ijms-logo

Journal Browser

Journal Browser

Special Issue "Advances in Molecular Oncology"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (30 November 2018) | Viewed by 455804

Special Issue Editor

Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
Interests: cancer biomarker; evidence-based medicine; extracellular vesicles; genomics; microRNA; molecular diagnostics; non-coding RNAs; nasopharyngeal carcinoma; next-generation sequencing; non-small cell lung cancer; proteomics; drug repurposing and bioinformatics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The completion of the human genome project and the availability of high-throughput technologies have led a dramatic change in cancer research. In the past few decades, oncological studies are evolving from traditional to molecular oncology. Numerous researches have contributed to our knowledge of the molecular mechanisms underlying cancer progression, defining pathways that influence cancer therapy and response, as well as developing new tools and therapeutics to prevent or manage cancer more effectively. The field of molecular oncology is growing rapidly and it has a great impact on basic science, clinical study, and translational cancer research. This open-access topical collection issue will bring together original research and review articles on molecular oncology. It highlights new discoveries, approaches, and technical developments in molecular cancer research. The main feature of this topical collection is to provide an open-source sharing of significant works in the field of molecular oncology that can advance our understanding of cancer development which may lead to the discovery of novel molecular diagnostic technologies and targeted therapeutics.

Topics of this Special Issue include, but are not limited to:

  • Key biological processes such as: genome instability, checkpoints, cell cycle, DNA repair, apoptosis, autophagy, angiogenesis, invasion and metastasis, signaling pathway, "drivers" versus "passengers"
  • Molecular tumor pathology
  • Tumor microenvironment
  • Cancer epidemiology and prevention
  • Cancer biomarkers: screening, diagnosis, treatment response, prognosis
  • Cancer therapy: target discovery, drug design, resistance, targeted therapy, theranostics, personalized medicine
  • Translational cancer research
  • High-throughput technologies: genomics, epigenomics, proteomics, metabolomics, microarray, next generation sequencing, and other omics technologies
  • Genomic and proteomic databases and applications

Dr. William Cho
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Related Special Issues

Published Papers (142 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

26 pages, 15410 KiB  
Article
Repurposing Quinacrine for Treatment of Malignant Mesothelioma: In-Vitro Therapeutic and Mechanistic Evaluation
Int. J. Mol. Sci. 2020, 21(17), 6306; https://doi.org/10.3390/ijms21176306 - 31 Aug 2020
Cited by 11 | Viewed by 4701
Abstract
Malignant mesothelioma (MM) is a rare type of cancer primarily affecting mesothelial cells lining the pleural cavity. In this study, we propose to repurpose quinacrine (QA), a widely approved anti-malarial drug, for Malignant Pleural Mesothelioma (MPM) treatment. QA demonstrates high degree of cytotoxicity [...] Read more.
Malignant mesothelioma (MM) is a rare type of cancer primarily affecting mesothelial cells lining the pleural cavity. In this study, we propose to repurpose quinacrine (QA), a widely approved anti-malarial drug, for Malignant Pleural Mesothelioma (MPM) treatment. QA demonstrates high degree of cytotoxicity against both immortalized and primary patient-derived cell lines with sub-micromolar 50% inhibitory concentration (IC50) values ranging from 1.2 µM (H2452) to 5.03 µM (H28). Further, QA also inhibited cellular migration and colony formation in MPM cells, demonstrated using scratch and clonogenic assays, respectively. A 3D-spheroid cell culture experiment was performed to mimic in-vivo tumor conditions, and QA was reported to be highly effective in this simulated cellular model. Anti-angiogenic properties were also discovered for QA. Autophagy inhibition assay was performed, and results revealed that QA successfully inhibited autophagy process in MPM cells, which has been cited to be one of the survival pathways for MPM. Annexin V real-time apoptosis study revealed significant apoptotic induction in MPM cells following QA treatment. Western blots confirmed inhibition of autophagy and induction of apoptosis. These studies highlight anti-mesothelioma efficacy of QA at low doses, which can be instrumental in developing it as a stand-alone treatment strategy for MPM. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

15 pages, 4422 KiB  
Article
Resveratrol Suppresses the Growth and Enhances Retinoic Acid Sensitivity of Anaplastic Thyroid Cancer Cells
Int. J. Mol. Sci. 2018, 19(4), 1030; https://doi.org/10.3390/ijms19041030 - 29 Mar 2018
Cited by 31 | Viewed by 4621
Abstract
Anaplastic thyroid cancer (ATC) is a highly lethal undifferentiated malignancy without reliable therapies. Retinoic acid (RA) has been employed to promote redifferentiation of thyroid cancers by increasing their I131 uptake and radio-sensitivity, but its effect(s) on ATCs has not yet been ascertained. [...] Read more.
Anaplastic thyroid cancer (ATC) is a highly lethal undifferentiated malignancy without reliable therapies. Retinoic acid (RA) has been employed to promote redifferentiation of thyroid cancers by increasing their I131 uptake and radio-sensitivity, but its effect(s) on ATCs has not yet been ascertained. Likewise, resveratrol induces cancer redifferentiation but, also in this case, its effects on ATCs remain unknown. These issues have been addresses in the current study using three human ATC cell lines (THJ-11T, THJ-16T, and THJ-21T) through multiple experimental approaches. The results reveal that RA exerts a small inhibitory effect on these cell lines. In comparison with normally cultured cells, the total cell number in resveratrol-treated THJ-16T and THJ-21T cultures significantly decreased (p < 0.05), and this effect was accompanied by reduced Cyclin D1 immuno-labeling, increased apoptotic fractions, and distinct caspase-3 activation. Resveratrol failed to inhibit growth but enhanced RA sensitivity of THJ-11T cells, suppressed peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ), and upregulated cellular retinoic acid-binding protein 2 (CRABP2) and retinoic acid receptor beta (RAR-β) expression. Increased thyroglobulin (Tg) and E-cadherin levels and appearance of membranous E-cadherin were evidenced in resveratrol-treated THJ-11T cells. Our results demonstrate for the first time: (1) the therapeutic value of resveratrol by itself or in combination with RA in the management of ATCs, (2) the capacity of resveratrol to overcome RA resistance in ATC cells by reprogramming CRABP2/RAR- and fatty acid-binding protein 5 (FABP5)/PPAR-β/δ-mediated RA signaling, and (3) the redifferentiating potential of resveratrol in ATC cells. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

