abstract
Tea plant is known to be a hyper-accumulator of fluoride (F). Over-intake of F has been shown to have adverse effects on human health, e.g., dental fluorosis. Thus, understanding the mechanisms fluoride accumulation and developing potential approaches to decrease F uptake in tea [...] Read more.
Tea plant is known to be a hyper-accumulator of fluoride (F). Over-intake of F has been shown to have adverse effects on human health, e.g., dental fluorosis. Thus, understanding the mechanisms fluoride accumulation and developing potential approaches to decrease F uptake in tea plants might be beneficial for human health. In the present study, we found that pretreatment with the anion channel inhibitor NPPB reduced F accumulation in tea plants. Simultaneously, we observed that NPPB triggered Ca2+ efflux from mature zone of tea root and significantly increased relative CaM in tea roots. Besides, pretreatment with the Ca2+ chelator (EGTA) and CaM antagonists (CPZ and TFP) suppressed NPPB-elevated cytosolic Ca2+ fluorescence intensity and CaM concentration in tea roots, respectively. Interestingly, NPPB-inhibited F accumulation was found to be significantly alleviated in tea plants pretreated with either Ca2+ chelator (EGTA) or CaM antagonists (CPZ and TFP). In addition, NPPB significantly depolarized membrane potential transiently and we argue that the net Ca2+ and H+ efflux across the plasma membrane contributed to the restoration of membrane potential. Overall, our results suggest that regulation of Ca2+-CaM and plasma membrane potential depolarization are involved in NPPB-inhibited F accumulation in tea plants. Full article
(This article belongs to the Special Issue Plant Molecular Biology)
Show Figures

Graphical abstract

10419 KiB  
Article
Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines
by Priyanka Venkatesh, Irina V. Panyutin, Evgenia Remeeva, Ronald D. Neumann and Igor G. Panyutin
Int. J. Mol. Sci. 2016, 17(1), 58; https://doi.org/10.3390/ijms17010058 - 2 Jan 2016
Cited by 21 | Viewed by 7684
Abstract
Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin [...] Read more.
Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC. Full article
(This article belongs to the Collection Radiation Toxicity in Cells)
Show Figures

Graphical abstract

1076 KiB  
Article
Binding of Sulpiride to Seric Albumins
by Viviane Muniz Da Silva Fragoso, Carla Patrícia De Morais Coura, Luanda Yanaan Hoppe, Marília Amável Gomes Soares, Dilson Silva and Celia Martins Cortez
Int. J. Mol. Sci. 2016, 17(1), 59; https://doi.org/10.3390/ijms17010059 - 4 Jan 2016
Cited by 11 | Viewed by 4346
Abstract
The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher [...] Read more.
The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08) × 104 M−1, at 37 °C, and 5.46 (±0.20) × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M−1, at 37 °C and 2.17 (±0.04) × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure. Full article
(This article belongs to the Section Physical Chemistry, Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

1151 KiB  
Article
Ruthenium(III) Complexes of Heterocyclic Tridentate (ONN) Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent
by Ikechukwu P. Ejidike and Peter A. Ajibade
Int. J. Mol. Sci. 2016, 17(1), 60; https://doi.org/10.3390/ijms17010060 - 4 Jan 2016
Cited by 29 | Viewed by 6225
Abstract
The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III) complexes of heterocyclic tridentate Schiff base bearing a simple 2′,4′-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl [...] Read more.
The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III) complexes of heterocyclic tridentate Schiff base bearing a simple 2′,4′-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl3·3H2O lead to the formation of neutral complexes of the type [Ru(L)Cl2(H2O)] (where L = tridentate NNO ligands). The compounds were characterized by elemental analysis, UV-vis, conductivity measurements, FTIR spectroscopy and confirmed the proposed octahedral geometry around the Ru ion. The Ru(III) compounds showed antiradical potentials against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, with DPPH scavenging capability in the order: [(PAEBOD)RuCl2] > [(BZEBOD)RuCl2] > [(MOABOD)RuCl2] > [Vit. C] > [rutin] > [(METBOD)RuCl2], and ABTS radical in the order: [(PAEBOD)RuCl2] < [(MOABOD)RuCl2] < [(BZEBOD)RuCl2] < [(METBOD)RuCl2]. Furthermore, in vitro anti-proliferative activity was investigated against three human cancer cell lines: renal cancer cell (TK-10), melanoma cancer cell (UACC-62) and breast cancer cell (MCF-7) by SRB assay. Full article
(This article belongs to the Special Issue Applied Bioinorganic Chemistry and Selected Papers from 13th ISABC)
Show Figures

Graphical abstract

5318 KiB  
Article
Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study
by Junhe Cui, Zechuan Yu and Denvid Lau
Int. J. Mol. Sci. 2016, 17(1), 61; https://doi.org/10.3390/ijms17010061 - 5 Jan 2016
Cited by 59 | Viewed by 9729
Abstract
Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we [...] Read more.
Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered. Full article
(This article belongs to the Special Issue Frontiers of Marine Biomaterials)
Show Figures

Graphical abstract

7219 KiB  
Article
Porcine Adipose-Derived Mesenchymal Stem Cells Retain Their Stem Cell Characteristics and Cell Activities While Enhancing the Expression of Liver-Specific Genes after Acute Liver Failure
by Chenxia Hu, Ning Zhou, Jianzhou Li, Ding Shi, Hongcui Cao, Jun Li and Lanjuan Li
Int. J. Mol. Sci. 2016, 17(1), 62; https://doi.org/10.3390/ijms17010062 - 5 Jan 2016
Cited by 17 | Viewed by 5801
Abstract
Acute liver failure (ALF) is a kind of complicated syndrome. Furthermore, adipose-derived mesenchymal stem cells (ADMSCs) can serve as a useful cell resource for autotransplantation due to their abundance and micro-invasive accessability. However, it is unknown how ALF will influence the characteristics of [...] Read more.
Acute liver failure (ALF) is a kind of complicated syndrome. Furthermore, adipose-derived mesenchymal stem cells (ADMSCs) can serve as a useful cell resource for autotransplantation due to their abundance and micro-invasive accessability. However, it is unknown how ALF will influence the characteristics of ADMSCs and whether ADMSCs from patients suffering from end-stage liver diseases are potential candidates for autotransplantation. This study was designed to compare various properties of ALF-derived ADMSCs with normal ADMSCs in pig models, with regard to their cellular morphology, cell proliferative ability, cell apoptosis, expression of surface antigens, mitochondrial and lysosomal activities, multilineage potency, and expression of liver-specific genes. Our results showed that ALF does not influence the stem cell characteristics and cell activities of ADMSCs. Intriguingly, the expression levels of several liver-specific genes in ALF-derived ADMSCs are higher than in normal ADMSCs. In conclusion, our findings indicate that the stem cell characteristics and cell activities of ADMSCs were not altered by ALF and these cells can serve as a new source for regenerative medicine. Full article
(This article belongs to the Special Issue Stem Cell Activation in Adult Organism)
Show Figures

Figure 1

2184 KiB  
Article
Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT
by Gregory R. Kowald, Stephen R. Stürzenbaum and Claudia A. Blindauer
Int. J. Mol. Sci. 2016, 17(1), 65; https://doi.org/10.3390/ijms17010065 - 5 Jan 2016
Cited by 17 | Viewed by 8418
Abstract
Earthworms express, as most animals, metallothioneins (MTs)—small, cysteine-rich proteins that bind d10 metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure [...] Read more.
Earthworms express, as most animals, metallothioneins (MTs)—small, cysteine-rich proteins that bind d10 metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II) and Zn(II). Crucially, whilst a single Cd7wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II), expressions in the presence of Zn(II) yielded mixtures. The average affinities of wMT-2 determined for either Cd(II) or Zn(II) are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by 1H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo. Full article
(This article belongs to the Special Issue Metal Metabolism in Animals)
Show Figures

Graphical abstract

874 KiB  
Article
Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder
by Stefanie Teschler, Julia Gotthardt, Gerhard Dammann and Reinhard H. Dammann
Int. J. Mol. Sci. 2016, 17(1), 67; https://doi.org/10.3390/ijms17010067 - 5 Jan 2016
Cited by 16 | Viewed by 7044
Abstract
Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of [...] Read more.
Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5′-external transcribed spacer/5′ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5′ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5′ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. Full article
Show Figures

Figure 1

5805 KiB  
Article
Neuropeptide Substance-P-Conjugated Chitosan Nanofibers as an Active Modulator of Stem Cell Recruiting
by Min Sup Kim, Sang Jun Park, Wheemoon Cho, Bon Kang Gu and Chun-Ho Kim
Int. J. Mol. Sci. 2016, 17(1), 68; https://doi.org/10.3390/ijms17010068 - 7 Jan 2016
Cited by 10 | Viewed by 5325
Abstract
The goal to successful wound healing is essentially to immobilize and recruit appropriate numbers of host stem or progenitor cells to the wound area. In this study, we developed a chitosan nanofiber-immobilized neuropeptide substance-P (SP), which mediates stem cell mobilization and migration, onto [...] Read more.
The goal to successful wound healing is essentially to immobilize and recruit appropriate numbers of host stem or progenitor cells to the wound area. In this study, we developed a chitosan nanofiber-immobilized neuropeptide substance-P (SP), which mediates stem cell mobilization and migration, onto the surfaces of nanofibers using a peptide-coupling agent, and evaluated its biological effects on stem cells. The amount of immobilized SP on chitosan nanofibers was modulated over the range of 5.89 ± 3.27 to 75.29 ± 24.31 ng when reacted with 10 to 500 ng SP. In vitro migration assays showed that SP-incorporated nanofibers induced more rapid migration of human mesenchymal stem cells on nanofibers compared to pristine samples. Finally, the conjugated SP evoked a minimal foreign body reaction and recruited a larger number of CD29- and CD44-positive stem cells into nanofibers in a mouse subcutaneous pocket model. Full article
(This article belongs to the Special Issue Chitins 2015)
Show Figures

Graphical abstract

4916 KiB  
Article
Unraveling Molecular Differences of Gastric Cancer by Label-Free Quantitative Proteomics Analysis
by Peng Dai, Qin Wang, Weihua Wang, Ruirui Jing, Wei Wang, Fengqin Wang, Kazem M. Azadzoi, Jing-Hua Yang and Zhen Yan
Int. J. Mol. Sci. 2016, 17(1), 69; https://doi.org/10.3390/ijms17010069 - 21 Jan 2016
Cited by 31 | Viewed by 6311
Abstract
Gastric cancer (GC) has significant morbidity and mortality worldwide and especially in China. Its molecular pathogenesis has not been thoroughly elaborated. The acknowledged biomarkers for diagnosis, prognosis, recurrence monitoring and treatment are lacking. Proteins from matched pairs of human GC and adjacent tissues [...] Read more.
Gastric cancer (GC) has significant morbidity and mortality worldwide and especially in China. Its molecular pathogenesis has not been thoroughly elaborated. The acknowledged biomarkers for diagnosis, prognosis, recurrence monitoring and treatment are lacking. Proteins from matched pairs of human GC and adjacent tissues were analyzed by a coupled label-free Mass Spectrometry (MS) approach, followed by functional annotation with software analysis. Nano-LC-MS/MS, quantitative real-time polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry were used to validate dysregulated proteins. One hundred forty-six dysregulated proteins with more than twofold expressions were quantified, 22 of which were first reported to be relevant with GC. Most of them were involved in cancers and gastrointestinal disease. The expression of a panel of four upregulated nucleic acid binding proteins, heterogeneous nuclear ribonucleoprotein hnRNPA2B1, hnRNPD, hnRNPL and Y-box binding protein 1 (YBX-1) were validated by Nano-LC-MS/MS, qRT-PCR, western blot and immunohistochemistry assays in ten GC patients’ tissues. They were located in the keynotes of a predicted interaction network and might play important roles in abnormal cell growth. The label-free quantitative proteomic approach provides a deeper understanding and novel insight into GC-related molecular changes and possible mechanisms. It also provides some potential biomarkers for clinical diagnosis. Full article
Show Figures

Graphical abstract

3046 KiB  
Article
Anti-Oncogenic gem-Dihydroperoxides Induce Apoptosis in Cancer Cells by Trapping Reactive Oxygen Species
by Yuki Kuranaga, Nami Yamada, Maiko Kashiwaya, Moeko Nakamura, Lei Cui, Minami Kumazaki, Haruka Shinohara, Nobuhiko Sugito, Kohei Taniguchi, Yuko Ito, Tatsushi Nakayama, Bunji Uno, Akichika Itoh and Yukihiro Akao
Int. J. Mol. Sci. 2016, 17(1), 71; https://doi.org/10.3390/ijms17010071 - 8 Jan 2016
Cited by 7 | Viewed by 6088
Abstract
Organic gem-dihydroperoxides (DHPs) and their derived peroxides have attracted a great deal of attention as potential anti-cancer agents. However, the precise mechanism of their inhibitory effect on tumors is unknown. To determine the mechanism of the inhibitory effects of DHPs, we examined [...] Read more.
Organic gem-dihydroperoxides (DHPs) and their derived peroxides have attracted a great deal of attention as potential anti-cancer agents. However, the precise mechanism of their inhibitory effect on tumors is unknown. To determine the mechanism of the inhibitory effects of DHPs, we examined the effects of DHPs on leukemia K562 cells. As a result, certain DHPs used in this study exhibited growth-inhibitory activity according to a clear structure-activity relationship. The most potent DHP, 12AC3O, induced apoptosis in K562 cells, but not in peripheral blood monocytes (PBMCs) or fibroblast cells. 12AC3O induced apoptosis through the intrinsic mitochondrial pathway and thereafter through the extrinsic pathway. The activity of the former pathway was partly attenuated by a JNK inhibitor. Interestingly, 12AC3O induced apoptosis by trapping a large amount of ROS, leading to an extremely lower intracellular ROS level compared with that in the cells in the steady-state condition. These results suggest that an appropriate level of intracellular ROS was necessary for the maintenance of cancer cell growth. DHPs may have a potential to be a novel anti-cancer agent with minimum adverse effects on normal cells. Full article
Show Figures

Graphical abstract

1368 KiB  
Article
MiRNA-Target Interaction Reveals Cell-Specific Post-Transcriptional Regulation in Mammalian Cell Lines
by Varun Kulkarni, Afsar Raza Naqvi, Juhi Raju Uttamani and Salvador Nares
Int. J. Mol. Sci. 2016, 17(1), 72; https://doi.org/10.3390/ijms17010072 - 8 Jan 2016
Cited by 21 | Viewed by 5125
Abstract
MicroRNAs are 18–22 nucleotides long, non-coding RNAs that bind transcripts with complementary sequences leading to either mRNA degradation or translational suppression. However, the inherent differences in preferred mode of miRNA regulation among cells of different origin have not been examined. In our previous [...] Read more.
MicroRNAs are 18–22 nucleotides long, non-coding RNAs that bind transcripts with complementary sequences leading to either mRNA degradation or translational suppression. However, the inherent differences in preferred mode of miRNA regulation among cells of different origin have not been examined. In our previous transcriptome profiling studies, we observed that post-transcriptional regulation can differ substantially depending on the cell in context. Here we examined mechanistic differences in the regulation of a let-7a targeted (wild type) or resistant (mutant) engineered renilla transcript across various mammalian cell lines of diverse origin. Dual luciferase assays show that compared to mutant (mut), the reporter gene containing wild type (wt) let-7a binding sites was efficiently suppressed upon transfection in various cell lines. Importantly, the strength of miRNA regulation varied across the cell lines. Total RNA analysis demonstrates that wt renilla mRNA was expressed to similar or higher levels compared to mut suggesting that translation repression is a predominant mode of miRNA regulation. Nonetheless, transcript degradation was observed in some cell lines. Ago-2 immunoprecipitation show that miRNA repressed renilla mRNA are associated with functional mi-RISC (miRNA-RNA induced silencing complex). Given the immense potential of miRNA as a therapeutic option, these findings highlight the necessity to thoroughly examine the mode of mRNA regulation in order to achieve the beneficial effects in targeting cells. Full article
(This article belongs to the Collection Regulation by Non-coding RNAs)
Show Figures

Graphical abstract

9702 KiB  
Article
NLRP3 Upregulation in Retinal Pigment Epithelium in Age-Related Macular Degeneration
by Yujuan Wang, Jakub W. Hanus, Mones S. Abu-Asab, Defen Shen, Alexander Ogilvy, Jingxing Ou, Xi K. Chu, Guangpu Shi, Wei Li, Shusheng Wang and Chi-Chao Chan
Int. J. Mol. Sci. 2016, 17(1), 73; https://doi.org/10.3390/ijms17010073 - 8 Jan 2016
Cited by 59 | Viewed by 8149
Abstract
Inflammation and oxidative stress are involved in age-related macular degeneration (AMD) and possibly associated with an activation of neuronal apoptosis inhibitor protein/class II transcription activator of the Major Histocompatibility Complex (MHC)/heterokaryon incompatibility/telomerase-associated protein 1, leucine-rich repeat or nucleotide-binding domain, leucine-rich repeat-containing family, and [...] Read more.
Inflammation and oxidative stress are involved in age-related macular degeneration (AMD) and possibly associated with an activation of neuronal apoptosis inhibitor protein/class II transcription activator of the Major Histocompatibility Complex (MHC)/heterokaryon incompatibility/telomerase-associated protein 1, leucine-rich repeat or nucleotide-binding domain, leucine-rich repeat-containing family, and pyrin domain-containing 3 (NLRP3) inflammasome. In the present study, we used a translational approach to address this hypothesis. In patients with AMD, we observed increased mRNA levels of NLRP3, pro-interleukin-1 beta (IL-1β) and pro-IL-18 in AMD lesions of the retinal pigment epithelium (RPE) and photoreceptor. In vitro, a similar increase was evoked by oxidative stress or lipopolysaccharide (LPS) stimulation in the adult retinal pigment epithelium (ARPE-19) cell line, and the increase was reduced in siRNA transfected cells to knockdown NLRP3. Ultrastructural studies of ARPE-19 cells showed a swelling of the cytoplasm, mitochondrial damage, and occurrence of autophagosome-like structures. NLRP3 positive dots were detected within autophagosome-like structures or in the extracellular space. Next, we used a mouse model of AMD, Ccl2/Cx3cr1 double knockout on rd8 background (DKO rd8) to ascertain the in vivo relevance. Ultrastructural studies of the RPE of these mice showed damaged mitochondria, autophagosome-like structures, and cytoplasmic vacuoles, which are reminiscent of the pathology seen in stressed ARPE-19 cells. The data suggest that the NLRP3 inflammasome may contribute in AMD pathogenesis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

2271 KiB  
Article
Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D2 Against Human Malignant Melanoma Cell Lines
by Anna Piotrowska, Justyna Wierzbicka, Sharmin Nadkarni, Geoffrey Brown, Andrzej Kutner and Michał A. Żmijewski
Int. J. Mol. Sci. 2016, 17(1), 76; https://doi.org/10.3390/ijms17010076 - 8 Jan 2016
Cited by 22 | Viewed by 5530
Abstract
Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a [...] Read more.
Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM) analogs of 1,25-dihydroxyvitamin D2 (1,25(OH)2D2) induced differentiation of the vitamin D receptor (VDR) positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH)2D2 required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH)2D3. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl) and in the A-ring (5,6-trans modification), the regular side-chain of vitamin D2 or D3 was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM). Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs. Full article
Show Figures

Graphical abstract

1383 KiB  
Article
Revealing the Effects of Missense Mutations Causing Snyder-Robinson Syndrome on the Stability and Dimerization of Spermine Synthase
by Yunhui Peng, Joy Norris, Charles Schwartz and Emil Alexov
Int. J. Mol. Sci. 2016, 17(1), 77; https://doi.org/10.3390/ijms17010077 - 8 Jan 2016
Cited by 22 | Viewed by 5738
Abstract
Missense mutations in spermine synthase (SpmSyn) protein have been shown to cause the Snyder-Robinson syndrome (SRS). Depending on the location within the structure of SpmSyn and type of amino acid substitution, different mechanisms resulting in SRS were proposed. Here we focus on naturally [...] Read more.
Missense mutations in spermine synthase (SpmSyn) protein have been shown to cause the Snyder-Robinson syndrome (SRS). Depending on the location within the structure of SpmSyn and type of amino acid substitution, different mechanisms resulting in SRS were proposed. Here we focus on naturally occurring amino acid substitutions causing SRS, which are situated away from the active center of SpmSyn and thus are not directly involved in the catalysis. Two of the mutations, M35R and P112L, are reported for the first time in this study. It is demonstrated, both experimentally and computationally, that for such mutations the major effect resulting in dysfunctional SpmSyn is the destabilization of the protein. In vitro experiments indicated either no presence or very little amount of the mutant SpmSyn in patient cells. In silico modeling predicted that all studied mutations in this work destabilize SpmSyn and some of them abolish homo-dimer formation. Since dimerization and structural stability are equally important for the wild type function of SpmSyn, it is proposed that the SRS caused by mutations occurring in the N-domain of SpmSyn is a result of dysfunctional mutant proteins being partially unfolded and degraded by the proteomic machinery of the cell or being unable to form a homo-dimer. Full article
(This article belongs to the Special Issue Human Single Nucleotide Polymorphisms and Disease Diagnostics)
Show Figures

Graphical abstract

1194 KiB  
Article
New 9-Hydroxybriarane Diterpenoids from a Gorgonian Coral Briareum sp. (Briareidae)
by Yin-Di Su, Chun-Sung Sung, Zhi-Hong Wen, Yu-Hsin Chen, Yu-Chia Chang, Jih-Jung Chen, Lee-Shing Fang, Yang-Chang Wu, Jyh-Horng Sheu and Ping-Jyun Sung
Int. J. Mol. Sci. 2016, 17(1), 79; https://doi.org/10.3390/ijms17010079 - 9 Jan 2016
Cited by 10 | Viewed by 4949
Abstract
Six new 9-hydroxybriarane diterpenoids, briarenolides ZI–ZVI (16), were isolated from a gorgonian coral Briareum sp. The structures of briaranes 16 were elucidated by spectroscopic methods and by comparison of their spectroscopic data with those of related analogues. [...] Read more.
Six new 9-hydroxybriarane diterpenoids, briarenolides ZI–ZVI (16), were isolated from a gorgonian coral Briareum sp. The structures of briaranes 16 were elucidated by spectroscopic methods and by comparison of their spectroscopic data with those of related analogues. Briarenolides ZII (2) and ZVI (6) were found to significantly inhibit the expression of the pro-inflammatory inducible nitric oxide synthase (iNOS) protein of lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Full article
(This article belongs to the Special Issue Bioactivity of Marine Natural Products)
Show Figures

Graphical abstract

1660 KiB  
Article
Aneurysm miRNA Signature Differs, Depending on Disease Localization and Morphology
by Albert Busch, Martin Busch, Claus-Jürgen Scholz, Richard Kellersmann, Christoph Otto, Ekaterina Chernogubova, Lars Maegdefessel, Alma Zernecke and Udo Lorenz
Int. J. Mol. Sci. 2016, 17(1), 81; https://doi.org/10.3390/ijms17010081 - 12 Jan 2016
Cited by 18 | Viewed by 7445
Abstract
Limited comprehension of aneurysm pathology has led to inconclusive results from clinical trials. miRNAs are key regulators of post-translational gene modification and are useful tools in elucidating key features of aneurysm pathogenesis in distinct entities of abdominal and popliteal aneurysms. Here, surgically harvested [...] Read more.
Limited comprehension of aneurysm pathology has led to inconclusive results from clinical trials. miRNAs are key regulators of post-translational gene modification and are useful tools in elucidating key features of aneurysm pathogenesis in distinct entities of abdominal and popliteal aneurysms. Here, surgically harvested specimens from 19 abdominal aortic aneurysm (AAA) and 8 popliteal artery aneurysm (PAA) patients were analyzed for miRNA expression and histologically classified regarding extracellular matrix (ECM) remodeling and inflammation. DIANA-based computational target prediction and pathway enrichment analysis verified our results, as well as previous ones. miRNA-362, -19b-1, -194, -769, -21 and -550 were significantly down-regulated in AAA samples depending on degree of inflammation. Similar or inverse regulation was found for miR-769, 19b-1 and miR-550, -21, whereas miR-194 and -362 were unaltered in PAA. In situ hybridization verified higher expression of miR-550 and -21 in PAA compared to AAA and computational analysis for target genes and pathway enrichment affirmed signal transduction, cell-cell-interaction and cell degradation pathways, in line with previous results. Despite the vague role of miRNAs for potential diagnostic and treatment purposes, the number of candidates from tissue signature studies is increasing. Tissue morphology influences subsequent research, yet comparison of distinct entities of aneurysm disease can unravel core pathways. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

1547 KiB  
Article
Post-Translational Modification and Secretion of Azelaic Acid Induced 1 (AZI1), a Hybrid Proline-Rich Protein from Arabidopsis
by Andrea Pitzschke, Hui Xue, Helene Persak, Sneha Datta and Georg J. Seifert
Int. J. Mol. Sci. 2016, 17(1), 85; https://doi.org/10.3390/ijms17010085 - 12 Jan 2016
Cited by 10 | Viewed by 6727
Abstract
Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently [...] Read more.
Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions. Full article
(This article belongs to the Special Issue Glycosylation and Glycoproteins)
Show Figures

Graphical abstract

2124 KiB  
Article
Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene
by Yoko Nakajima, Judith Meijer, Chunhua Zhang, Xu Wang, Tomomi Kondo, Tetsuya Ito, Doreen Dobritzsch and André B. P. Van Kuilenburg
Int. J. Mol. Sci. 2016, 17(1), 86; https://doi.org/10.3390/ijms17010086 - 12 Jan 2016
Cited by 12 | Viewed by 5702
Abstract
Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA [...] Read more.
Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients. Full article
(This article belongs to the Special Issue Pre-mRNA Splicing 2015)
Show Figures

Graphical abstract

1122 KiB  
Article
Individualized Follow-up of Pregnant Women with Asymptomatic Autoimmune Thyroid Disease
by Dana Stoian, Stelian Pantea, Madalin Margan, Bogdan Timar, Florin Borcan, Marius Craina and Mihaela Craciunescu
Int. J. Mol. Sci. 2016, 17(1), 88; https://doi.org/10.3390/ijms17010088 - 12 Jan 2016
Cited by 21 | Viewed by 5175
Abstract
Maternal hormones are essential for the normal fetal development during pregnancy. Autoimmune thyroid disease is a frequent pathology in our iodine replete region. The aim of this study is to evaluate the occurrence of subclinical hypothyroidism (SCH) in cases with known autoimmune thyroid [...] Read more.
Maternal hormones are essential for the normal fetal development during pregnancy. Autoimmune thyroid disease is a frequent pathology in our iodine replete region. The aim of this study is to evaluate the occurrence of subclinical hypothyroidism (SCH) in cases with known autoimmune thyroid disease, which were in a euthyroid state prior to pregnancy, and to assess the association between supplemental treatments administered and the outcome of the pregnancy. The study is a prospective interventional controlled study. The two cohorts comprise the interventional group, consisting of 109 pregnant women with known autoimmune asymptomatic thyroid disease, without any levothyroxine (LT4) treatment and an aged-matched control group, with an unknown thyroid disease. After the pregnancy, a monthly evaluation of TSH, FT3, and FT4 was performed. Offspring evaluation was made at birth time. 88.8% of the women developed SCH in the first four weeks of pregnancy. Average LT4 doses increased as the pregnancy progressed. The monthly adjustment was 12.5 or 25 μg. All SCH cases developed in the first trimester of pregnancy. There was no significant difference regarding the gestational week, weight, or length at birth between the interventional group and controls, when TSH values were in the optimal range, during the whole pregnancy. Premature birth was described in one case in the interventional group. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

2475 KiB  
Article
Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo
by Roberta Lotti, Elisabetta Palazzo, Tiziana Petrachi, Katiuscia Dallaglio, Annalisa Saltari, Francesca Truzzi, Marika Quadri, Mario Puviani, Antonino Maiorana, Alessandra Marconi and Carlo Pincelli
Int. J. Mol. Sci. 2016, 17(1), 89; https://doi.org/10.3390/ijms17010089 - 12 Jan 2016
Cited by 12 | Viewed by 5399
Abstract
Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC [...] Read more.
Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development. Full article
(This article belongs to the Special Issue Stem Cell Activation in Adult Organism)
Show Figures

Graphical abstract

1636 KiB  
Article
Enrichment of Secondary Wastewater Sludge for Production of Hydrogen from Crude Glycerol and Comparative Evaluation of Mono-, Co- and Mixed-Culture Systems
by Vinayak Laxman Pachapur, Prianka Kutty, Satinder Kaur Brar and Antonio Avalos Ramirez
Int. J. Mol. Sci. 2016, 17(1), 92; https://doi.org/10.3390/ijms17010092 - 13 Jan 2016
Cited by 19 | Viewed by 5030
Abstract
Anaerobic digestion using mixed-culture with broader choice of pretreatments for hydrogen (H2) production was investigated. Pretreatment of wastewater sludge by five methods, such as heat, acid, base, microwave and chloroform was conducted using crude glycerol (CG) as substrate. Results for heat [...] Read more.
Anaerobic digestion using mixed-culture with broader choice of pretreatments for hydrogen (H2) production was investigated. Pretreatment of wastewater sludge by five methods, such as heat, acid, base, microwave and chloroform was conducted using crude glycerol (CG) as substrate. Results for heat treatment (100 °C for 15 min) showed the highest H2 production across the pretreatment methods with 15.18 ± 0.26 mmol/L of medium at 30 °C in absence of complex media and nutrient solution. The heat-pretreated inoculum eliminated H2 consuming bacteria and produced twice as much as H2 as compared to other pretreatment methods. The fermentation conditions, such as CG concentration (1.23 to 24 g/L), percentage of inoculum size (InS) (1.23% to 24% v/v) along with initial pH (2.98 to 8.02) was tested using central composite design (CCD) with H2 production as response parameter. The maximum H2 production of 29.43 ± 0.71 mmol/L obtained at optimum conditions of 20 g/L CG, 20% InS and pH 7. Symbiotic correlation of pH over CG and InS had a significant (p-value: 0.0011) contribution to H2 production. The mixed-culture possessed better natural acclimatization activity for degrading CG, at substrate inhibition concentration and provided efficient inoculum conditions in comparison to mono- and co-culture systems. The heat pretreatment step used across mixed-culture system is simple, cheap and industrially applicable in comparison to mono-/co-culture systems for H2 production. Full article
(This article belongs to the Special Issue Bioprocess Engineering)
Show Figures

Graphical abstract

3699 KiB  
Communication
Comparative Proteomic Analysis of Mature and Immature Oocytes of the Swamp Buffalo (Bubalus bubalis)
by Qiang Fu, Zhen-Fang Liu, Yu-Lin Huang, Yang-Qing Lu and Ming Zhang
Int. J. Mol. Sci. 2016, 17(1), 94; https://doi.org/10.3390/ijms17010094 - 14 Jan 2016
Cited by 8 | Viewed by 5168
Abstract
Maternal protein components change markedly during mammalian oogenesis. Many of these proteins have yet to be characterized and verified. In this study, a proteomics approach was used to evaluate changes in proteins during oogenesis in the Swamp Buffalo (Bubalus bubalis). Proteins [...] Read more.
Maternal protein components change markedly during mammalian oogenesis. Many of these proteins have yet to be characterized and verified. In this study, a proteomics approach was used to evaluate changes in proteins during oogenesis in the Swamp Buffalo (Bubalus bubalis). Proteins from 500 immature oocytes and 500 in vitro matured oocytes were subjected to two-dimensional electrophoresis, and more than 400 spots were detected. Image analysis indicated that 17 proteins were differentially expressed between the two groups. Eight proteins were identified by mass spectrometry. In mature oocytes, three proteins were down-regulated: major vault protein (MVP), N-acetyllactosaminide β-1,6-N-acetylglucosaminyl-transferase (GCNT-2), and gem-associated protein (GEMIN)8, whereas five other proteins, heat shock protein (HSP)60, Ras-responsive element-binding protein 1 (RREB-1), heat shock cognate 71 kDa protein (HSC71), hemoglobin subunit α (HBA), and BMP-2-inducible protein kinase (BMP-2K), were up-regulated. The expression profiles of HSP60 and GEMIN8 were further verified by Western blotting. The changes in HSP60 protein expression demonstrate the increasing need for mitochondrial protein importation to facilitate macromolecular assembly during oocyte maturation. The down-regulation of GEMIN8 production implies that RNA splicing is impaired in mature oocytes. Full article
(This article belongs to the Special Issue Advances in Proteomic Research)
Show Figures