12 pages, 1385 KiB  
Article
The rs2910164 Genetic Variant of miR-146a-3p Is Associated with Increased Overall Mortality in Patients with Follicular Variant Papillary Thyroid Carcinoma
Int. J. Mol. Sci. 2018, 19(3), 655; https://doi.org/10.3390/ijms19030655 - 26 Feb 2018
Cited by 12 | Viewed by 4604
Abstract
Aberrant expression of the sodium-iodide symporter (NIS) and the resistance to post-operative radioactive iodide treatment is a crucial cause of higher mortality of some thyroid cancer patients. In this study, we analyzed the impact of miR-146a on the expression and function of NIS [...] Read more.
Aberrant expression of the sodium-iodide symporter (NIS) and the resistance to post-operative radioactive iodide treatment is a crucial cause of higher mortality of some thyroid cancer patients. In this study, we analyzed the impact of miR-146a on the expression and function of NIS and on the overall survival of thyroid cancer patients. The study included 2441 patients (2163 women; 278 men); including 359 cases with follicular variant of papillary thyroid carcinoma (fvPTC). miR:NIS interactions were analyzed in cell lines using in vivo binding and inhibition assays and radioactive iodine uptake assays. Tumor/blood DNA was used for rs2910164 genotyping. Overall survival was assessed retrospectively. In the results, we showed that miR-146a-3p directly binds to and inhibits NIS. Inhibition of miR-146a-3p restores the expression and function of NIS, increasing radioactive iodine uptake. Rs2910164 functional variant within miR-146a-3p is associated with increased overall mortality among fvPTC female patients. The deaths per 1000 person-years were 29.7 in CC carriers vs. 5.08 in GG/GC-carriers (HR = 6.21, p = 0.006). Higher mortality of CC vs. GG/GC carriers was also observed in patients with lower clinical stage (HR = 22.72, p < 0.001), smaller tumor size (pT1/pT2) (HR = 25.05, p < 0.001), lack of extrathyroidal invasion (HR = 9.03, p = 0.02), lack of nodular invasion (HR = 7.84, p = 0.002), lack of metastases (HR = 6.5, p = 0.005) and older (age at diagnosis >50 years) (HR = 7.8, p = 0.002). MiR-146a-3p underwent somatic mutations in 16.1% of analyzed specimens, mainly towards the deleterious C allele. In this report we propose a novel molecular marker of the clinical outcome of fvPTC patients. Rs2910164 increases the overall mortality with inhibition of NIS and disruption of radioiodine uptake as a possible mechanism. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

10 pages, 2951 KiB  
Communication
Identification of a Rare Germline Heterozygous Deletion Involving the Polycistronic miR-17–92 Cluster in Two First-Degree Relatives from a BRCA 1/2 Negative Chilean Family with Familial Breast Cancer: Possible Functional Implications
Int. J. Mol. Sci. 2018, 19(1), 321; https://doi.org/10.3390/ijms19010321 - 22 Jan 2018
Cited by 4 | Viewed by 5037
Abstract
Micro-RNAs (miRNAs) have emerged as novel gene expression regulators. Recent evidence strongly suggests a role for miRNAs in a large variety of cancer-related pathways. Different studies have shown that 18.7 to 37% of all human miRNA genes are clustered. miR-17–92 polycistronic cluster overexpression [...] Read more.
Micro-RNAs (miRNAs) have emerged as novel gene expression regulators. Recent evidence strongly suggests a role for miRNAs in a large variety of cancer-related pathways. Different studies have shown that 18.7 to 37% of all human miRNA genes are clustered. miR-17–92 polycistronic cluster overexpression is associated with human hematolymphoid and solid malignancies including breast cancer (BC). Here, we report the identification of rs770419845, a rare 6 bp deletion located within the polycistronic miR-17–92 cluster, in two first-degree relatives from a Chilean family with familial BC and negative for point mutations in BRCA 1/2 genes. The deletion was identified by Sanger sequencing when 99 BRCA1/2 mutation-negative BC cases with a strong family history were initially screened. In silico analysis predicts that rs770419845 affects the secondary structure and stability of the pre-miR-17–pre-miR-18 region and the entire 17–92 cluster. The deletion was screened in 458 high-risk BRCA1/2-negative Chilean families and 480 controls. rs770419845 was not detected in any control but identified in a single family with two cases of BC and other cancers. Both BC cases, the mother and her daughter, carried the deletion. Based on bioinformatic analyses, the location of the deletion and its low frequency, we presume rs770419845 may be a pathogenic variant. Functional studies are needed to support this hypothesis. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