Graphical abstract

2620 KiB  
Article
Overexpression of PRL7D1 in Leydig Cells Causes Male Reproductive Dysfunction in Mice
by Yaping Liu, Xingyu Su, Jie Hao, Maoxin Chen, Weijia Liu, Xiaogang Liao and Gang Li
Int. J. Mol. Sci. 2016, 17(1), 96; https://doi.org/10.3390/ijms17010096 - 13 Jan 2016
Cited by 2 | Viewed by 5199
Abstract
Prolactin family 7, subfamily d, member 1 (PRL7D1) is found in mouse placenta. Our recent work showed that PRL7D1 is also present in mouse testis Leydig cells, and the expression of PRL7D1 in the testis exhibits an age-related increase. In the present study, [...] Read more.
Prolactin family 7, subfamily d, member 1 (PRL7D1) is found in mouse placenta. Our recent work showed that PRL7D1 is also present in mouse testis Leydig cells, and the expression of PRL7D1 in the testis exhibits an age-related increase. In the present study, we generated transgenic mice with Leydig cell-specific PRL7D1 overexpression to explore its function during male reproduction. Prl7d1 male mice exhibited subfertility as reflected by reduced sperm counts and litter sizes. The testes from Prl7d1 transgenic mice appeared histologically normal, but the frequency of apoptotic germ cells was increased. Prl7d1 transgenic mice also had lower testosterone concentrations than wild-type mice. Mechanistic studies revealed that Prl7d1 transgenic mice have defects in the testicular expression of steroidogenic acute regulatory protein (STAR) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase cluster (HSD3B). Further studies revealed that PRL7D1 overexpression affected the expression of transferrin (TF) in Sertoli cells. These results suggest that PRL7D1 overexpression could lead to increased germ cell apoptosis and exert an inhibitory effect on testosterone production in Leydig cells by reducing the expression of certain steroidogenic-related genes. In addition, PRL7D1 appears to have important roles in the function of Sertoli cells, which, in turn, affects male fertility. We conclude that the expression level of PRL7D1 is associated with the reproductive function of male mice. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

1182 KiB  
Article
Optimizing a Male Reproductive Aging Mouse Model by d-Galactose Injection
by Chun-Hou Liao, Bing-Huei Chen, Han-Sun Chiang, Chiu-Wei Chen, Mei-Feng Chen, Chih-Chun Ke, Ya-Yun Wang, Wei-Ning Lin, Chi-Chung Wang and Ying-Hung Lin
Int. J. Mol. Sci. 2016, 17(1), 98; https://doi.org/10.3390/ijms17010098 - 13 Jan 2016
Cited by 47 | Viewed by 8573
Abstract
The d-galactose (d-gal)-injected animal model, which is typically established by administering consecutive subcutaneous d-gal injections to animals for approximately six or eight weeks, has been frequently used for aging research. In addition, this animal model has been demonstrated to [...] Read more.
The d-galactose (d-gal)-injected animal model, which is typically established by administering consecutive subcutaneous d-gal injections to animals for approximately six or eight weeks, has been frequently used for aging research. In addition, this animal model has been demonstrated to accelerate aging in the brain, kidneys, liver and blood cells. However, studies on aging in male reproductive organs that have used this animal model remain few. Therefore, the current study aimed to optimize a model of male reproductive aging by administering d-gal injections to male mice and to determine the possible mechanism expediting senescence processes during spermatogenesis. In this study, C57Bl/6 mice were randomized into five groups (each containing 8–10 mice according to the daily intraperitoneal injection of vehicle control or 100 or 200 mg/kg dosages of d-gal for a period of six or eight weeks). First, mice subjected to d-gal injections for six or eight weeks demonstrated considerably decreased superoxide dismutase activity in the serum and testis lysates compared to those in the control group. The lipid peroxidation in testis also increased in the d-gal-injected groups. Furthermore, the d-gal-injected groups exhibited a decreased ratio of testis weight/body weight and sperm count compared to the control group. The percentages of both immotile sperm and abnormal sperm increased considerably in the d-gal-injected groups compared to those of the control group. To determine the genes influenced by the d-gal injection during murine spermatogenesis, a c-DNA microarray was conducted to compare testicular RNA samples between the treated groups and the control group. The d-gal-injected groups exhibited RNA transcripts of nine spermatogenesis-related genes (Cycl2, Hk1, Pltp, Utp3, Cabyr, Zpbp2, Speer2, Csnka2ip and Katnb1) that were up- or down-regulated by at least two-fold compared to the control group. Several of these genes are critical for forming sperm-head morphologies or maintaining nuclear integration (e.g., cylicin, basic protein of sperm head cytoskeleton 2 (Cylc2), casein kinase 2, alpha prime interacting protein (Csnka2ip) and katanin p80 (WD40-containing) subunit B1 (Katnb1)). These results indicate that d-gal-injected mice are suitable for investigating male reproductive aging. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

3064 KiB  
Article
Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity
by Craig E. Grossman, Shirron L. Carter, Julie Czupryna, Le Wang, Mary E. Putt and Theresa M. Busch
Int. J. Mol. Sci. 2016, 17(1), 101; https://doi.org/10.3390/ijms17010101 - 14 Jan 2016
Cited by 13 | Viewed by 5362
Abstract
Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model [...] Read more.
Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor®)-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm. Full article
(This article belongs to the Special Issue Advances in Photodynamic Therapy)
Show Figures

Graphical abstract

1515 KiB  
Article
Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin
by Janina Dose, Seiichi Matsugo, Haruka Yokokawa, Yutaro Koshida, Shigetoshi Okazaki, Ulrike Seidel, Manfred Eggersdorfer, Gerald Rimbach and Tuba Esatbeyoglu
Int. J. Mol. Sci. 2016, 17(1), 103; https://doi.org/10.3390/ijms17010103 - 14 Jan 2016
Cited by 131 | Viewed by 13149
Abstract
Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and [...] Read more.
Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health. Full article
(This article belongs to the Special Issue Macro- and Micro-nutrient Antioxidants)
Show Figures

Graphical abstract

1352 KiB  
Communication
Erdr1 Suppresses Murine Melanoma Growth via Regulation of Apoptosis
by Joohyun Lee, Min Kyung Jung, Hyun Jeong Park, Kyung Eun Kim and Daeho Cho
Int. J. Mol. Sci. 2016, 17(1), 107; https://doi.org/10.3390/ijms17010107 - 14 Jan 2016
Cited by 15 | Viewed by 6544
Abstract
Melanoma, one of the aggressive cancers, is known to be resistant to chemotherapy. Because of its aggressive nature, effectively inducing apoptosis is necessary to treat melanoma. Erythroid differentiation regulator 1 (Erdr1) is known to be a stress-related survival factor exhibiting anti-cancer effects in [...] Read more.
Melanoma, one of the aggressive cancers, is known to be resistant to chemotherapy. Because of its aggressive nature, effectively inducing apoptosis is necessary to treat melanoma. Erythroid differentiation regulator 1 (Erdr1) is known to be a stress-related survival factor exhibiting anti-cancer effects in several cancers. However, little is known about the functions and underlying mechanisms of Erdr1 so far. To demonstrate the effect of Erdr1 in melanoma apoptosis, recombinant murine Erdr1 was injected into mice implanted with B16F10 melanoma cells. In vivo tumor growth was significantly inhibited in mice injected with Erdr1 compared to the control. In addition, the tumor from Erdr1-injected mice showed an increased level of apoptosis. Accordingly, apoptosis-regulating factors including anti-apoptotic marker Bcl-2 and pro-apoptotic marker Bax in the tumor tissues were examined. As expected, the decreased level of Bcl-2 and increased level of Bax were detected in tumors within the mice injected with Erdr1. Based on the in vivo study, the role of Erdr1 in tumor apoptosis was further tested by incubating it with cells of the murine melanoma cell line B16F10. Erdr1-induced apoptosis in B16F10 cells was observed. Additionally, Erdr1 downregulated STAT3 activity, inhibiting apoptosis via regulation of the Bcl-2 family. Overall, data demonstrate that Erdr1 induced murine melanoma apoptosis through the regulation of Bcl-2 and Bax. These findings suggest that Erdr1 is a novel regulator of apoptosis in melanoma. Full article
(This article belongs to the Special Issue Inflammatory Skin Conditions)
Show Figures

Graphical abstract

2172 KiB  
Article
In Vitro and in Vivo Neuroprotective Effects of Walnut (Juglandis Semen) in Models of Parkinson’s Disease
by Jin Gyu Choi, Gunhyuk Park, Hyo Geun Kim, Dal-Seok Oh, Hocheol Kim and Myung Sook Oh
Int. J. Mol. Sci. 2016, 17(1), 108; https://doi.org/10.3390/ijms17010108 - 15 Jan 2016
Cited by 25 | Viewed by 6871
Abstract
Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines including dopamine (DA). MAO expression is elevated in Parkinson’s disease (PD). An increase in MAO activity is closely related to age, and this may induce neuronal degeneration in the brain due to oxidative stress. [...] Read more.
Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines including dopamine (DA). MAO expression is elevated in Parkinson’s disease (PD). An increase in MAO activity is closely related to age, and this may induce neuronal degeneration in the brain due to oxidative stress. MAO (and particularly monoamine oxidase B (MAO-B)) participates in the generation of reactive oxygen species (ROS), such as hydrogen peroxide that are toxic to dopaminergic cells and their surroundings. Although the polyphenol-rich aqueous walnut extract (JSE; an extract of Juglandis Semen) has been shown to have various beneficial bioactivities, no study has been dedicated to see if JSE is capable to protect dopaminergic neurons against neurotoxic insults in models of PD. In the present study we investigated the neuroprotective potential of JSE against 1-methyl-4-phenylpyridinium (MPP+)- or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicities in primary mesencephalic cells and in a mouse model of PD. Here we show that JSE treatment suppressed ROS and nitric oxide productions triggered by MPP+ in primary mesencephalic cells. JSE also inhibited depletion of striatal DA and its metabolites in vivo that resulted in significant improvement in PD-like movement impairment. Altogether our results indicate that JSE has neuroprotective effects in PD models and may have potential for the prevention or treatment of PD. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2015)
Show Figures

Graphical abstract

1926 KiB  
Article
Transcription Factor Sp1 Promotes the Expression of Porcine ROCK1 Gene
by Ruirui Zhang, Xiaoting Feng, Mengsi Zhan, Cong Huang, Kun Chen, Xiaoyin Tang, Tingting Kang, Yuanzhu Xiong and Minggang Lei
Int. J. Mol. Sci. 2016, 17(1), 112; https://doi.org/10.3390/ijms17010112 - 15 Jan 2016
Cited by 10 | Viewed by 5920
Abstract
Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) gene plays a crucial role in maintaining genomic stability, tumorigenesis and myogenesis. However, little is known about the regulatory elements governing the transcription of porcine ROCK1 gene. In the current study, the transcription start [...] Read more.
Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) gene plays a crucial role in maintaining genomic stability, tumorigenesis and myogenesis. However, little is known about the regulatory elements governing the transcription of porcine ROCK1 gene. In the current study, the transcription start site (TSS) was identified by 5’-RACE, and was found to differ from the predicted one. The region in ROCK1 promoter which is critical for promoter activity was investigated via progressive deletions. Site-directed mutagenesis indicated that the region from −604 to −554 bp contains responsive elements for Sp1. Subsequent experiments showed that ROCK1 promoter activity is enhanced by Sp1 in a dose-dependent manner, whereas treatment with specific siRNA repressed ROCK1 promoter activity. Electrophoretic mobility shift assay (EMSA), DNA pull down and chromatin immunoprecipitation (ChIP) assays revealed Sp1 can bind to this region. qRT-PCR and Western blotting research followed by overexpression or inhibition of Sp1 indicate that Sp1 can affect endogenous ROCK1 expression at both mRNA and protein levels. Overexpression of Sp1 can promote the expression of myogenic differentiation 1(MyoD), myogenin (MyoG), myosin heavy chain (MyHC). Taken together, we conclude that Sp1 positively regulates ROCK1 transcription by directly binding to the ROCK1 promoter region (from −604 to −532 bp) and may affect the process of myogenesis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

1286 KiB  
Article
In Silico Insight into Potential Anti-Alzheimer’s Disease Mechanisms of Icariin
by Zhijie Cui, Zhen Sheng, Xinmiao Yan, Zhiwei Cao and Kailin Tang
Int. J. Mol. Sci. 2016, 17(1), 113; https://doi.org/10.3390/ijms17010113 - 15 Jan 2016
Cited by 14 | Viewed by 6021
Abstract
Herbal compounds that have notable therapeutic effect upon Alzheimer's disease (AD) have frequently been found, despite the recent failure of late-stage clinical drugs. Icariin, which is isolated from Epimedium brevicornum, is widely reported to exhibit significant anti-AD effects in in vitro and in [...] Read more.
Herbal compounds that have notable therapeutic effect upon Alzheimer's disease (AD) have frequently been found, despite the recent failure of late-stage clinical drugs. Icariin, which is isolated from Epimedium brevicornum, is widely reported to exhibit significant anti-AD effects in in vitro and in vivo studies. However, the molecular mechanism remains thus far unclear. In this work, the anti-AD mechanisms of icariin were investigated at a target network level assisted by an in silico target identification program (INVDOCK). The results suggested that the anti-AD effects of icariin may be contributed by: attenuation of hyperphosphorylation of tau protein, anti-inflammation and regulation of Ca2+ homeostasis. Our results may provide assistance in understanding the molecular mechanism and further developing icariin into promising anti-AD agents. Full article
(This article belongs to the Section Physical Chemistry, Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

464 KiB  
Article
Herb-Induced Liver Injury in the Berlin Case-Control Surveillance Study
by Antonios Douros, Elisabeth Bronder, Frank Andersohn, Andreas Klimpel, Reinhold Kreutz, Edeltraut Garbe and Juliane Bolbrinker
Int. J. Mol. Sci. 2016, 17(1), 114; https://doi.org/10.3390/ijms17010114 - 15 Jan 2016
Cited by 31 | Viewed by 10562
Abstract
Herb-induced liver injury (HILI) has recently attracted attention due to increasing reports of hepatotoxicity associated with use of phytotherapeutics. Here, we present data on HILI from the Berlin Case-Control Surveillance Study. The study was initiated in 2000 to investigate the serious toxicity of [...] Read more.
Herb-induced liver injury (HILI) has recently attracted attention due to increasing reports of hepatotoxicity associated with use of phytotherapeutics. Here, we present data on HILI from the Berlin Case-Control Surveillance Study. The study was initiated in 2000 to investigate the serious toxicity of drugs including herbal medicines. Potential cases of liver injury were ascertained in more than 180 Departments of all 51 Berlin hospitals from October 2002 to December 2011. Drug or herb intake was assessed through a standardized face-to-face interview. Drug or herbal aetiology was assessed based on the updated Council for International Organizations of Medical Sciences scale. In ten of all 198 cases of hepatotoxicity included in the study, herbal aetiology was assessed as probable (once ayurvedic herb) or possible (Valeriana five times, Mentha piperita once, Pelargonium sidoides once, Hypericum perforatum once, Eucalyptus globulus once). Mean age was 56.4 ± 9.7 years, and the predominant pattern of liver injury was hepatocellular. No cases of acute liver failure or death were observed. This case series corroborates known risks for ayurvedic herbs, supports the suspected association between Valeriana use and liver injury, and indicates a hepatotoxic potential for herbs such as Pelargonium sidoides, Hypericum perforatum or Mentha piperita that were rarely associated with liver injury before. However, given that possible causality does not prove clinical significance, further studies in this field are needed. Full article
(This article belongs to the Special Issue Drug, Herb, and Dietary Supplement Hepatotoxicity)
Show Figures

Graphical abstract

6530 KiB  
Article
Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse
by Maryam Rahimi Balaei, Xiaodan Jiao, Niloufar Ashtari, Pegah Afsharinezhad, Saeid Ghavami and Hassan Marzban
Int. J. Mol. Sci. 2016, 17(1), 115; https://doi.org/10.3390/ijms17010115 - 15 Jan 2016
Cited by 13 | Viewed by 6621
Abstract
Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2) mouse (nax—naked-ataxia mutant mouse) correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc) degeneration. Loss of Pcs in the nax cerebellum is compartmentalized [...] Read more.
Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2) mouse (nax—naked-ataxia mutant mouse) correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc) degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR) plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5). In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration. Full article
(This article belongs to the Special Issue Mechanisms of Neurodegeneration)
Show Figures

Graphical abstract

1416 KiB  
Article
Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry
by Laszlo Prokai and Stanley M. Stevens
Int. J. Mol. Sci. 2016, 17(1), 116; https://doi.org/10.3390/ijms17010116 - 16 Jan 2016
Cited by 7 | Viewed by 6333
Abstract
Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance [...] Read more.
Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. Full article
(This article belongs to the Special Issue Fourier Transform Mass Spectrometry in Molecular Sciences)
Show Figures