860 pages, 16758 KiB  
Article
B-Myb Is Up-Regulated and Promotes Cell Growth and Motility in Non-Small Cell Lung Cancer
Int. J. Mol. Sci. 2017, 18(6), 860; https://doi.org/10.3390/ijms18060860 - 27 May 2017
Cited by 29 | Viewed by 5430
Abstract
B-Myb is a transcription factor that is overexpressed and plays an oncogenic role in several types of human cancers. However, its potential implication in lung cancer remains elusive. In the present study, we have for the first time investigated the expression profile of [...] Read more.
B-Myb is a transcription factor that is overexpressed and plays an oncogenic role in several types of human cancers. However, its potential implication in lung cancer remains elusive. In the present study, we have for the first time investigated the expression profile of B-Myb and its functional impact in lung cancer. Expression analysis by quantificational real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry demonstrated that B-Myb expression is aberrantly overexpressed in non-small cell lung cancer (NSCLC), and positively correlated with pathologic grade and clinical stage of NSCLC. A gain-of-function study revealed that overexpression of B-Myb significantly increases lung cancer cell growth, colony formation, migration, and invasion. Conversely, a loss-of-function study showed that knockdown of B-Myb decreases cell growth, migration, and invasion. B-Myb overexpression also promoted tumor growth in vivo in a NSCLC xenograft nude mouse model. A molecular mechanistic study by RNA-sequencing (RNA-seq) analysis showed that B-Myb overexpression causes up-regulation of various downstream genes (e.g., COL11A1, COL6A1, FN1, MMP2, NID1, FLT4, INSR, and CCNA1) and activation of multiple critical pathways (e.g., extracellular signal-regulated kinases (ERK) and phosphorylated-protein kinase B (Akt) signaling pathways) involved in cell proliferation, tumorigenesis, and metastasis. Collectively, our results indicate a tumor-promoting role for B-Myb in NSCLC and thus imply its potential as a target for the diagnosis and/or treatment of NSCLC. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

235 pages, 8769 KiB  
Article
Overexpression of Transforming Acidic Coiled Coil‑Containing Protein 3 Reflects Malignant Characteristics and Poor Prognosis of Glioma
Int. J. Mol. Sci. 2017, 18(3), 235; https://doi.org/10.3390/ijms18030235 - 04 Mar 2017
Cited by 7 | Viewed by 4770
Abstract
Gliomas are malignant primary brain tumors with poor prognosis. Recently, research was indicative of a tight connection between tumor malignancy and genetic alterations. Here, we propose an oncogenic implication of transforming acidic coiled-coil-containing protein 3 (TACC3) in gliomas. By comprehensively analyzing the Chinese [...] Read more.
Gliomas are malignant primary brain tumors with poor prognosis. Recently, research was indicative of a tight connection between tumor malignancy and genetic alterations. Here, we propose an oncogenic implication of transforming acidic coiled-coil-containing protein 3 (TACC3) in gliomas. By comprehensively analyzing the Chinese glioma genome atlas (CGGA) and publicly available data, we demonstrated that TACC3 were overexpressed along with glioma grade and served as an independent negative prognostic biomarker for glioma patients. Functions’ annotations and gene sets’ enrichment analysis suggested that TACC3 may participate in cell cycle, DNA repair, epithelium-mesenchymal transition and other tumor-related biological processes and molecular pathways. Patients with high TACC3 expression showed CD133+ stem cell properties, glioma plasticity and shorter overall survival time under chemo-/radio-therapy. Additionally, a TACC3 associated the miRNA-mRNA network was constructed based on in silico prediction and expression pattern, which provide a foundation for further detection of TACC3-miRNA-mRNA axis function. Collectively, our observations identify TACC3 as an oncogene of tumor malignancy, as well as a prognostic and motoring biomarker for glioma patients. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

325 pages, 2614 KiB  
Article
Sphingosine Kinase-1 Involves the Inhibitory Action of HIF-1α by Chlorogenic Acid in Hypoxic DU145 Cells
Int. J. Mol. Sci. 2017, 18(2), 325; https://doi.org/10.3390/ijms18020325 - 04 Feb 2017
Cited by 22 | Viewed by 8149
Abstract
Hypoxia enhances cancer development in a solid tumor. Hypoxia-inducible factor-1 α (HIF-1α) is a transcription factor that is dominantly expressed under hypoxia in solid tumor cells and is a key factor that regulates tumor. HIF-1α regulates several target genes involved in many aspects [...] Read more.
Hypoxia enhances cancer development in a solid tumor. Hypoxia-inducible factor-1 α (HIF-1α) is a transcription factor that is dominantly expressed under hypoxia in solid tumor cells and is a key factor that regulates tumor. HIF-1α regulates several target genes involved in many aspects of cancer progression, including angiogenesis, metastasis, anti-apoptosis and cell proliferation as well as imparts resistance to cancer treatment. In this study, we assessed Crataegus Pinnatifida Bunge var. typical Schneider ethanol extract (CPE) for its anti-cancer effects in hypoxia-induced DU145 human prostate cancer cell line. CPE decreased the abundance of HIF-1α and sphingosine kinase-1 (SPHK-1) in hypoxia-induced prostate cancer DU145 cells. CPE decreased HIF-1α and SPHK-1 as well as SPHK-1 activity. Chlorogenic acid (CA) is one of four major compounds of CPE. Compared to CPE, CA significantly decreased the expression of HIF-1α and SPHK-1 as well as SPHK-1 activity in hypoxia-induced DU145 cells. Furthermore, CA decreased phosphorylation AKT and GSK-3β, which are associated with HIF-1α stabilization and affected SPHK-1 in a concentration-dependent manner. We confirmed the mechanism of CA-induced inhibition of HIF-1α by SPHK-1 signaling pathway using SPHK-1 siRNA and SPHK inhibitor (SKI). CA decreased the secretion and cellular expression of VEGF, thus inhibiting hypoxia-induced angiogenesis. Treatment of DU145cells with SPHK1 siRNA and CA for 48 h decreased cancer cell growth, and the inhibitory action of SPHK siRNA and CA on cell growth was confirmed by decrease in the abundance of Proliferating cell nuclear antigen (PCNA). Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