Graphical abstract

3037 KiB  
Article
Genipin Derivatives Protect RGC-5 from Sodium Nitroprusside-Induced Nitrosative Stress
by Rikang Wang, Jiaqiang Zhao, Lei Zhang, Lizhi Peng, Xinyi Zhang, Wenhua Zheng and Heru Chen
Int. J. Mol. Sci. 2016, 17(1), 117; https://doi.org/10.3390/ijms17010117 - 19 Jan 2016
Cited by 5 | Viewed by 5252
Abstract
CHR20 and CHR21 are a pair of stable diastereoisomers derived from genipin. These stereoisomers are activators of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS). In the rat retinal ganglion (RGC-5) cell model these compounds are non-toxic. Treatment of RGC-5 [...] Read more.
CHR20 and CHR21 are a pair of stable diastereoisomers derived from genipin. These stereoisomers are activators of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS). In the rat retinal ganglion (RGC-5) cell model these compounds are non-toxic. Treatment of RGC-5 with 750 μM of sodium nitroprusside (SNP) produces nitrosative stress. Both genipin derivatives, however, protect these cells against SNP-induced apoptic cell death, although CHR21 is significantly more potent than CHR20 in this regard. With Western blotting we showed that the observed neuroprotection is primarily due to the activation of protein kinase B (Akt)/eNOS and extracellular signal-regulated kinase (ERK1/2) signaling pathways. Therefore, LY294002 (a phosphatidylinositol 3-kinase (PI3K) inhibitor) or PD98059 (a MAPK-activating enzyme inhibitor) abrogated the protective effects of CHR20 and CHR21. Altogether, our results show that in our experimental setup neuroprotection by the diasteromeric pair is mediated through the PI3K/Akt/eNOS and ERK1/2 signaling pathways. Further studies are needed to establish the potential of these compounds to prevent ntric oxide (NO)-induced toxicity commonly seen in many neurodegenerative diseases. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2015)
Show Figures

Graphical abstract

4177 KiB  
Article
Ultra-Fast Glyco-Coating of Non-Biological Surfaces
by Eleanor Williams, Katie Barr, Elena Korchagina, Alexander Tuzikov, Stephen Henry and Nicolai Bovin
Int. J. Mol. Sci. 2016, 17(1), 118; https://doi.org/10.3390/ijms17010118 - 16 Jan 2016
Cited by 13 | Viewed by 6347
Abstract
The ability to glycosylate surfaces has medical and diagnostic applications, but there is no technology currently recognized as being able to coat any surface without the need for prior chemical modification of the surface. Recently, a family of constructs called function-spacer-lipids (FSL) has [...] Read more.
The ability to glycosylate surfaces has medical and diagnostic applications, but there is no technology currently recognized as being able to coat any surface without the need for prior chemical modification of the surface. Recently, a family of constructs called function-spacer-lipids (FSL) has been used to glycosylate cells. Because it is known that lipid-based material can adsorb onto surfaces, we explored the potential and performance of cell-labelling FSL constructs to “glycosylate” non-biological surfaces. Using blood group A antigen as an indicator, the performance of a several variations of FSL constructs to modify a large variety of non-biological surfaces was evaluated. It was found the FSL constructs when optimised could in a few seconds glycosylate almost any non-biological surface including metals, glass, plastics, rubbers and other polymers. Although the FSL glycan coating was non-covalent, and therefore temporary, it was sufficiently robust with appropriate selection of spacer and surface that it could capture anti-glycan antibodies, immobilize cells (via antibody), and withstand incubation in serum and extensive buffer washing, making it suitable for diagnostic and research applications. Full article
(This article belongs to the Special Issue Glycosylation and Glycoproteins)
Show Figures

Graphical abstract

3003 KiB  
Article
Cloning and Transcriptional Activity of the Mouse Omi/HtrA2 Gene Promoter
by Dan Liu, Xin Liu, Ye Wu, Wen Wang, Xinliang Ma and Huirong Liu
Int. J. Mol. Sci. 2016, 17(1), 119; https://doi.org/10.3390/ijms17010119 - 16 Jan 2016
Cited by 10 | Viewed by 5940
Abstract
HtrA serine peptidase 2 (HtrA2), also named Omi, is a pro-apoptotic protein that exhibits dramatic changes in expression levels in a variety of disorders, including ischemia/reperfusion injury, cancer, and neurodegeneration. In our study, Omi/HtrA2 protein levels were high in the heart, brain, kidney [...] Read more.
HtrA serine peptidase 2 (HtrA2), also named Omi, is a pro-apoptotic protein that exhibits dramatic changes in expression levels in a variety of disorders, including ischemia/reperfusion injury, cancer, and neurodegeneration. In our study, Omi/HtrA2 protein levels were high in the heart, brain, kidney and liver, with elevated heart/brain expression in aging mice. A similar expression pattern was observed at the mRNA level, which suggests that the regulation of Omi/HtrA2 is predominately transcriptional. Promoter binding by transcription factors is the main influencing factor of transcription, and to identify specific promoter elements that contribute to the differential expression of mouse Omi/HtrA2, we constructed truncated Omi/HtrA2 promoter/luciferase reporter vectors and analyzed their relative luciferase activity; it was greatest in the promoter regions at −1205~−838 bp and −146~+93 bp, with the −838~−649 bp region exhibiting negative regulatory activity. Bioinformatics analysis suggested that the Omi/HtrA2 gene promoter contains a CpG island at −709~+37 bp, and eight heat shock transcription factor 1 (HSF1) sites, two Sp1 transcription factor (SP1)sites, one activator protein (AP) site, seven p53 sites, and four YY1 transcription factor(YY1) sites were predicted in the core areas. Furthermore, we found that p53 and HSF1 specifically binds to the Omi/HtrA2 promoter using chromatin immunoprecipitation analysis. These results provide a foundation for understanding Omi/HtrA2 regulatory mechanisms, which could further understanding of HtrA-associated diseases. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

5840 KiB  
Article
Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model
by Hye-Rim Lee, Oog-Jin Shon, Se-Il Park, Han-Jun Kim, Sukyoung Kim, Myun-Whan Ahn and Sun Hee Do
Int. J. Mol. Sci. 2016, 17(1), 120; https://doi.org/10.3390/ijms17010120 - 16 Jan 2016
Cited by 33 | Viewed by 7087
Abstract
Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP), containing various growth factors, on meniscal mechanisms was examined [...] Read more.
Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP), containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW) rabbits were incubated for 3, 10, 14 and 21 days with PRP(−), 10% PRP (PRP(+)), IL(+) or IL(+)PRP(+). The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR). Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP) catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+) and in IL(+)PRP(+). In PRP(+), the aggrecan expression levels were lower than in the PRP(−) until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+) and IL(+)PRP(+), at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control) or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

6977 KiB  
Article
Alternative Splicing in Adhesion- and Motility-Related Genes in Breast Cancer
by Rosanna Aversa, Anna Sorrentino, Roberta Esposito, Maria Rosaria Ambrosio, Angela Amato, Alberto Zambelli, Alfredo Ciccodicola, Luciana D’Apice and Valerio Costa
Int. J. Mol. Sci. 2016, 17(1), 121; https://doi.org/10.3390/ijms17010121 - 16 Jan 2016
Cited by 16 | Viewed by 6347
Abstract
Breast cancer is the most common tumor and the second leading cause of cancer death among woman, mainly caused by the metastatic spread. Tumor invasiveness is due to an altered expression of adhesion molecules. Among them, semaphorins are of peculiar interest. Cancer cells [...] Read more.
Breast cancer is the most common tumor and the second leading cause of cancer death among woman, mainly caused by the metastatic spread. Tumor invasiveness is due to an altered expression of adhesion molecules. Among them, semaphorins are of peculiar interest. Cancer cells can manipulate alternative splicing patterns to modulate the expression of adhesion- and motility-related molecules, also at the isoform level. In this study, combining RNA-Sequencing on MCF-7 to targeted experimental validations—in human breast cell lines and breast tumor biopsies—we identified 12 new alternative splicing transcripts in genes encoding adhesion- and motility-related molecules, including semaphorins, their receptors and co-receptors. Among them, a new SEMA3F transcript is expressed in all breast cell lines and breast cancer biopsies, and is translated into a new semaphorin 3F isoform. In silico analysis predicted that most of the new putative proteins lack functional domains, potentially missing some functions and acquiring new ones. Our findings better describe the extent of alternative splicing in breast cancer and highlight the need to further investigate adhesion- and motility-related molecules to gain insights into breast cancer progression. Full article
(This article belongs to the Special Issue Pre-mRNA Splicing 2015)
Show Figures

Graphical abstract

2979 KiB  
Article
Metformin Restores Parkin-Mediated Mitophagy, Suppressed by Cytosolic p53
by Young Mi Song, Woo Kyung Lee, Yong-ho Lee, Eun Seok Kang, Bong-Soo Cha and Byung-Wan Lee
Int. J. Mol. Sci. 2016, 17(1), 122; https://doi.org/10.3390/ijms17010122 - 16 Jan 2016
Cited by 71 | Viewed by 10022
Abstract
Metformin is known to alleviate hepatosteatosis by inducing 5’ adenosine monophosphate (AMP)-kinase-independent, sirtuin 1 (SIRT1)-mediated autophagy. Dysfunctional mitophagy in response to glucolipotoxicities might play an important role in hepatosteatosis. Here, we investigated the mechanism by which metformin induces mitophagy through restoration of the [...] Read more.
Metformin is known to alleviate hepatosteatosis by inducing 5’ adenosine monophosphate (AMP)-kinase-independent, sirtuin 1 (SIRT1)-mediated autophagy. Dysfunctional mitophagy in response to glucolipotoxicities might play an important role in hepatosteatosis. Here, we investigated the mechanism by which metformin induces mitophagy through restoration of the suppressed Parkin-mediated mitophagy. To this end, our ob/ob mice were divided into three groups: (1) ad libitum feeding of a standard chow diet; (2) intraperitoneal injections of metformin 300 mg/kg; and (3) 3 g/day caloric restriction (CR). HepG2 cells were treated with palmitate (PA) plus high glucose in the absence or presence of metformin. We detected enhanced mitophagy in ob/ob mice treated with metformin or CR, whereas mitochondrial spheroids were observed in mice fed ad libitum. Metabolically stressed ob/ob mice and PA-treated HepG2 cells showed an increase in expression of endoplasmic reticulum (ER) stress markers and cytosolic p53. Cytosolic p53 inhibited mitophagy by disturbing the mitochondrial translocation of Parkin, as demonstrated by immunoprecipitation. However, metformin decreased ER stress and p53 expression, resulting in induction of Parkin-mediated mitophagy. Furthermore, pifithrin-α, a specific inhibitor of p53, increased mitochondrial incorporation into autophagosomes. Taken together, these results indicate that metformin treatment facilitates Parkin-mediated mitophagy rather than mitochondrial spheroid formation by decreasing the inhibitory interaction with cytosolic p53 and increasing degradation of mitofusins. Full article
(This article belongs to the Special Issue Modulators of Endoplasmic Reticulum Stress)
Show Figures

Graphical abstract

882 KiB  
Article
Technological Implications of Modifying the Extent of Cell Wall-Proanthocyanidin Interactions Using Enzymes
by Ana Belén Bautista-Ortín, Rim Ben Abdallah, Liliana Del Rocío Castro-López, María Dolores Jiménez-Martínez and Encarna Gómez-Plaza
Int. J. Mol. Sci. 2016, 17(1), 123; https://doi.org/10.3390/ijms17010123 - 18 Jan 2016
Cited by 27 | Viewed by 5810
Abstract
The transference and reactivity of proanthocyanidins is an important issue that affects the technological processing of some fruits, such as grapes and apples. These processes are affected by proanthocyanidins bound to cell wall polysaccharides, which are present in high concentrations during the processing [...] Read more.
The transference and reactivity of proanthocyanidins is an important issue that affects the technological processing of some fruits, such as grapes and apples. These processes are affected by proanthocyanidins bound to cell wall polysaccharides, which are present in high concentrations during the processing of the fruits. Therefore, the effective extraction of proanthocyanidins from fruits to their juices or derived products will depend on the ability to manage these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the role of pure hydrolytic enzymes (polygalacturonase and cellulose) and a commercial enzyme containing these two activities on the extent of proanthocyanidin-cell wall interactions. The results showed that the modification promoted by enzymes reduced the amount of proanthocyanidins adsorbed to cell walls since they contributed to the degradation and release of the cell wall polysaccharides, which diffused into the model solution. Some of these released polysaccharides also presented some reactivity towards the proanthocyanidins present in a model solution. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Show Figures

Graphical abstract

3440 KiB  
Article
Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus
by Xiu-Wen Qiu, Xiao-Qin Wu, Lin Huang and Jian-Ren Ye
Int. J. Mol. Sci. 2016, 17(1), 125; https://doi.org/10.3390/ijms17010125 - 19 Jan 2016
Cited by 20 | Viewed by 5436
Abstract
As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. The pectate lyase gene is essential for successful invasion of their host plants by plant-parasitic nematodes. To [...] Read more.
As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. The pectate lyase gene is essential for successful invasion of their host plants by plant-parasitic nematodes. To demonstrate the role of pectate lyase gene in the PWD process, RNA interference (RNAi) is used to analyze the function of the pectate lyase 1 gene in B. xylophilus (Bxpel1). The efficiency of RNAi was detected by real-time PCR. The result demonstrated that the quantity of B. xylophilus propagated with control solution treatment was 62 times greater than that soaking in double-stranded RNA (dsRNA) after B. xylophilus inoculation in Botrytis cinerea for the first generation (F1). The number of B. xylophilus soaking in control solution was doubled compared to that soaking in Bxpel1 dsRNA four days after inoculation in Pinus thunbergii. The quantity of B. xylophilus was reduced significantly (p < 0.001) after treatment with dsRNAi compared with that using a control solution treatment. Bxpel1 dsRNAi reduced the migration speed and reproduction of B. xylophilus in pine trees. The pathogenicity to P. thunbergii seedling of B. xylophilus was weaker after soaking in dsRNA solution compared with that after soaking in the control solution. Our results suggest that Bxpel1 gene is a significant pathogenic factor in the PWD process and this basic information may facilitate a better understanding of the molecular mechanism of PWD. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

3116 KiB  
Article
Statin Therapy and the Development of Cerebral Amyloid Angiopathy—A Rodent in Vivo Approach
by Björn Reuter, Alexander Venus, Saskia Grudzenski, Patrick Heiler, Lothar Schad, Matthias Staufenbiel, Michael G. Hennerici and Marc Fatar
Int. J. Mol. Sci. 2016, 17(1), 126; https://doi.org/10.3390/ijms17010126 - 19 Jan 2016
Cited by 5 | Viewed by 6925
Abstract
Background: Cerebral amyloid angiopathy (CAA) is characterized by vascular deposition of amyloid β (Aβ) with a higher incidence of cerebral microbleeds (cMBs) and spontaneous hemorrhage. Since statins are known for their benefit in vascular disease we tested for the effect on CAA. Methods: [...] Read more.
Background: Cerebral amyloid angiopathy (CAA) is characterized by vascular deposition of amyloid β (Aβ) with a higher incidence of cerebral microbleeds (cMBs) and spontaneous hemorrhage. Since statins are known for their benefit in vascular disease we tested for the effect on CAA. Methods: APP23-transgenic mice received atorvastatin-supplemented food starting at the age of eight months (n = 13), 12 months (n = 7), and 16 months (n = 6), respectively. Controls (n = 16) received standard food only. At 24 months of age cMBs were determined with T2*-weighted 9.4T magnetic resonance imaging and graded by size. Results: Control mice displayed an average of 35 ± 18.5 cMBs (mean ± standard deviation), compared to 29.3 ± 9.8 in mice with eight months (p = 0.49), 24.9 ± 21.3 with 12 months (p = 0.26), and 27.8 ± 15.4 with 16 months of atorvastatin treatment (p = 0.27). In combined analysis treated mice showed lower absolute numbers (27.4 ± 15.6, p = 0.16) compared to controls and also after adjustment for cMB size (p = 0.13). Conclusion: Despite to a non-significant trend towards fewer cMBs our results failed to provide evidence for beneficial effects of long-term atorvastatin treatment in the APP23-transgenic mouse model of CAA. A higher risk for bleeding complications was not observed. Full article
(This article belongs to the Special Issue Amyloid-beta and Neurological Diseases)
Show Figures

Graphical abstract

6385 KiB  
Article
Computational Analysis of Structure-Based Interactions for Novel H1-Antihistamines
by Yinfeng Yang, Yan Li, Yanqiu Pan, Jinghui Wang, Feng Lin, Chao Wang, Shuwei Zhang and Ling Yang
Int. J. Mol. Sci. 2016, 17(1), 129; https://doi.org/10.3390/ijms17010129 - 19 Jan 2016
Cited by 18 | Viewed by 8338
Abstract
As a chronic disorder, insomnia affects approximately 10% of the population at some time during their lives, and its treatment is often challenging. Since the antagonists of the H1 receptor, a protein prevalent in human central nervous system, have been proven as [...] Read more.
As a chronic disorder, insomnia affects approximately 10% of the population at some time during their lives, and its treatment is often challenging. Since the antagonists of the H1 receptor, a protein prevalent in human central nervous system, have been proven as effective therapeutic agents for treating insomnia, the H1 receptor is quite possibly a promising target for developing potent anti-insomnia drugs. For the purpose of understanding the structural actors affecting the antagonism potency, presently a theoretical research of molecular interactions between 129 molecules and the H1 receptor is performed through three-dimensional quantitative structure-activity relationship (3D-QSAR) techniques. The ligand-based comparative molecular similarity indices analysis (CoMSIA) model (Q2 = 0.525, R2ncv = 0.891, R2pred = 0.807) has good quality for predicting the bioactivities of new chemicals. The cross-validated result suggests that the developed models have excellent internal and external predictability and consistency. The obtained contour maps were appraised for affinity trends for the investigated compounds, which provides significantly useful information in the rational drug design of novel anti-insomnia agents. Molecular docking was also performed to investigate the mode of interaction between the ligand and the active site of the receptor. Furthermore, as a supplementary tool to study the docking conformation of the antagonists in the H1 receptor binding pocket, molecular dynamics simulation was also applied, providing insights into the changes in the structure. All of the models and the derived information would, we hope, be of help for developing novel potent histamine H1 receptor antagonists, as well as exploring the H1-antihistamines interaction mechanism. Full article
Show Figures

Graphical abstract

2691 KiB  
Article
VLDL from Metabolic Syndrome Individuals Enhanced Lipid Accumulation in Atria with Association of Susceptibility to Atrial Fibrillation
by Hsiang-Chun Lee, Hsin-Ting Lin, Liang-Yin Ke, Chi Wei, Yi-Lin Hsiao, Chih-Sheng Chu, Wen-Ter Lai, Shyi-Jang Shin, Chu-Huang Chen, Sheng-Hsiung Sheu and Bin-Nan Wu
Int. J. Mol. Sci. 2016, 17(1), 134; https://doi.org/10.3390/ijms17010134 - 20 Jan 2016
Cited by 14 | Viewed by 6152
Abstract
Metabolic syndrome (MetS) represents a cluster of metabolic derangements. Dyslipidemia is an important factor in MetS and is related to atrial fibrillation (AF). We hypothesized that very low density lipoproteins (VLDL) in MetS (MetS-VLDL) may induce atrial dilatation and vulnerability to AF. VLDL [...] Read more.
Metabolic syndrome (MetS) represents a cluster of metabolic derangements. Dyslipidemia is an important factor in MetS and is related to atrial fibrillation (AF). We hypothesized that very low density lipoproteins (VLDL) in MetS (MetS-VLDL) may induce atrial dilatation and vulnerability to AF. VLDL was therefore separated from normal (normal-VLDL) and MetS individuals. Wild type C57BL/6 male mice were divided into control, normal-VLDL (nVLDL), and MetS-VLDL (msVLDL) groups. VLDL (15 µg/g) and equivalent volumes of saline were injected via tail vein three times a week for six consecutive weeks. Cardiac chamber size and function were measured by echocardiography. MetS-VLDL significantly caused left atrial dilation (control, n = 10, 1.64 ± 0.23 mm; nVLDL, n = 7, 1.84 ± 0.13 mm; msVLDL, n = 10, 2.18 ± 0.24 mm; p < 0.0001) at week 6, associated with decreased ejection fraction (control, n = 10, 62.5% ± 7.7%, vs. msVLDL, n = 10, 52.9% ± 9.6%; p < 0.05). Isoproterenol-challenge experiment resulted in AF in young msVLDL mice. Unprovoked AF occurred only in elderly msVLDL mice. Immunohistochemistry showed excess lipid accumulation and apoptosis in msVLDL mice atria. These findings suggest a pivotal role of VLDL in AF pathogenesis for MetS individuals. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

886 KiB  
Article
Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters
by Alina Plenis, Natalia Rekowska and Tomasz Bączek
Int. J. Mol. Sci. 2016, 17(1), 136; https://doi.org/10.3390/ijms17010136 - 21 Jan 2016
Cited by 2 | Viewed by 4274
Abstract
This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the [...] Read more.
This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. Full article
(This article belongs to the Section Physical Chemistry, Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

2291 KiB  
Article
Elucidating the Diversity of Aquatic Microdochium and Trichoderma Species and Their Activity against the Fish Pathogen Saprolegnia diclina
by Yiying Liu, Christin Zachow, Jos M. Raaijmakers and Irene De Bruijn
Int. J. Mol. Sci. 2016, 17(1), 140; https://doi.org/10.3390/ijms17010140 - 21 Jan 2016
Cited by 15 | Viewed by 8977
Abstract
Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several [...] Read more.
Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture. Full article
(This article belongs to the Special Issue Fish Molecular Biology)
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research

716 KiB  
Review
The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation
by Mehmet Yabas, Hannah Elliott and Gerard F. Hoyne
Int. J. Mol. Sci. 2016, 17(1), 3; https://doi.org/10.3390/ijms17010003 - 22 Dec 2015
Cited by 56 | Viewed by 8456
Abstract
Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, [...] Read more.
Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system. Full article
(This article belongs to the Special Issue Post-Transcriptional Gene Regulation by Ribonucleoprotein Complexes)
Show Figures

Figure 1

1080 KiB  
Review
Characteristics of Antisense Transcript Promoters and the Regulation of Their Activity
by Shudai Lin, Li Zhang, Wen Luo and Xiquan Zhang
Int. J. Mol. Sci. 2016, 17(1), 9; https://doi.org/10.3390/ijms17010009 - 23 Dec 2015
Cited by 30 | Viewed by 6041
Abstract
Recently, an increasing number of studies on natural antisense transcripts have been reported, especially regarding their classification, temporal and spatial expression patterns, regulatory functions and mechanisms. It is well established that natural antisense transcripts are produced from the strand opposite to the strand [...] Read more.
Recently, an increasing number of studies on natural antisense transcripts have been reported, especially regarding their classification, temporal and spatial expression patterns, regulatory functions and mechanisms. It is well established that natural antisense transcripts are produced from the strand opposite to the strand encoding a protein. Despite the pivotal roles of natural antisense transcripts in regulating the expression of target genes, the transcriptional mechanisms initiated by antisense promoters (ASPs) remain unknown. To date, nearly all of the studies conducted on this topic have focused on the ASP of a single gene of interest, whereas no study has systematically analyzed the locations of ASPs in the genome, ASP activity, or factors influencing this activity. This review focuses on elaborating on and summarizing the characteristics of ASPs to extend our knowledge about the mechanisms of antisense transcript initiation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

1704 KiB  
Review
Research Advances on Pathways of Nickel-Induced Apoptosis
by Hongrui Guo, Lian Chen, Hengmin Cui, Xi Peng, Jing Fang, Zhicai Zuo, Junliang Deng, Xun Wang and Bangyuan Wu
Int. J. Mol. Sci. 2016, 17(1), 10; https://doi.org/10.3390/ijms17010010 - 23 Dec 2015
Cited by 73 | Viewed by 11052
Abstract
High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species [...] Read more.
High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. Full article
(This article belongs to the Collection Programmed Cell Death and Apoptosis)
Show Figures

Graphical abstract

773 KiB  
Review
Biobanking of Exosomes in the Era of Precision Medicine: Are We There Yet?
by Edna M. Mora, Silvia Álvarez-Cubela and Elisa Oltra
Int. J. Mol. Sci. 2016, 17(1), 13; https://doi.org/10.3390/ijms17010013 - 24 Dec 2015
Cited by 38 | Viewed by 8598
Abstract
The emerge of personalized medicine demands high-quality human biospecimens with appropriate clinical annotation, especially in complex diseases such as cancer, neurodegenerative, cardiovascular, and metabolic alterations in which specimen heterogeneity and individual responses often complicate the development of precision therapeutic programs. In the growing [...] Read more.
The emerge of personalized medicine demands high-quality human biospecimens with appropriate clinical annotation, especially in complex diseases such as cancer, neurodegenerative, cardiovascular, and metabolic alterations in which specimen heterogeneity and individual responses often complicate the development of precision therapeutic programs. In the growing field of extracellular vesicles (EVs) research, exosomes (EXOs)—a particular type of EVs—have been proposed as an advantageous diagnostic tool, as effective delivery vehicles and as therapeutic targets. However, the lack of consensus on isolation methods and rigorous criteria to characterize them puts the term EXO into question at the time that might explain some of the controversial results found in the literature. A lack of response in the biobank network to warrant standard optimized procedures for the isolation, characterization, and storage of EXOs will undoubtedly lead to a waste of resources and failure. This review is aimed at highlighting the increasing importance of EXOs for the clinic, especially in the cancer field, and at summarizing the initiatives taken to improve current isolation procedures, classification criteria, and storage conditions of EXOs as an effort to identify technological demands that biobank platforms face for the incorporation of EXOs and other extracellular vesicle fractions as valuable biospecimens for research. Full article
(This article belongs to the Special Issue Precision Medicine—From Bench to Bedside)
Show Figures

Graphical abstract

629 KiB  
Review
RUCAM in Drug and Herb Induced Liver Injury: The Update
by Gaby Danan and Rolf Teschke
Int. J. Mol. Sci. 2016, 17(1), 14; https://doi.org/10.3390/ijms17010014 - 24 Dec 2015
Cited by 471 | Viewed by 26372
Abstract
RUCAM (Roussel Uclaf Causality Assessment Method) or its previous synonym CIOMS (Council for International Organizations of Medical Sciences) is a well established tool in common use to quantitatively assess causality in cases of suspected drug induced liver injury (DILI) and herb induced liver [...] Read more.
RUCAM (Roussel Uclaf Causality Assessment Method) or its previous synonym CIOMS (Council for International Organizations of Medical Sciences) is a well established tool in common use to quantitatively assess causality in cases of suspected drug induced liver injury (DILI) and herb induced liver injury (HILI). Historical background and the original work confirm the use of RUCAM as single term for future cases, dismissing now the term CIOMS for reasons of simplicity and clarity. RUCAM represents a structured, standardized, validated, and hepatotoxicity specific diagnostic approach that attributes scores to individual key items, providing final quantitative gradings of causality for each suspect drug/herb in a case report. Experts from Europe and the United States had previously established in consensus meetings the first criteria of RUCAM to meet the requirements of clinicians and practitioners in care for their patients with suspected DILI and HILI. RUCAM was completed by additional criteria and validated, assisting to establish the timely diagnosis with a high degree of certainty. In many countries and for more than two decades, physicians, regulatory agencies, case report authors, and pharmaceutical companies successfully applied RUCAM for suspected DILI and HILI. Their practical experience, emerging new data on DILI and HILI characteristics, and few ambiguous questions in domains such alcohol use and exclusions of non-drug causes led to the present update of RUCAM. The aim was to reduce interobserver and intraobserver variability, to provide accurately defined, objective core elements, and to simplify the handling of the items. We now present the update of the well accepted original RUCAM scale and recommend its use for clinical, regulatory, publication, and expert purposes to validly establish causality in cases of suspected DILI and HILI, facilitating a straightforward application and an internationally harmonized approach of causality assessment as a common basic tool. Full article
(This article belongs to the Special Issue Drug, Herb, and Dietary Supplement Hepatotoxicity)
Show Figures

Figure 1

681 KiB  
Review
Epigenetic Regulation of Epidermal Stem Cell Biomarkers and Their Role in Wound Healing
by Sabita N. Saldanha, Kendra J. Royston, Neha Udayakumar and Trygve O. Tollefsbol
Int. J. Mol. Sci. 2016, 17(1), 16; https://doi.org/10.3390/ijms17010016 - 24 Dec 2015
Cited by 18 | Viewed by 8380
Abstract
As an actively renewable tissue, changes in skin architecture are subjected to the regulation of stem cells that maintain the population of cells responsible for the formation of epidermal layers. Stems cells retain their self-renewal property and express biomarkers that are unique to [...] Read more.
As an actively renewable tissue, changes in skin architecture are subjected to the regulation of stem cells that maintain the population of cells responsible for the formation of epidermal layers. Stems cells retain their self-renewal property and express biomarkers that are unique to this population. However, differential regulation of the biomarkers can initiate the pathway of terminal cell differentiation. Although, pockets of non-clarity in stem cell maintenance and differentiation in skin still exist, the influence of epigenetics in epidermal stem cell functions and differentiation in skin homeostasis and wound healing is clearly evident. The focus of this review is to discuss the epigenetic regulation of confirmed and probable epidermal stem cell biomarkers in epidermal stratification of normal skin and in diseased states. The role of epigenetics in wound healing, especially in diseased states of diabetes and cancer, will also be conveyed. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

3852 KiB  
Review
Enzymatic Kinetic Resolution of 2-Piperidineethanol for the Enantioselective Targeted and Diversity Oriented Synthesis
by Dario Perdicchia, Michael S. Christodoulou, Gaia Fumagalli, Francesco Calogero, Cristina Marucci and Daniele Passarella
Int. J. Mol. Sci. 2016, 17(1), 17; https://doi.org/10.3390/ijms17010017 - 24 Dec 2015
Cited by 7 | Viewed by 6277
Abstract
2-Piperidineethanol (1) and its corresponding N-protected aldehyde (2) were used for the synthesis of several natural and synthetic compounds. The existence of a stereocenter at position 2 of the piperidine skeleton and the presence of an easily-functionalized group, [...] Read more.
2-Piperidineethanol (1) and its corresponding N-protected aldehyde (2) were used for the synthesis of several natural and synthetic compounds. The existence of a stereocenter at position 2 of the piperidine skeleton and the presence of an easily-functionalized group, such as the alcohol, set 1 as a valuable starting material for enantioselective synthesis. Herein, are presented both synthetic and enzymatic methods for the resolution of the racemic 1, as well as an overview of synthesized natural products starting from the enantiopure 1. Full article
(This article belongs to the Special Issue Molecular Biocatalysis)
Show Figures

Figure 1

651 KiB  
Review
PPARs Link Early Life Nutritional Insults to Later Programmed Hypertension and Metabolic Syndrome
by You-Lin Tain, Chien-Ning Hsu and Julie Y. H. Chan
Int. J. Mol. Sci. 2016, 17(1), 20; https://doi.org/10.3390/ijms17010020 - 24 Dec 2015
Cited by 57 | Viewed by 6336
Abstract
Hypertension is an important component of metabolic syndrome. Adulthood hypertension and metabolic syndrome can be programmed in response to nutritional insults in early life. Peroxisome proliferator-activated receptors (PPARs) serve as a nutrient-sensing signaling linking nutritional programming to hypertension and metabolic syndrome. All three [...] Read more.
Hypertension is an important component of metabolic syndrome. Adulthood hypertension and metabolic syndrome can be programmed in response to nutritional insults in early life. Peroxisome proliferator-activated receptors (PPARs) serve as a nutrient-sensing signaling linking nutritional programming to hypertension and metabolic syndrome. All three members of PPARs, PPARα, PPARβ/δ, and PPARγ, are expressed in the kidney and involved in blood pressure control. This review provides an overview of potential clinical applications of targeting on the PPARs in the kidney to prevent programmed hypertension and metabolic syndrome, with an emphasis on the following areas: mechanistic insights to interpret programmed hypertension; the link between the PPARs, nutritional insults, and programmed hypertension and metabolic syndrome; the impact of PPAR signaling pathway in a maternal high-fructose model; and current experimental studies on early intervention by PPAR modulators to prevent programmed hypertension and metabolic syndrome. Animal studies employing a reprogramming strategy via targeting PPARs to prevent hypertension have demonstrated interesting results. It is critical that the observed effects on developmental reprogramming in animal models are replicated in human studies, to halt the globally-growing epidemic of metabolic syndrome-related diseases. Full article
Show Figures

Figure 1

219 KiB  
Review
Reprogramming: A Preventive Strategy in Hypertension Focusing on the Kidney
by You-Lin Tain and Jaap A. Joles
Int. J. Mol. Sci. 2016, 17(1), 23; https://doi.org/10.3390/ijms17010023 - 25 Dec 2015
Cited by 79 | Viewed by 5981
Abstract
Adulthood hypertension can be programmed in response to a suboptimal environment in early life. However, developmental plasticity also implies that one can prevent hypertension in adult life by administrating appropriate compounds during early development. We have termed this reprogramming. While the risk of [...] Read more.
Adulthood hypertension can be programmed in response to a suboptimal environment in early life. However, developmental plasticity also implies that one can prevent hypertension in adult life by administrating appropriate compounds during early development. We have termed this reprogramming. While the risk of hypertension has been assessed in many mother-child cohorts of human developmental programming, interventions necessary to prove causation and provide a reprogramming strategy are lacking. Since the developing kidney is particularly vulnerable to environmental insults and blood pressure is determined by kidney function, renal programming is considered key in developmental programming of hypertension. Common pathways, whereby both genetic and acquired developmental programming converge into the same phenotype, have been recognized. For instance, the same reprogramming interventions aimed at shifting nitric oxide (NO)-reactive oxygen species (ROS) balance, such as perinatal citrulline or melatonin supplements, can be protective in both genetic and developmentally programmed hypertension. Furthermore, a significantly increased expression of gene Ephx2 (soluble epoxide hydrolase) was noted in both genetic and acquired animal models of hypertension. Since a suboptimal environment is often multifactorial, such common reprogramming pathways are a practical finding for translation to the clinic. This review provides an overview of potential clinical applications of reprogramming strategies to prevent programmed hypertension. We emphasize the kidney in the following areas: mechanistic insights from human studies and animal models to interpret programmed hypertension; identified risk factors of human programmed hypertension from mother-child cohorts; and the impact of reprogramming strategies on programmed hypertension from animal models. It is critical that the observed effects on developmental reprogramming in animal models are replicated in human studies. Full article
(This article belongs to the Special Issue Molecular Research on Hypertension)
Show Figures