286 pages, 6240 KiB  
Article
High-Level γ-Glutamyl-Hydrolase (GGH) Expression is Linked to Poor Prognosis in ERG Negative Prostate Cancer
Int. J. Mol. Sci. 2017, 18(2), 286; https://doi.org/10.3390/ijms18020286 - 29 Jan 2017
Cited by 24 | Viewed by 6337
Abstract
γ-glutamyl-hydrolase (GGH) is a ubiquitously-expressed enzyme that regulates intracellular folate metabolism for cell proliferation, DNA synthesis, and repair. Employing GGH immunohistochemistry on a tissue microarray with 12,427 prostate cancers, we found that GGH expression was negative to low in normal prostate epithelium, whereas [...] Read more.
γ-glutamyl-hydrolase (GGH) is a ubiquitously-expressed enzyme that regulates intracellular folate metabolism for cell proliferation, DNA synthesis, and repair. Employing GGH immunohistochemistry on a tissue microarray with 12,427 prostate cancers, we found that GGH expression was negative to low in normal prostate epithelium, whereas 88.3% of our 10,562 interpretable cancers showed GGH expression. GGH staining was considered as low intensity in 49.6% and as high intensity in 38.6% of cancers. High GGH expression was linked to the TMPRSS2:ERG-fusion positive subset of cancers (p < 0.0001), advanced pathological tumor stage, and high Gleason grade (p < 0.0001 each). Further analysis revealed that these associations were merely driven by the subset of ERG-negative cancers, High GGH expression was weakly linked to early biochemical recurrence in ERG negative cancers (p < 0.0001) and independent from established histo-pathological parameters. Moreover, GGH expression was linked to features of genetic instability, including presence of recurrent deletions at 3p, 5q, 6q, and 10q (PTEN, p ≤ 0.01 each), as well as to accelerated cell proliferation as measured by Ki67 immunohistochemistry (p < 0.0001). In conclusion, the results of our study identify GGH as an ERG subtype specific molecular marker with modest prognostic relevance, which may have clinical relevance if analyzed in combination with other molecular markers. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

2015 pages, 1669 KiB  
Article
High Intra- and Inter-Tumoral Heterogeneity of RAS Mutations in Colorectal Cancer
Int. J. Mol. Sci. 2016, 17(12), 2015; https://doi.org/10.3390/ijms17122015 - 01 Dec 2016
Cited by 33 | Viewed by 5199
Abstract
Approximately 30% of patients with wild type RAS metastatic colorectal cancer are non-responders to anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs), possibly due to undetected tumoral subclones harboring RAS mutations. The aim of this study was to analyze the distribution of RAS [...] Read more.
Approximately 30% of patients with wild type RAS metastatic colorectal cancer are non-responders to anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs), possibly due to undetected tumoral subclones harboring RAS mutations. The aim of this study was to analyze the distribution of RAS mutations in different areas of the primary tumor, metastatic lymph nodes and distant metastasis. A retrospective cohort of 18 patients with a colorectal cancer (CRC) was included in the study. Multiregion analysis was performed in 60 spatially separated tumor areas according to the pathological tumor node metastasis (pTNM) staging and KRAS, NRAS and BRAF mutations were tested using pyrosequencing. In primary tumors, intra-tumoral heterogeneity for RAS mutation was found in 33% of cases. Inter-tumoral heterogeneity for RAS mutation between primary tumors and metastatic lymph nodes or distant metastasis was found in 36% of cases. Moreover, 28% of tumors had multiple RAS mutated subclones in the same tumor. A high proportion of CRCs presented intra- and/or inter-tumoral heterogeneity, which has relevant clinical implications for anti-EGFR mAbs prescription. These results suggest the need for multiple RAS testing in different parts of the same tumor and/or more sensitive techniques. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