Graphical abstract

742 KiB  
Review
Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases
by Hueng-Chuen Fan, Ching-Shiang Chi, Shin-Nan Cheng, Hsiu-Fen Lee, Jeng-Dau Tsai, Shinn-Zong Lin and Horng-Jyh Harn
Int. J. Mol. Sci. 2016, 17(1), 26; https://doi.org/10.3390/ijms17010026 - 25 Dec 2015
Cited by 22 | Viewed by 6648
Abstract
Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. [...] Read more.
Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson’s disease (PD), Huntington’s disease (HD), and Alzheimer’s disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases. Full article
(This article belongs to the Special Issue Mechanisms of Neurodegeneration)
Show Figures

Graphical abstract

1168 KiB  
Review
EGFR Signaling in Liver Diseases
by Karin Komposch and Maria Sibilia
Int. J. Mol. Sci. 2016, 17(1), 30; https://doi.org/10.3390/ijms17010030 - 29 Dec 2015
Cited by 140 | Viewed by 16578
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase that is activated by several ligands leading to the activation of diverse signaling pathways controlling mainly proliferation, differentiation, and survival. The EGFR signaling axis has been shown to play a key [...] Read more.
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase that is activated by several ligands leading to the activation of diverse signaling pathways controlling mainly proliferation, differentiation, and survival. The EGFR signaling axis has been shown to play a key role during liver regeneration following acute and chronic liver damage, as well as in cirrhosis and hepatocellular carcinoma (HCC) highlighting the importance of the EGFR in the development of liver diseases. Despite the frequent overexpression of EGFR in human HCC, clinical studies with EGFR inhibitors have so far shown only modest results. Interestingly, a recent study has shown that in human HCC and in mouse HCC models the EGFR is upregulated in liver macrophages where it plays a tumor-promoting function. Thus, the role of EGFR in liver diseases appears to be more complex than what anticipated. Further studies are needed to improve the molecular understanding of the cell-specific signaling pathways that control disease development and progression to be able to develop better therapies targeting major components of the EGFR signaling network in selected cell types. In this review, we compiled the current knowledge of EGFR signaling in different models of liver damage and diseases, mainly derived from the analysis of HCC cell lines and genetically engineered mouse models (GEMMs). Full article
(This article belongs to the Special Issue Molecular Mechanisms of Human Liver Diseases)
Show Figures

Graphical abstract

1401 KiB  
Review
RNA Binding Proteins in the miRNA Pathway
by Patrick Connerty, Alireza Ahadi and Gyorgy Hutvagner
Int. J. Mol. Sci. 2016, 17(1), 31; https://doi.org/10.3390/ijms17010031 - 26 Dec 2015
Cited by 64 | Viewed by 11516
Abstract
microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the [...] Read more.
microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets. Full article
(This article belongs to the Special Issue Post-Transcriptional Gene Regulation by Ribonucleoprotein Complexes)
Show Figures

Figure 1

1378 KiB  
Review
Targeted Radionuclide Therapy of Human Tumors
by Sergey V. Gudkov, Natalya Yu. Shilyagina, Vladimir A. Vodeneev and Andrei V. Zvyagin
Int. J. Mol. Sci. 2016, 17(1), 33; https://doi.org/10.3390/ijms17010033 - 28 Dec 2015
Cited by 138 | Viewed by 17363
Abstract
Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well [...] Read more.
Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed. Full article
(This article belongs to the Special Issue Molecular Classification of Human Cancer: Diagnosis and Treatment)
Show Figures

Graphical abstract

1359 KiB  
Review
Bladder Cancer Stem-Like Cells: Their Origin and Therapeutic Perspectives
by Tomokazu Ohishi, Fumitaka Koga and Toshiro Migita
Int. J. Mol. Sci. 2016, 17(1), 43; https://doi.org/10.3390/ijms17010043 - 29 Dec 2015
Cited by 40 | Viewed by 7866
Abstract
Bladder cancer (BC), the most common cancer arising from the human urinary tract, consists of two major clinicopathological phenotypes: muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). MIBC frequently metastasizes and is associated with an unfavorable prognosis. A certain proportion of patients [...] Read more.
Bladder cancer (BC), the most common cancer arising from the human urinary tract, consists of two major clinicopathological phenotypes: muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). MIBC frequently metastasizes and is associated with an unfavorable prognosis. A certain proportion of patients with metastatic BC can achieve a remission with systemic chemotherapy; however, the disease relapses in most cases. Evidence suggests that MIBC comprises a small population of cancer stem cells (CSCs), which may be resistant to these treatments and may be able to form new tumors in the bladder or other organs. Therefore, the unambiguous identification of bladder CSCs and the development of targeted therapies are urgently needed. Nevertheless, it remains unclear where bladder CSCs originate and how they are generated. We review recent studies on bladder CSCs, specifically focusing on their proposed origin and the possible therapeutic options based on the CSC theory. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

1195 KiB  
Review
Innovative Target Therapies Are Able to Block the Inflammation Associated with Dysfunction of the Cholesterol Biosynthesis Pathway
by Annalisa Marcuzzi, Elisa Piscianz, Claudia Loganes, Liza Vecchi Brumatti, Alessandra Knowles, Sabrine Bilel, Alberto Tommasini, Roberta Bortul and Marina Zweyer
Int. J. Mol. Sci. 2016, 17(1), 47; https://doi.org/10.3390/ijms17010047 - 30 Dec 2015
Cited by 7 | Viewed by 6957
Abstract
The cholesterol pathway is an essential biochemical process aimed at the synthesis of bioactive molecules involved in multiple crucial cellular functions. The end products of this pathway are sterols, such as cholesterol, which are essential components of cell membranes, precursors of steroid hormones, [...] Read more.
The cholesterol pathway is an essential biochemical process aimed at the synthesis of bioactive molecules involved in multiple crucial cellular functions. The end products of this pathway are sterols, such as cholesterol, which are essential components of cell membranes, precursors of steroid hormones, bile acids and other molecules such as ubiquinone. Several diseases are caused by defects in this metabolic pathway: the most severe forms of which cause neurological involvement (psychomotor retardation and cerebellar ataxia) as a result of a variety of cellular impairments, including mitochondrial dysfunction. These pathologies are induced by convergent mechanisms in which the mitochondrial unit plays a pivotal role contributing to defective apoptosis, autophagy and mitophagy processes. Unraveling these mechanisms would contribute to the development of effective drug treatments for these disorders. In addition, the development of biochemical models could have a substantial impact on the understanding of the mechanism of action of drugs that act on this pathway in multifactor disorders. In this review we will focus in particular on inhibitors of cholesterol synthesis, mitochondria-targeted drugs and inhibitors of the inflammasome. Full article
Show Figures

Figure 1

1620 KiB  
Review
Notch Signaling in Pancreatic Development
by Xu-Yan Li, Wen-Jun Zhai and Chun-Bo Teng
Int. J. Mol. Sci. 2016, 17(1), 48; https://doi.org/10.3390/ijms17010048 - 30 Dec 2015
Cited by 52 | Viewed by 12879
Abstract
The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor [...] Read more.
The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways. Full article
(This article belongs to the Special Issue Molecular Classification of Human Cancer: Diagnosis and Treatment)
Show Figures

Graphical abstract

507 KiB  
Review
Role for the Unfolded Protein Response in Heart Disease and Cardiac Arrhythmias
by Man Liu and Samuel C. Dudley, Jr.
Int. J. Mol. Sci. 2016, 17(1), 52; https://doi.org/10.3390/ijms17010052 - 31 Dec 2015
Cited by 41 | Viewed by 6719
Abstract
The unfolded protein response (UPR) has been extensively investigated in neurological diseases and diabetes, while its function in heart disease is less well understood. Activated UPR participates in multiple cardiac conditions and can either protect or impair heart function. Recently, the UPR has [...] Read more.
The unfolded protein response (UPR) has been extensively investigated in neurological diseases and diabetes, while its function in heart disease is less well understood. Activated UPR participates in multiple cardiac conditions and can either protect or impair heart function. Recently, the UPR has been found to play a role in arrhythmogenesis during human heart failure by affecting cardiac ion channels expression, and blocking UPR has an antiarrhythmic effect. This review will discuss the rationale for and challenges to targeting UPR in heart disease for treatment of arrhythmias. Full article
(This article belongs to the Special Issue Modulators of Endoplasmic Reticulum Stress)
Show Figures

Graphical abstract

404 KiB  
Review
Cardiovascular Dysfunction Following Burn Injury: What We Have Learned from Rat and Mouse Models
by Ashley N. Guillory, Robert P. Clayton, David N. Herndon and Celeste C. Finnerty
Int. J. Mol. Sci. 2016, 17(1), 53; https://doi.org/10.3390/ijms17010053 - 2 Jan 2016
Cited by 52 | Viewed by 7537
Abstract
Severe burn profoundly affects organs both proximal and distal to the actual burn site. Cardiovascular dysfunction is a well-documented phenomenon that increases morbidity and mortality following a massive thermal trauma. Beginning immediately post-burn, during the ebb phase, cardiac function is severely depressed. By [...] Read more.
Severe burn profoundly affects organs both proximal and distal to the actual burn site. Cardiovascular dysfunction is a well-documented phenomenon that increases morbidity and mortality following a massive thermal trauma. Beginning immediately post-burn, during the ebb phase, cardiac function is severely depressed. By 48 h post-injury, cardiac function rebounds and the post-burn myocardium becomes tachycardic and hyperinflammatory. While current clinical trials are investigating a variety of drugs targeted at reducing aspects of the post-burn hypermetabolic response such as heart rate and cardiac work, there is still a paucity of knowledge regarding the underlying mechanisms that induce cardiac dysfunction in the severely burned. There are many animal models of burn injury, from rodents, to sheep or swine, but the majority of burn related cardiovascular investigations have occurred in rat and mouse models. This literature review consolidates the data supporting the prevalent role that β-adrenergic receptors play in mediating post-burn cardiac dysfunction and the idea that pharmacological modulation of this receptor family is a viable therapeutic target for resolving burn-induced cardiac deficits. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

231 KiB  
Review
Global Gene Expression Alterations as a Crucial Constituent of Human Cell Response to Low Doses of Ionizing Radiation Exposure
by Mykyta Sokolov and Ronald Neumann
Int. J. Mol. Sci. 2016, 17(1), 55; https://doi.org/10.3390/ijms17010055 - 31 Dec 2015
Cited by 48 | Viewed by 5719
Abstract
Exposure to ionizing radiation (IR) is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at [...] Read more.
Exposure to ionizing radiation (IR) is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at a low dose/low dose (LD) rate. These studies have shown that the molecular-, cellular-, and tissue-level responses are different after low doses of IR (LDIR) compared to those observed after a short-term high-dose IR exposure (HDIR). With the advent of high-throughput technologies in the late 1990s, such as DNA microarrays, changes in gene expression have also been found to be ubiquitous after LDIR. Very limited subset of genes has been shown to be consistently up-regulated by LDIR, including CDKN1A. Further research on the biological effects and mechanisms induced by IR in human cells demonstrated that the molecular and cellular processes, including transcriptional alterations, activated by LDIR are often related to protective responses and, sometimes, hormesis. Following LDIR, some distinct responses were observed, these included bystander effects, and adaptive responses. Changes in gene expression, not only at the level of mRNA, but also miRNA, have been found to crucially underlie these effects having implications for radiation protection purposes. Full article
(This article belongs to the Collection Radiation Toxicity in Cells)
692 KiB  
Review
Cardiac Extracellular Vesicles in Normal and Infarcted Heart
by Dimitry A. Chistiakov, Alexander N. Orekhov and Yuri V. Bobryshev
Int. J. Mol. Sci. 2016, 17(1), 63; https://doi.org/10.3390/ijms17010063 - 5 Jan 2016
Cited by 128 | Viewed by 12187
Abstract
Heart is a complex assembly of many cell types constituting myocardium, endocardium and epicardium that intensively communicate to each other in order to maintain the proper cardiac function. There are many types of intercellular intracardiac signals, with a prominent role of extracellular vesicles [...] Read more.
Heart is a complex assembly of many cell types constituting myocardium, endocardium and epicardium that intensively communicate to each other in order to maintain the proper cardiac function. There are many types of intercellular intracardiac signals, with a prominent role of extracellular vesicles (EVs), such as exosomes and microvesicles, for long-distant delivering of complex messages. Cardiomyocytes release EVs, whose content could significantly vary depending on the stimulus. In stress, such as hypoxia, inflammation or injury, cardiomyocytes increase secretion of EVs. In hypoxic conditions, cardiac EVs are enriched with angiogenic and prosurvival factors. In acute myocardial infarction (AMI), damaged cardiac muscle cells produce EVs with increased content of angiogenic, anti-apoptotic, mitogenic and growth factors in order to induce repair and healing of the infarcted myocardium. Exosomal microRNAs play a central role in cardiac regeneration. In AMI, circulating cardiac EVs abundantly contain cardiac-specific miRNAs that serve as indicators of cardiac damage and have a big diagnostic potential as AMI biomarkers. Cardioprotective and regenerative properties of exosomes derived from cardiac and non-cardiac stem/progenitor cells are very helpful to be used in cell-free cardiotherapy and regeneration of post-infarct myocardium. Full article
(This article belongs to the Special Issue Focus on Extracellular Vesicles)
Show Figures

Graphical abstract

411 KiB  
Review
Ischemia, Immunosuppression and Infection—Tackling the Predicaments of Post-Stroke Complications
by Raymond Shim and Connie H. Y. Wong
Int. J. Mol. Sci. 2016, 17(1), 64; https://doi.org/10.3390/ijms17010064 - 5 Jan 2016
Cited by 114 | Viewed by 10119
Abstract
The incidence of stroke has risen over the past decade and will continue to be one of the leading causes of death and disability worldwide. While a large portion of immediate death following stroke is due to cerebral infarction and neurological complications, the [...] Read more.
The incidence of stroke has risen over the past decade and will continue to be one of the leading causes of death and disability worldwide. While a large portion of immediate death following stroke is due to cerebral infarction and neurological complications, the most common medical complication in stroke patients is infection. In fact, infections, such as pneumonia and urinary tract infections, greatly worsen the clinical outcome of stroke patients. Recent evidence suggests that the disrupted interplay between the central nervous system and immune system contributes to the development of infection after stroke. The suppression of systemic immunity by the nervous system is thought to protect the brain from further inflammatory insult, yet this comes at the cost of increased susceptibility to infection after stroke. To improve patient outcome, there have been attempts to lessen the stroke-associated bacterial burden through the prophylactic use of broad-spectrum antibiotics. However, preventative antibiotic treatments have been unsuccessful, and therefore have been discouraged. Additionally, with the ever-rising obstacle of antibiotic-resistance, future therapeutic options to reverse immune impairment after stroke by augmentation of host immunity may be a viable alternative option. However, cautionary steps are required to ensure that collateral ischemic damage caused by cerebral inflammation remains minimal. Full article
(This article belongs to the Special Issue The Immune System and Inflammation in Cerebral Ischemia)
Show Figures

Graphical abstract

906 KiB  
Review
The Metals in the Biological Periodic System of the Elements: Concepts and Conjectures
by Wolfgang Maret
Int. J. Mol. Sci. 2016, 17(1), 66; https://doi.org/10.3390/ijms17010066 - 5 Jan 2016
Cited by 158 | Viewed by 11686
Abstract
A significant number of chemical elements are either essential for life with known functions, or present in organisms with poorly defined functional outcomes. We do not know all the essential elements with certainty and we know even less about the functions of apparently [...] Read more.
A significant number of chemical elements are either essential for life with known functions, or present in organisms with poorly defined functional outcomes. We do not know all the essential elements with certainty and we know even less about the functions of apparently non-essential elements. In this article, I discuss a basis for a biological periodic system of the elements and that biochemistry should include the elements that are traditionally part of inorganic chemistry and not only those that are in the purview of organic chemistry. A biological periodic system of the elements needs to specify what “essential” means and to which biological species it refers. It represents a snapshot of our present knowledge and is expected to undergo further modifications in the future. An integrated approach of biometal sciences called metallomics is required to understand the interactions of metal ions, the biological functions that their chemical structures acquire in the biological system, and how their usage is fine-tuned in biological species and in populations of species with genetic variations (the variome). Full article
(This article belongs to the Special Issue Metal Metabolism in Animals)
Show Figures