1859 pages, 5680 KiB  
Article
Low Expression of CAPON in Glioma Contributes to Cell Proliferation via the Akt Signaling Pathway
Int. J. Mol. Sci. 2016, 17(11), 1859; https://doi.org/10.3390/ijms17111859 - 18 Nov 2016
Cited by 11 | Viewed by 4823
Abstract
CAPON is an adapter protein for nitric oxide synthase 1 (NOS1). CAPON has two isoforms in the human brain: CAPON-L (long form of CAPON) and CAPON-S (short form of CAPON). Recent studies have indicated the involvement of CAPON in tumorigenesis beyond its classical [...] Read more.
CAPON is an adapter protein for nitric oxide synthase 1 (NOS1). CAPON has two isoforms in the human brain: CAPON-L (long form of CAPON) and CAPON-S (short form of CAPON). Recent studies have indicated the involvement of CAPON in tumorigenesis beyond its classical role in NOS1 activity regulation. In this study, we found that the protein levels of CAPON-S, but not than CAPON-L, were significantly decreased in glioma tissues. Therefore, we established lentivirus-mediated stable cell lines with CAPON-S overexpression or down-regulation, and investigated the role of CAPON-S in the proliferation of glioma cells by using CCK8, EdU, and flow cytometry assays. Overexpression of CAPON-S reduced the cell variability and the percentage of EdU-positive cells, and arrested the cells in the G1 phase in glioma cells. Silencing of CAPON by short-hairpin RNA showed the opposite effects. Furthermore, an intracellular signaling array revealed that overexpression of CAPON-S resulted in a remarkable reduction in the phosphorylation of Akt and S6 ribosomal protein in glioma cells, which was further confirmed by Western blot. These findings suggest that CAPON may function as a tumor suppressor in human brain glioma and that the inactivation of the Akt signaling pathway caused by CAPON-S overexpression may provide insight into the underlying mechanism of CAPON in glioma cell proliferation. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

1808 pages, 1856 KiB  
Article
PPIC, EMP3 and CHI3L1 Are Novel Prognostic Markers for High Grade Glioma
Int. J. Mol. Sci. 2016, 17(11), 1808; https://doi.org/10.3390/ijms17111808 - 28 Oct 2016
Cited by 30 | Viewed by 5779
Abstract
Current treatment methods for patients diagnosed with gliomas have shown limited success. This is partly due to the lack of prognostic genes available to accurately predict disease outcomes. The aim of this study was to investigate novel prognostic genes based on the molecular [...] Read more.
Current treatment methods for patients diagnosed with gliomas have shown limited success. This is partly due to the lack of prognostic genes available to accurately predict disease outcomes. The aim of this study was to investigate novel prognostic genes based on the molecular profile of tumor samples and their correlation with clinical parameters. In the current study, microarray data (GSE4412 and GSE7696) downloaded from Gene Expression Omnibus were used to identify differentially expressed prognostic genes (DEPGs) by significant analysis of microarray (SAM) between long-term survivors (>2 years) and short-term survivors (≤2 years). DEPGs generated from these two datasets were intersected to obtain a list of common DEPGs. The expression of a subset of common DEPGs was then independently validated by real-time reverse transcription quantitative PCR (qPCR). Survival value of the common DEPGs was validated using known survival data from the GSE4412 and TCGA dataset. After intersecting DEPGs generated from the above two datasets, three genes were identified which may potentially be used to determine glioma patient prognosis. Independent validation with glioma patients tissue (n = 70) and normal brain tissue (n = 19) found PPIC, EMP3 and CHI3L1 were up-regulated in glioma tissue. Survival value validation showed that the three genes correlated with patient survival by Kaplan-Meir analysis, including grades, age and therapy. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

1803 pages, 1586 KiB  
Article
The Expression and Clinical Outcome of pCHK2-Thr68 and pCDC25C-Ser216 in Breast Cancer
Int. J. Mol. Sci. 2016, 17(11), 1803; https://doi.org/10.3390/ijms17111803 - 28 Oct 2016
Cited by 4 | Viewed by 4679
Abstract
Checkpoint kinase 2 (CHK2) and cell division cycle 25C (CDC25C) are two proteins involved in the DNA damage response pathway, playing essential roles in maintaining genome integrity. As one of the major hallmarks of abnormal cellular division, genomic instability occurs in most cancers. [...] Read more.
Checkpoint kinase 2 (CHK2) and cell division cycle 25C (CDC25C) are two proteins involved in the DNA damage response pathway, playing essential roles in maintaining genome integrity. As one of the major hallmarks of abnormal cellular division, genomic instability occurs in most cancers. In this study, we identified the functional expression of pCHK2-Thr68 and pCDC25C-Ser216 in breast cancer, as well as its association with breast cancer survival. Tissue microarray analysis using immunohistochemistry was constructed to identify the expression of pCHK2-Thr68 and pCDC25C-Ser216 in 292 female breast cancer patients. The relationship among protein expression, clinicopathological factors (e.g., human epidermal growth factor receptor 2 (HER 2), tumor size, tumor-node-metastasis (TNM) classification), and overall survival of the breast cancer tissues were analyzed using Pearson’s χ-square (χ2) test, Fisher’s exact test, multivariate logistic regression and Kaplan–Meier survival analysis. Significantly higher expressions of pCHK2-Thr68 and pCDC25C-Ser216 were observed in the nucleus of the breast cancer cells compared to the paracancerous tissue (pCHK2-Thr68, 20.38% vs. 0%; pCDC25C-Ser216, 82.26% vs. 24.24%). The expression of pCHK2-Thr68 and pCDC25C-Ser216 in breast cancer showed a positive linear correlation (p = 0.026). High expression of pCHK2-Thr68 was associated with decreased patient survival (p = 0.001), but was not an independent prognostic factor. Our results suggest that pCHK2-Thr68 and pCDC25C-Ser216 play important roles in breast cancer and may be potential treatment targets. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

1619 pages, 3355 KiB  
Article
Golgi-Related Proteins GOLPH2 (GP73/GOLM1) and GOLPH3 (GOPP1/MIDAS) in Cutaneous Melanoma: Patterns of Expression and Prognostic Significance
Int. J. Mol. Sci. 2016, 17(10), 1619; https://doi.org/10.3390/ijms17101619 - 01 Oct 2016
Cited by 30 | Viewed by 5076
Abstract
GOLPH2 and GOLPH3 are Golgi-related proteins associated with aggressiveness and progression of a number of cancers. Their prognostic significance in melanoma has not yet been analyzed. We performed immunohistochemical analysis for GOLPH2 and GOLPH3 in 20 normal skin, 30 benign nevi and 100 [...] Read more.
GOLPH2 and GOLPH3 are Golgi-related proteins associated with aggressiveness and progression of a number of cancers. Their prognostic significance in melanoma has not yet been analyzed. We performed immunohistochemical analysis for GOLPH2 and GOLPH3 in 20 normal skin, 30 benign nevi and 100 primary melanoma tissue samples and evaluated their expression in three compartments: cancer cells, tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs). High levels of both proteins in melanoma cells were associated with characteristics of aggressive disease, and shorter disease-free survival (DFS) and cancer-specific overall survival (CSOS). On the contrary, increased numbers of GOLPH2-positive and GOLPH3-positive TAMs were observed in thinner, non-ulcerated tumors, with brisk lymphocytic reaction and absent lymphangioinvasion. Distant metastases were not observed among patients with high numbers of GOLPH2-positive TAMs. Increased expression of either protein in TAMs was related to prolonged CSOS and DFS. Similarly, GOLPH3-expressing CAFs were more frequent in thin melanomas with low mitotic rate, without ulceration and lymphangioinvasion. Moreover, increased GOLPH3-positive CAFs correlated with the absence of regional or distant metastases, and with longer CSOS and DFS. GOLPH2 expression was not observed in CAFs. Our results suggest that GOLPH2 and GOLPH3 play a role in melanoma progression and are potential targets for molecular-based therapies. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

1598 pages, 2827 KiB  
Article
Decreased Expression of SRSF2 Splicing Factor Inhibits Apoptotic Pathways in Renal Cancer
Int. J. Mol. Sci. 2016, 17(10), 1598; https://doi.org/10.3390/ijms17101598 - 28 Sep 2016
Cited by 28 | Viewed by 7326 | Correction
Abstract
Serine and arginine rich splicing factor 2(SRSF2) belongs to the serine/arginine (SR)-rich family of proteins that regulate alternative splicing. Previous studies suggested that SRSF2 can contribute to carcinogenic processes. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, [...] Read more.
Serine and arginine rich splicing factor 2(SRSF2) belongs to the serine/arginine (SR)-rich family of proteins that regulate alternative splicing. Previous studies suggested that SRSF2 can contribute to carcinogenic processes. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, highly aggressive and difficult to treat, mainly due to resistance to apoptosis. In this study we hypothesized that SRSF2 contributes to the regulation of apoptosis in ccRCC. Using tissue samples obtained from ccRCC patients, as well as independent validation on The Cancer Genome Atlas (TCGA) data, we demonstrate for the first time that expression of SRSF2 is decreased in ccRCC tumours when compared to non-tumorous control tissues. Furthermore, by employing a panel of ccRCC-derived cell lines with silenced SRSF2 expression and qPCR arrays we show that SRSF2 contributes not only to splicing patterns but also to expression of multiple apoptotic genes, including new SRSF2 targets: DIABLO, BIRC5/survivin, TRAIL, BIM, MCL1, TNFRSF9, TNFRSF1B, CRADD, BCL2L2, BCL2A1, and TP53. We also identified a new splice variant of CFLAR, an inhibitor of caspase activity. These changes culminate in diminished caspase-9 activity and inhibition of apoptosis. In summary, we show for the first time that decreased expression of SRSF2 in ccRCC contributes to protection of cancer cells viability. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

1612 pages, 2604 KiB  
Article
Elevated Expression of Calpain-4 Predicts Poor Prognosis in Patients with Gastric Cancer after Gastrectomy
Int. J. Mol. Sci. 2016, 17(10), 1612; https://doi.org/10.3390/ijms17101612 - 27 Sep 2016
Cited by 6 | Viewed by 4852
Abstract
Calpain-4 belongs to the calpain family of calcium-dependent cysteine proteases, and functions as a small regulatory subunit of the calpains. Recent evidence indicates that calpain-4 plays critical roles in tumor migration and invasion. However, the roles of calpain-4 in gastric tumorigenesis remain poorly [...] Read more.
Calpain-4 belongs to the calpain family of calcium-dependent cysteine proteases, and functions as a small regulatory subunit of the calpains. Recent evidence indicates that calpain-4 plays critical roles in tumor migration and invasion. However, the roles of calpain-4 in gastric tumorigenesis remain poorly understood. Herein, we examined calpain-4 expression by immunohistochemical staining on tissue microarrays containing tumor samples of 174 gastric cancer patients between 2004 and 2008 at a single center. The Kaplan-Meier method was used to compare survival curves, and expression levels were correlated to clinicopathological factors and overall survival. Our data demonstrated that calpain-4 was generally increased in gastric cancer cell lines and primary tumor tissues. High expression of calpain-4 was positively associated with vessel invasion, lymph node metastasis, and advanced TNM (Tumor Node Metastasis) stage. Multivariate analysis identified calpain-4 as an independent prognostic factor for poor prognosis. A predictive nomogram integrating calpain-4 expression with other independent prognosticators was constructed, which generated a better prognostic value for overall survival of gastric cancer patients than a TNM staging system. In conclusion, calpain-4 could be regarded as a potential prognosis indicator for clinical outcomes in gastric cancer. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