Figure 1

1824 KiB  
Review
The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response
by Heather J. Ezelle, Krishnamurthy Malathi and Bret A. Hassel
Int. J. Mol. Sci. 2016, 17(1), 74; https://doi.org/10.3390/ijms17010074 - 8 Jan 2016
Cited by 29 | Viewed by 11490
Abstract
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then [...] Read more.
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed. Full article
(This article belongs to the Special Issue Antimicrobial RNases in Host Defense)
Show Figures

Graphical abstract

1303 KiB  
Review
Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary
by Saishu Yoshida, Takako Kato and Yukio Kato
Int. J. Mol. Sci. 2016, 17(1), 75; https://doi.org/10.3390/ijms17010075 - 9 Jan 2016
Cited by 23 | Viewed by 5665
Abstract
The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box [...] Read more.
The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. Full article
(This article belongs to the Special Issue Stem Cell Activation in Adult Organism)
Show Figures

Graphical abstract

8993 KiB  
Review
Circulating MicroRNAs as Biomarkers for Sepsis
by Fabian Benz, Sanchari Roy, Christian Trautwein, Christoph Roderburg and Tom Luedde
Int. J. Mol. Sci. 2016, 17(1), 78; https://doi.org/10.3390/ijms17010078 - 9 Jan 2016
Cited by 208 | Viewed by 12916
Abstract
Sepsis represents a major cause of lethality during intensive care unit (ICU) treatment. Pharmacological treatment strategies for sepsis are still limited and mainly based on the early initiation of antibiotic and supportive treatment. In this context, numerous clinical and serum based markers have [...] Read more.
Sepsis represents a major cause of lethality during intensive care unit (ICU) treatment. Pharmacological treatment strategies for sepsis are still limited and mainly based on the early initiation of antibiotic and supportive treatment. In this context, numerous clinical and serum based markers have been evaluated for the diagnosis, the severity, and the etiology of sepsis. However until now, few of these factors could be translated into clinical use. MicroRNAs (miRNAs) do not encode for proteins but regulate gene expression by inhibiting the translation or transcription of their target mRNAs. Recently it was demonstrated that miRNAs are released into the circulation and that the spectrum of circulating miRNAs might be altered during various pathologic conditions, such as inflammation, infection, and sepsis. By using array- and single PCR-based methods, a variety of deregulated miRNAs, including miR-25, miR-133a, miR-146, miR-150, and miR-223, were described in the context of sepsis. Some of the miRNAs correlated with the disease stage, as well as patients’ short and long term prognosis. Here, we summarize the current findings on the role of circulating miRNAs in the diagnosis and staging of sepsis in critically ill patients. We compare data from patients with findings from animal models and, finally, highlight the challenges and drawbacks that currently prevent the use of circulating miRNAs as biomarkers in clinical routine. Full article
(This article belongs to the Special Issue MicroRNA in Various Disease States as Biomarkers)
Show Figures

Figure 1

267 KiB  
Review
Obesity and Its Potential Effects on Antidepressant Treatment Outcomes in Patients with Depressive Disorders: A Literature Review
by Young Sup Woo, Hye-Jin Seo, Roger S. McIntyre and Won-Myong Bahk
Int. J. Mol. Sci. 2016, 17(1), 80; https://doi.org/10.3390/ijms17010080 - 12 Jan 2016
Cited by 62 | Viewed by 6990
Abstract
Accumulating evidence regarding clinical, neurobiological, genetic, and environmental factors suggests a bidirectional link between obesity and depressive disorders. Although a few studies have investigated the link between obesity/excess body weight and the response to antidepressants in depressive disorders, the effect of weight on [...] Read more.
Accumulating evidence regarding clinical, neurobiological, genetic, and environmental factors suggests a bidirectional link between obesity and depressive disorders. Although a few studies have investigated the link between obesity/excess body weight and the response to antidepressants in depressive disorders, the effect of weight on treatment response remains poorly understood. In this review, we summarized recent data regarding the relationship between the response to antidepressants and obesity/excess body weight in clinical studies of patients with depressive disorders. Although several studies indicated an association between obesity/excess body weight and poor antidepressant responses, it is difficult to draw definitive conclusions due to the variability of subject composition and methodological differences among studies. Especially, differences in sex, age and menopausal status, depressive symptom subtypes, and antidepressants administered may have caused inconsistencies in the results among studies. The relationship between obesity/excess body weight and antidepressant responses should be investigated further in high-powered studies addressing the differential effects on subject characteristics and treatment. Moreover, future research should focus on the roles of mediating factors, such as inflammatory markers and neurocognitive performance, which may alter the antidepressant treatment outcome in patients with comorbid obesity and depressive disorder. Full article
1303 KiB  
Review
Insights into Mechanisms of Chronic Neurodegeneration
by Abigail B. Diack, James D. Alibhai, Rona Barron, Barry Bradford, Pedro Piccardo and Jean C. Manson
Int. J. Mol. Sci. 2016, 17(1), 82; https://doi.org/10.3390/ijms17010082 - 12 Jan 2016
Cited by 32 | Viewed by 6830
Abstract
Chronic neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and prion diseases are characterised by the accumulation of abnormal conformers of a host encoded protein in the central nervous system. The process leading to neurodegeneration is still poorly defined and thus [...] Read more.
Chronic neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and prion diseases are characterised by the accumulation of abnormal conformers of a host encoded protein in the central nervous system. The process leading to neurodegeneration is still poorly defined and thus development of early intervention strategies is challenging. Unique amongst these diseases are Transmissible Spongiform Encephalopathies (TSEs) or prion diseases, which have the ability to transmit between individuals. The infectious nature of these diseases has permitted in vivo and in vitro modelling of the time course of the disease process in a highly reproducible manner, thus early events can be defined. Recent evidence has demonstrated that the cell-to-cell spread of protein aggregates by a “prion-like mechanism” is common among the protein misfolding diseases. Thus, the TSE models may provide insights into disease mechanisms and testable hypotheses for disease intervention, applicable to a number of these chronic neurodegenerative diseases. Full article
(This article belongs to the Special Issue Mechanisms of Neurodegeneration)
Show Figures

Graphical abstract

1493 KiB  
Review
The Importance of Thrombin in Cerebral Injury and Disease
by Harald Krenzlin, Viola Lorenz, Sven Danckwardt, Oliver Kempski and Beat Alessandri
Int. J. Mol. Sci. 2016, 17(1), 84; https://doi.org/10.3390/ijms17010084 - 11 Jan 2016
Cited by 92 | Viewed by 8329
Abstract
There is increasing evidence that prothrombin and its active derivative thrombin are expressed locally in the central nervous system. So far, little is known about the physiological and pathophysiological functions exerted by thrombin in the human brain. Extra-hepatic prothrombin expression has been identified [...] Read more.
There is increasing evidence that prothrombin and its active derivative thrombin are expressed locally in the central nervous system. So far, little is known about the physiological and pathophysiological functions exerted by thrombin in the human brain. Extra-hepatic prothrombin expression has been identified in neuronal cells and astrocytes via mRNA measurement. The actual amount of brain derived prothrombin is expected to be 1% or less compared to that in the liver. The role in brain injury depends upon its concentration, as higher amounts cause neuroinflammation and apoptosis, while lower concentrations might even be cytoprotective. Its involvement in numerous diseases like Alzheimer’s, multiple sclerosis, cerebral ischemia and haemorrhage is becoming increasingly clear. This review focuses on elucidation of the cerebral thrombin expression, local generation and its role in injury and disease of the central nervous system. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2015)
Show Figures

Graphical abstract

478 KiB  
Review
Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis
by Kenichi Kumagai, Tatsuya Horikawa, Hiroaki Shigematsu, Ryota Matsubara, Kazutaka Kitaura, Takanori Eguchi, Hiroshi Kobayashi, Yasunari Nakasone, Koichiro Sato, Hiroyuki Yamada, Satsuki Suzuki, Yoshiki Hamada and Ryuji Suzuki
Int. J. Mol. Sci. 2016, 17(1), 87; https://doi.org/10.3390/ijms17010087 - 12 Jan 2016
Cited by 10 | Viewed by 7669
Abstract
Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is [...] Read more.
Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK) T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis. Full article
(This article belongs to the Special Issue Metal Metabolism in Animals)
Show Figures

Graphical abstract

2070 KiB  
Review
Function and Regulation of Heterotrimeric G Proteins during Chemotaxis
by Marjon E. Kamp, Youtao Liu and Arjan Kortholt
Int. J. Mol. Sci. 2016, 17(1), 90; https://doi.org/10.3390/ijms17010090 - 14 Jan 2016
Cited by 24 | Viewed by 9224
Abstract
Chemotaxis, or directional movement towards an extracellular gradient of chemicals, is necessary for processes as diverse as finding nutrients, the immune response, metastasis and wound healing. Activation of G-protein coupled receptors (GPCRs) is at the very base of the chemotactic signaling pathway. Chemotaxis [...] Read more.
Chemotaxis, or directional movement towards an extracellular gradient of chemicals, is necessary for processes as diverse as finding nutrients, the immune response, metastasis and wound healing. Activation of G-protein coupled receptors (GPCRs) is at the very base of the chemotactic signaling pathway. Chemotaxis starts with binding of the chemoattractant to GPCRs at the cell-surface, which finally leads to major changes in the cytoskeleton and directional cell movement towards the chemoattractant. Many chemotaxis pathways that are directly regulated by Gβγ have been identified and studied extensively; however, whether Gα is just a handle that regulates the release of Gβγ or whether Gα has its own set of distinct chemotactic effectors, is only beginning to be understood. In this review, we will discuss the different levels of regulation in GPCR signaling and the downstream pathways that are essential for proper chemotaxis. Full article
(This article belongs to the Collection G Protein-Coupled Receptor Signaling and Regulation)
Show Figures

Graphical abstract

1134 KiB  
Review
miRNAs Regulation and Its Role as Biomarkers in Endometriosis
by Josep Marí-Alexandre, Dolors Sánchez-Izquierdo, Juan Gilabert-Estellés, Moisés Barceló-Molina, Aitana Braza-Boïls and Juan Sandoval
Int. J. Mol. Sci. 2016, 17(1), 93; https://doi.org/10.3390/ijms17010093 - 13 Jan 2016
Cited by 65 | Viewed by 9127
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18–22 nt) that function as modulators of gene expression. Since their discovery in 1993 in C. elegans, our knowledge about their biogenesis, function, and mechanism of action has increased enormously, especially in recent years, with the [...] Read more.
MicroRNAs (miRNAs) are small non-coding RNAs (18–22 nt) that function as modulators of gene expression. Since their discovery in 1993 in C. elegans, our knowledge about their biogenesis, function, and mechanism of action has increased enormously, especially in recent years, with the development of deep-sequencing technologies. New biogenesis pathways and sources of miRNAs are changing our concept about these molecules. The study of the miRNA contribution to pathological states is a field of great interest in research. Different groups have reported the implication of miRNAs in pathologies such as cancer, diabetes, cardiovascular, and gynecological diseases. It is also well-known that miRNAs are present in biofluids (plasma, serum, urine, semen, and menstrual blood) and have been proposed as ideal candidates as disease biomarkers. The goal of this review is to highlight the current knowledge in the field of miRNAs with a special emphasis to their role in endometriosis and the newest investigations addressing the use of miRNAs as biomarkers for this gynecological disease. Full article
(This article belongs to the Special Issue MicroRNA in Various Disease States as Biomarkers)
Show Figures

Graphical abstract

680 KiB  
Review
Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research
by Zhixiang Wang
Int. J. Mol. Sci. 2016, 17(1), 95; https://doi.org/10.3390/ijms17010095 - 12 Jan 2016
Cited by 102 | Viewed by 10481
Abstract
Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk [...] Read more.
Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges. Full article
(This article belongs to the Collection G Protein-Coupled Receptor Signaling and Regulation)
Show Figures

Figure 1

182 KiB  
Review
Nonalcoholic Fatty Liver Disease: Pros and Cons of Histologic Systems of Evaluation
by Elizabeth M. Brunt
Int. J. Mol. Sci. 2016, 17(1), 97; https://doi.org/10.3390/ijms17010097 - 13 Jan 2016
Cited by 59 | Viewed by 6837
Abstract
The diagnostic phenotype of nonalcoholic fatty liver disease (NAFLD)—in particular, the most significant form in terms of prognosis, nonalcoholic steatohepatitis (NASH)—continues to rely on liver tissue evaluation, in spite of remarkable advances in non-invasive algorithms developed from serum-based tests and imaging-based or sonographically-based [...] Read more.
The diagnostic phenotype of nonalcoholic fatty liver disease (NAFLD)—in particular, the most significant form in terms of prognosis, nonalcoholic steatohepatitis (NASH)—continues to rely on liver tissue evaluation, in spite of remarkable advances in non-invasive algorithms developed from serum-based tests and imaging-based or sonographically-based tests for fibrosis or liver stiffness. The most common tissue evaluation remains percutaneous liver biopsy; considerations given to the needle size and the location of the biopsy have the potential to yield the most representative tissue for evaluation. The pathologist’s efforts are directed to not only global diagnosis, but also assessment of severity of injury. Just as in other forms of chronic liver disease, these assessments can be divided into necroinflammatory activity, and fibrosis with parenchymal remodeling, in order to separately analyze potentially reversible (grade) and non-reversible (stage) lesions. These concepts formed the bases for current methods of evaluating the lesions that collectively comprise the phenotypic spectra of NAFLD. Four extant methods have specific applications; there are pros and cons to each, and this forms the basis of the review. Full article
(This article belongs to the Special Issue Non-Alcoholic Fatty Liver Disease Research 2016)
1553 KiB  
Review
The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis
by Jiaming Su, Fei Wang, Yong Cai and Jingji Jin
Int. J. Mol. Sci. 2016, 17(1), 99; https://doi.org/10.3390/ijms17010099 - 14 Jan 2016
Cited by 69 | Viewed by 10508
Abstract
Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males [...] Read more.
Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways. Full article
Show Figures

Graphical abstract

5686 KiB  
Review
Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping
by Carsten Stüber, David Pitt and Yi Wang
Int. J. Mol. Sci. 2016, 17(1), 100; https://doi.org/10.3390/ijms17010100 - 14 Jan 2016
Cited by 78 | Viewed by 11782
Abstract
Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance [...] Read more.
Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS. Full article
(This article belongs to the Special Issue Advances in Multiple Sclerosis)
Show Figures

Figure 1

1468 KiB  
Review
Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization
by Patrick Maier, Linda Hartmann, Frederik Wenz and Carsten Herskind
Int. J. Mol. Sci. 2016, 17(1), 102; https://doi.org/10.3390/ijms17010102 - 14 Jan 2016
Cited by 300 | Viewed by 16551
Abstract
During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells [...] Read more.
During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization. Full article
(This article belongs to the Collection Radiation Toxicity in Cells)
Show Figures

Graphical abstract

768 KiB  
Review
Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses
by Lucy Lim, Fangzhi Yan, Stephen Bach, Katianna Pihakari and David Klein
Int. J. Mol. Sci. 2016, 17(1), 104; https://doi.org/10.3390/ijms17010104 - 14 Jan 2016
Cited by 10 | Viewed by 6866
Abstract
Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS) has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and [...] Read more.
Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS) has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices. Full article
(This article belongs to the Special Issue Fourier Transform Mass Spectrometry in Molecular Sciences)
Show Figures

Graphical abstract

486 KiB  
Review
Urine Aquaporin-2: A Promising Marker of Response to the Arginine Vasopressin Type-2 Antagonist, Tolvaptan in Patients with Congestive Heart Failure
by Teruhiko Imamura and Koichiro Kinugawa
Int. J. Mol. Sci. 2016, 17(1), 105; https://doi.org/10.3390/ijms17010105 - 14 Jan 2016
Cited by 20 | Viewed by 9795
Abstract
Aquaporin-2, a member of the aquaporin family, is an arginine vasopressin-regulated water channel expressed in the renal collecting duct, and a promising marker of the concentrating and diluting ability of the kidney. The arginine vasopressin type-2 antagonist, tolvaptan, is a new-generation diuretic; it [...] Read more.
Aquaporin-2, a member of the aquaporin family, is an arginine vasopressin-regulated water channel expressed in the renal collecting duct, and a promising marker of the concentrating and diluting ability of the kidney. The arginine vasopressin type-2 antagonist, tolvaptan, is a new-generation diuretic; it is especially indicated in patients with decompensated heart failure refractory to conventional diuretics. However, the ideal responders to tolvaptan have not yet been identified, and non-responders experience worse clinical courses despite treatment with tolvaptan. Urine aquaporin-2 has recently been demonstrated as a promising predictor of response to tolvaptan. We here validated aquaporin-2-guided tolvaptan therapy in patients with decompensated heart failure. Long-term efficacy of tolvaptan treatment in the responders defined by aquaporin-2 needs to be validated in the future prospective study. Full article
(This article belongs to the Special Issue Aquaporin)
Show Figures