1614 pages, 3545 KiB  
Article
APEH Inhibition Affects Osteosarcoma Cell Viability via Downregulation of the Proteasome
Int. J. Mol. Sci. 2016, 17(10), 1614; https://doi.org/10.3390/ijms17101614 - 23 Sep 2016
Cited by 15 | Viewed by 4333
Abstract
The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by [...] Read more.
The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH–proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21Waf1, and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

1487 pages, 1084 KiB  
Article
Serum Calcium and the Risk of Breast Cancer: Findings from the Swedish AMORIS Study and a Meta-Analysis of Prospective Studies
Int. J. Mol. Sci. 2016, 17(9), 1487; https://doi.org/10.3390/ijms17091487 - 06 Sep 2016
Cited by 29 | Viewed by 5475
Abstract
To investigate the association between serum calcium and risk of breast cancer using a large cohort and a systematic review with meta-analysis. From the Swedish Apolipoprotein Mortality Risk (AMORIS) Study we included 229,674 women who had baseline measurements of serum total calcium and [...] Read more.
To investigate the association between serum calcium and risk of breast cancer using a large cohort and a systematic review with meta-analysis. From the Swedish Apolipoprotein Mortality Risk (AMORIS) Study we included 229,674 women who had baseline measurements of serum total calcium and albumin. Multivariable Cox regression was used to assess the association between total and albumin-corrected calcium and breast cancer risk. For the systematic review, an electronic search of MEDLINE and EMBASE databases was performed to identify other prospective cohorts assessing the relationship between serum calcium and breast cancer risk. We pooled the results of our AMORIS cohort with other eligible studies in a meta-analysis using a random effects model. I2 test was used to assess heterogeneity. In the AMORIS study, 10,863 women were diagnosed with breast cancer (mean follow-up: 19 years). We found an inverse association between total serum calcium and breast cancer when comparing the fourth quartile to the first quartile (HR: 0.94, 95% CI: 0.88–0.99, p value for trend 0.04) and similar results using albumin-corrected calcium. In the systematic review, we identified another two prospective cohorts evaluating pre-diagnostic serum total calcium and breast cancer. Combining these studies and our findings in AMORIS in a meta-analysis showed a protective effect of serum calcium against breast cancer, with a summary RR of 0.80 (95% CI: 0.66–0.97). No substantial heterogeneity was observed. Our findings in AMORIS and the meta-analysis support an inverse association between serum calcium and breast cancer risk, which warrants mechanistic investigations. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

1458 pages, 3195 KiB  
Article
Cancer-Associated Fibroblasts Modify the Response of Prostate Cancer Cells to Androgen and Anti-Androgens in Three-Dimensional Spheroid Culture
Int. J. Mol. Sci. 2016, 17(9), 1458; https://doi.org/10.3390/ijms17091458 - 01 Sep 2016
Cited by 50 | Viewed by 7900
Abstract
Androgen receptor (AR) targeting remains the gold standard treatment for advanced prostate cancer (PCa); however, treatment resistance remains a major clinical problem. To study the therapeutic effects of clinically used anti-androgens we characterized herein a tissue-mimetic three-dimensional (3D) in vitro model whereby PCa [...] Read more.
Androgen receptor (AR) targeting remains the gold standard treatment for advanced prostate cancer (PCa); however, treatment resistance remains a major clinical problem. To study the therapeutic effects of clinically used anti-androgens we characterized herein a tissue-mimetic three-dimensional (3D) in vitro model whereby PCa cells were cultured alone or with PCa-associated fibroblasts (CAFs). Notably, the ratio of PCa cells to CAFs significantly increased in time in favor of the tumor cells within the spheroids strongly mimicking PCa in vivo. Despite this loss of CAFs, the stromal cells, which were not sensitive to androgen and even stimulated by the anti-androgens, significantly influenced the sensitivity of PCa cells to androgen and to the anti-androgens bicalutamide and enzalutamide. In particular, DuCaP cells lost sensitivity to enzalutamide when co-cultured with CAFs. In LAPC4/CAF and LNCaP/CAF co-culture spheroids the impact of the CAFs was less pronounced. In addition, 3D spheroids exhibited a significant increase in E-cadherin and substantial expression of vimentin in co-culture spheroids, whereas AR levels remained unchanged or even decreased. In LNCaP/CAF spheroids we further found increased Akt signaling that could be inhibited by the phosphatidyl-inositol 3 kinase (PI3K) inhibitor LY294002, thereby overcoming the anti-androgen resistance of the spheroids. Our data show that CAFs influence drug response of PCa cells with varying impact and further suggest this spheroid model is a valuable in vitro drug testing tool. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

1378 pages, 2548 KiB  
Article
Human TRIB2 Oscillates during the Cell Cycle and Promotes Ubiquitination and Degradation of CDC25C
Int. J. Mol. Sci. 2016, 17(9), 1378; https://doi.org/10.3390/ijms17091378 - 23 Aug 2016
Cited by 16 | Viewed by 6827
Abstract
Tribbles homolog 2 (TRIB2) is a member of the mammalian Tribbles family of serine/threonine pseudokinases (TRIB1-3). Studies of TRIB2 indicate that many of the molecular interactions between the single Drosophila Tribbles (Trbl) protein and interacting partners are evolutionary conserved. In this study, we [...] Read more.
Tribbles homolog 2 (TRIB2) is a member of the mammalian Tribbles family of serine/threonine pseudokinases (TRIB1-3). Studies of TRIB2 indicate that many of the molecular interactions between the single Drosophila Tribbles (Trbl) protein and interacting partners are evolutionary conserved. In this study, we examined the relationship between TRIB2 and cell division cycle 25 (CDC25) family of dual-specificity protein phosphatases (mammalian homologues of Drosophila String), which are key physiological cell cycle regulators. Using co-immunoprecipitation we demonstrate that TRIB2 interacts with CDC25B and CDC25C selectively. Forced overexpression of TRIB2 caused a marked decrease in total CDC25C protein levels. Following inhibition of the proteasome, CDC25C was stabilized in the nuclear compartment. This implicates TRIB2 as a regulator of nuclear CDC25C turnover. In complementary ubiquitination assays, we show that TRIB2-mediated degradation of CDC25C is associated with lysine-48-linked CDC25C polyubiquitination driven by the TRIB2 kinase-like domain. A cell cycle associated role for TRIB2 is further supported by the cell cycle regulated expression of TRIB2 protein levels. Our findings reveal mitotic CDC25C as a new target of TRIB2 that is degraded via the ubiquitin proteasome system. Inappropriate CDC25C regulation could mechanistically underlie TRIB2 mediated regulation of cellular proliferation in neoplastic cells. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

1289 pages, 1919 KiB  
Article
Advanced Glycation End-Products Enhance Lung Cancer Cell Invasion and Migration
Int. J. Mol. Sci. 2016, 17(8), 1289; https://doi.org/10.3390/ijms17081289 - 09 Aug 2016
Cited by 10 | Viewed by 5691 | Retraction
Abstract
Effects of carboxymethyllysine (CML) and pentosidine, two advanced glycation end-products (AGEs), upon invasion and migration in A549 and Calu-6 cells, two non-small cell lung cancer (NSCLC) cell lines were examined. CML or pentosidine at 1, 2, 4, 8 or 16 μmol/L were added [...] Read more.
Effects of carboxymethyllysine (CML) and pentosidine, two advanced glycation end-products (AGEs), upon invasion and migration in A549 and Calu-6 cells, two non-small cell lung cancer (NSCLC) cell lines were examined. CML or pentosidine at 1, 2, 4, 8 or 16 μmol/L were added into cells. Proliferation, invasion and migration were measured. CML or pentosidine at 4–16 μmol/L promoted invasion and migration in both cell lines, and increased the production of reactive oxygen species, tumor necrosis factor-α, interleukin-6 and transforming growth factor-β1. CML or pentosidine at 2–16 μmol/L up-regulated the protein expression of AGE receptor, p47phox, intercellular adhesion molecule-1 and fibronectin in test NSCLC cells. Matrix metalloproteinase-2 protein expression in A549 and Calu-6 cells was increased by CML or pentosidine at 4–16 μmol/L. These two AGEs at 2–16 μmol/L enhanced nuclear factor κ-B (NF-κ B) p65 protein expression and p38 phosphorylation in A549 cells. However, CML or pentosidine at 4–16 μmol/L up-regulated NF-κB p65 and p-p38 protein expression in Calu-6 cells. These findings suggest that CML and pentosidine, by promoting the invasion, migration and production of associated factors, benefit NSCLC metastasis. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

878 pages, 831 KiB  
Article
MicroRNA-31 Emerges as a Predictive Biomarker of Pathological Response and Outcome in Locally Advanced Rectal Cancer
Int. J. Mol. Sci. 2016, 17(6), 878; https://doi.org/10.3390/ijms17060878 - 03 Jun 2016
Cited by 28 | Viewed by 5456
Abstract
Neoadjuvant chemoradiotherapy (CRT) followed by total mesorectal excision has emerged as the standard treatment for locally advanced rectal cancer (LARC) patients. However, many cases do not respond to neoadjuvant CRT, suffering unnecessary toxicities and surgery delays. Thus, identification of predictive biomarkers for neoadjuvant [...] Read more.
Neoadjuvant chemoradiotherapy (CRT) followed by total mesorectal excision has emerged as the standard treatment for locally advanced rectal cancer (LARC) patients. However, many cases do not respond to neoadjuvant CRT, suffering unnecessary toxicities and surgery delays. Thus, identification of predictive biomarkers for neoadjuvant CRT is a current clinical need. In the present study, microRNA-31 expression was measured in formalin-fixed paraffin-embedded (FFPE) biopsies from 78 patients diagnosed with LARC who were treated with neoadjuvant CRT. Then, the obtained results were correlated with clinical and pathological characteristics and outcome. High microRNA-31 (miR-31) levels were found overexpressed in 34.2% of cases. Its overexpression significantly predicted poor pathological response (p = 0.018) and worse overall survival (OS) (p = 0.008). The odds ratio for no pathological response among patients with miR-31 overexpression was 0.18 (Confidence Interval = 0.06 to 0.57; p = 0.003). Multivariate analysis corroborated the clinical impact of miR-31 in determining pathological response to neoadjuvant CRT as well as