Graphical abstract

1429 KiB  
Review
Morphological and Cellular Features of Innate Immune Reaction in Helicobacter pylori Gastritis: A Brief Review
by Antonio Ieni, Valeria Barresi, Luciana Rigoli, Francesco Fedele, Giovanni Tuccari and Rosario Alberto Caruso
Int. J. Mol. Sci. 2016, 17(1), 109; https://doi.org/10.3390/ijms17010109 - 15 Jan 2016
Cited by 29 | Viewed by 6199
Abstract
Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK), which offer antigen-independent defense against infection. Helicobacter pylori ( [...] Read more.
Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK), which offer antigen-independent defense against infection. Helicobacter pylori (H. pylori) infection presents peculiar characteristics in gastric mucosa infrequently occurring in other organs; its gastric colonization determines a causal role in both gastric carcinomas and mucosa-associated lymphoid tissue lymphoma. In contrast, an active role for Epstein-Barr virus (EBV) has been identified only in 9% of gastric carcinomas. The aim of the present review is to discuss the role of cellular morphological effectors in innate immunity during H. pylori infection and gastric carcinogenesis. Full article
Show Figures

Graphical abstract

1207 KiB  
Review
Retinal Cell Degeneration in Animal Models
by Masayuki Niwa, Hitomi Aoki, Akihiro Hirata, Hiroyuki Tomita, Paul G. Green and Akira Hara
Int. J. Mol. Sci. 2016, 17(1), 110; https://doi.org/10.3390/ijms17010110 - 15 Jan 2016
Cited by 43 | Viewed by 7279
Abstract
The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient [...] Read more.
The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2015)
Show Figures

Graphical abstract

2865 KiB  
Review
Mechanistic Studies of the Solvolyses of Carbamoyl Chlorides and Related Reactions
by Malcolm J. D’Souza and Dennis N. Kevill
Int. J. Mol. Sci. 2016, 17(1), 111; https://doi.org/10.3390/ijms17010111 - 15 Jan 2016
Cited by 12 | Viewed by 5444
Abstract
Carbamoyl chlorides are important intermediates, both in the research laboratory and in industrial scale syntheses. The most studied and used are the disubstituted derivatives, incorporating either aryl or alkyl groups (Ar2NCOCl or R2NCOCl). Sometimes, the groups are tied back [...] Read more.
Carbamoyl chlorides are important intermediates, both in the research laboratory and in industrial scale syntheses. The most studied and used are the disubstituted derivatives, incorporating either aryl or alkyl groups (Ar2NCOCl or R2NCOCl). Sometimes, the groups are tied back to give a ring and piperidino- and morpholino-derivatives are commonly encountered. Some studies have been made with two different groups attached. Solvolyses tend to occur at the carbonyl carbon, with replacement of the chloride ion. Studies of both rate and products are reviewed and the solvolysis reactions are usually SN1, although addition of an amine leads to a superimposable bimolecular component. Many of the studies under solvolytic conditions include the application of the extended Grunwald–Winstein equation. The monosubstituted derivatives (ArNHCOCl or RNHCOCl) are less studied. They are readily prepared by the addition of HCl to an isocyanate. In acetonitrile, they decompose to set up and reach equilibrium with the isocyanate (ArNCO or RNCO) and HCl. Considering that the structurally related formyl chloride (HOCOCl) is highly unstable (with formation of HCl + CO2), the unsubstituted carbamoyl chloride (H2NCOCl) is remarkably stable. Recommended synthetic procedures require it to survive reaction temperatures in the 300–400 °C range. There has been very little study of its reactions. Full article
(This article belongs to the Special Issue Solution Chemical Kinetics)
Show Figures

Figure 1

499 KiB  
Review
Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules
by Dorothy Moseti, Alemu Regassa and Woo-Kyun Kim
Int. J. Mol. Sci. 2016, 17(1), 124; https://doi.org/10.3390/ijms17010124 - 19 Jan 2016
Cited by 495 | Viewed by 17148
Abstract
Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as [...] Read more.
Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

1329 KiB  
Review
The Complex Relationship between Metals and Carbonic Anhydrase: New Insights and Perspectives
by Maria Giulia Lionetto, Roberto Caricato, Maria Elena Giordano and Trifone Schettino
Int. J. Mol. Sci. 2016, 17(1), 127; https://doi.org/10.3390/ijms17010127 - 19 Jan 2016
Cited by 61 | Viewed by 7778
Abstract
Carbonic anhydrase is a ubiquitous metalloenzyme, which catalyzes the reversible hydration of CO2 to HCO3 and H+. Metals play a key role in the bioactivity of this metalloenzyme, although their relationships with CA have not been completely clarified [...] Read more.
Carbonic anhydrase is a ubiquitous metalloenzyme, which catalyzes the reversible hydration of CO2 to HCO3 and H+. Metals play a key role in the bioactivity of this metalloenzyme, although their relationships with CA have not been completely clarified to date. The aim of this review is to explore the complexity and multi-aspect nature of these relationships, since metals can be cofactors of CA, but also inhibitors of CA activity and modulators of CA expression. Moreover, this work analyzes new insights and perspectives that allow translating new advances in basic science on the interaction between CA and metals to applications in several fields of research, ranging from biotechnology to environmental sciences. Full article
(This article belongs to the Special Issue Metal Metabolism in Animals)
Show Figures

Graphical abstract

1296 KiB  
Review
Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches
by Khondoker M. Akram, Neil Patel, Monica A. Spiteri and Nicholas R. Forsyth
Int. J. Mol. Sci. 2016, 17(1), 128; https://doi.org/10.3390/ijms17010128 - 19 Jan 2016
Cited by 54 | Viewed by 17533
Abstract
The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis [...] Read more.
The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases. Full article
(This article belongs to the Special Issue Stem Cell Activation in Adult Organism)
Show Figures

Graphical abstract

712 KiB  
Review
Iron Homeostasis in Health and Disease
by Raffaella Gozzelino and Paolo Arosio
Int. J. Mol. Sci. 2016, 17(1), 130; https://doi.org/10.3390/ijms17010130 - 20 Jan 2016
Cited by 244 | Viewed by 19344
Abstract
Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze [...] Read more.
Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze the formation of highly reactive hydroxyl radicals, oxidative stress, and programmed cell death. The advance in understanding the main players and mechanisms involved in iron regulation significantly improved since the discovery of genes responsible for hemochromatosis, the IRE/IRPs machinery, and the hepcidin-ferroportin axis. This review provides an update on the molecular mechanisms regulating cellular and systemic Fe homeostasis and their roles in pathophysiologic conditions that involve alterations of iron metabolism, and provides novel therapeutic strategies to prevent the deleterious effect of its deficiency/overload. Full article
(This article belongs to the Special Issue Metal Metabolism in Animals)
Show Figures

Figure 1

818 KiB  
Review
Structure Prediction: New Insights into Decrypting Long Noncoding RNAs
by Kun Yan, Yasir Arfat, Dijie Li, Fan Zhao, Zhihao Chen, Chong Yin, Yulong Sun, Lifang Hu, Tuanmin Yang and Airong Qian
Int. J. Mol. Sci. 2016, 17(1), 132; https://doi.org/10.3390/ijms17010132 - 21 Jan 2016
Cited by 49 | Viewed by 7955
Abstract
Long noncoding RNAs (lncRNAs), which form a diverse class of RNAs, remain the least understood type of noncoding RNAs in terms of their nature and identification. Emerging evidence has revealed that a small number of newly discovered lncRNAs perform important and complex biological [...] Read more.
Long noncoding RNAs (lncRNAs), which form a diverse class of RNAs, remain the least understood type of noncoding RNAs in terms of their nature and identification. Emerging evidence has revealed that a small number of newly discovered lncRNAs perform important and complex biological functions such as dosage compensation, chromatin regulation, genomic imprinting, and nuclear organization. However, understanding the wide range of functions of lncRNAs related to various processes of cellular networks remains a great experimental challenge. Structural versatility is critical for RNAs to perform various functions and provides new insights into probing the functions of lncRNAs. In recent years, the computational method of RNA structure prediction has been developed to analyze the structure of lncRNAs. This novel methodology has provided basic but indispensable information for the rapid, large-scale and in-depth research of lncRNAs. This review focuses on mainstream RNA structure prediction methods at the secondary and tertiary levels to offer an additional approach to investigating the functions of lncRNAs. Full article
(This article belongs to the Collection Regulation by Non-coding RNAs)
Show Figures

Graphical abstract

1220 KiB  
Review
Photodynamic Therapy in Non-Gastrointestinal Thoracic Malignancies
by Biniam Kidane, Dhruvin Hirpara and Kazuhiro Yasufuku
Int. J. Mol. Sci. 2016, 17(1), 135; https://doi.org/10.3390/ijms17010135 - 21 Jan 2016
Cited by 9 | Viewed by 6502
Abstract
Photodynamic therapy has a role in the management of early and late thoracic malignancies. It can be used to facilitate minimally-invasive treatment of early endobronchial tumours and also to palliate obstructive and bleeding effects of advanced endobronchial tumours. Photodynamic therapy has been used [...] Read more.
Photodynamic therapy has a role in the management of early and late thoracic malignancies. It can be used to facilitate minimally-invasive treatment of early endobronchial tumours and also to palliate obstructive and bleeding effects of advanced endobronchial tumours. Photodynamic therapy has been used as a means of downsizing tumours to allow for resection, as well as reducing the extent of resection necessary. It has also been used successfully for minimally-invasive management of local recurrences, which is especially valuable for patients who are not eligible for radiation therapy. Photodynamic therapy has also shown promising results in mesothelioma and pleural-based metastatic disease. As new generation photosensitizers are being developed and tested and methodological issues continue to be addressed, the role of photodynamic therapy in thoracic malignancies continues to evolve. Full article
(This article belongs to the Special Issue Advances in Photodynamic Therapy)
Show Figures

Graphical abstract

468 KiB  
Review
The Clinical Significance of Phosphorylated Heat Shock Protein 27 (HSPB1) in Pancreatic Cancer
by Mitsuru Okuno, Seiji Adachi, Osamu Kozawa, Masahito Shimizu and Ichiro Yasuda
Int. J. Mol. Sci. 2016, 17(1), 137; https://doi.org/10.3390/ijms17010137 - 21 Jan 2016
Cited by 17 | Viewed by 7568
Abstract
Pancreatic cancer is one of most aggressive forms of cancer. After clinical detection it exhibits fast metastatic growth. Heat shock protein 27 (HSP27; HSPB1) has been characterized as a molecular chaperone which modifies the structures and functions of other proteins in cells when [...] Read more.
Pancreatic cancer is one of most aggressive forms of cancer. After clinical detection it exhibits fast metastatic growth. Heat shock protein 27 (HSP27; HSPB1) has been characterized as a molecular chaperone which modifies the structures and functions of other proteins in cells when they are exposed to various stresses, such as chemotherapy. While the administration of gemcitabine, an anti-tumor drug, has been the standard treatment for patients with advanced pancreatic cancer, accumulating evidence shows that HSP27 plays a key role in the chemosensitivity to gemcitabine. In addition, phosphorylated HSP27 induced by gemcitabine has been associated with the inhibition of pancreatic cancer cell growth. In this review, we summarize the role of phosphorylated HSP27, as well as HSP27, in the regulation of chemosensitivity in pancreatic cancer. Full article
Show Figures

Graphical abstract

695 KiB  
Review
The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis
by Yuhang Zhou, Tingting Huang, Alfred S. L. Cheng, Jun Yu, Wei Kang and Ka Fai To
Int. J. Mol. Sci. 2016, 17(1), 138; https://doi.org/10.3390/ijms17010138 - 21 Jan 2016
Cited by 144 | Viewed by 15595
Abstract
The TEAD family of transcription factors is necessary for developmental processes. The family members contain a TEA domain for the binding with DNA elements and a transactivation domain for the interaction with transcription coactivators. TEAD proteins are required for the participation of coactivators [...] Read more.
The TEAD family of transcription factors is necessary for developmental processes. The family members contain a TEA domain for the binding with DNA elements and a transactivation domain for the interaction with transcription coactivators. TEAD proteins are required for the participation of coactivators to transmit the signal of pathways for the downstream signaling processes. TEADs also play an important role in tumor initiation and facilitate cancer progression via activating a series of progression-inducing genes, such as CTGF, Cyr61, Myc and Gli2. Recent studies have highlighted that TEADs, together with their coactivators, promote or even act as the crucial parts in the development of various malignancies, such as liver, ovarian, breast and prostate cancers. Furthermore, TEADs are proposed to be useful prognostic biomarkers due to the ideal correlation between high expression and clinicopathological parameters in gastric, breast, ovarian and prostate cancers. In this review, we summarize the functional role of TEAD proteins in tumorigenesis and discuss the key role of TEAD transcription factors in the linking of signal cascade transductions. Improved knowledge of the TEAD proteins will be helpful for deep understanding of the molecular mechanisms of tumorigenesis and identifying ideal predictive or prognostic biomarkers, even providing clinical translation for anticancer therapy in human cancers. Full article
Show Figures

Graphical abstract

1567 KiB  
Review
Cadmium Protection Strategies—A Hidden Trade-Off?
by Adolf Michael Sandbichler and Martina Höckner
Int. J. Mol. Sci. 2016, 17(1), 139; https://doi.org/10.3390/ijms17010139 - 21 Jan 2016
Cited by 79 | Viewed by 8141
Abstract
Cadmium (Cd) is a non-essential transition metal which is introduced into the biosphere by various anthropogenic activities. Environmental pollution with Cd poses a major health risk and Cd toxicity has been extensively researched over the past decades. This review aims at changing the [...] Read more.
Cadmium (Cd) is a non-essential transition metal which is introduced into the biosphere by various anthropogenic activities. Environmental pollution with Cd poses a major health risk and Cd toxicity has been extensively researched over the past decades. This review aims at changing the perspective by discussing protection mechanisms available to counteract a Cd insult. Antioxidants, induction of antioxidant enzymes, and complexation of Cd to glutathione (GSH) and metallothionein (MT) are the most potent protective measures to cope with Cd-induced oxidative stress. Furthermore, protection mechanisms include prevention of endoplasmic reticulum (ER) stress, mitophagy and metabolic stress, as well as expression of chaperones. Pre-exposure to Cd itself, or co-exposure to other metals or trace elements can improve viability under Cd exposure and cells have means to reduce Cd uptake and improve Cd removal. Finally, environmental factors have negative or positive effects on Cd toxicity. Most protection mechanisms aim at preventing cellular damage. However, this might not be possible without trade-offs like an increased risk of carcinogenesis. Full article
(This article belongs to the Special Issue Metal Metabolism in Animals)
Show Figures

Figure 1

1126 KiB  
Review
An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs
by Siddharth Menon, Siny Shailendra, Andrea Renda, Michael Longaker and Natalina Quarto
Int. J. Mol. Sci. 2016, 17(1), 141; https://doi.org/10.3390/ijms17010141 - 21 Jan 2016
Cited by 35 | Viewed by 12131
Abstract
Stem cells are classified into embryonic stem cells and adult stem cells. An evolving alternative to conventional stem cell therapies is induced pluripotent stem cells (iPSCs), which have a multi-lineage potential comparable to conventionally acquired embryonic stem cells with the additional benefits of [...] Read more.
Stem cells are classified into embryonic stem cells and adult stem cells. An evolving alternative to conventional stem cell therapies is induced pluripotent stem cells (iPSCs), which have a multi-lineage potential comparable to conventionally acquired embryonic stem cells with the additional benefits of being less immunoreactive and avoiding many of the ethical concerns raised with the use of embryonic material. The ability to generate iPSCs from somatic cells provides tremendous promise for regenerative medicine. The breakthrough of iPSCs has raised the possibility that patient-specific iPSCs can provide autologous cells for cell therapy without the concern for immune rejection. iPSCs are also relevant tools for modeling human diseases and drugs screening. However, there are still several hurdles to overcome before iPSCs can be used for translational purposes. Here, we review the recent advances in somatic reprogramming and the challenges that must be overcome to move this strategy closer to clinical application. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop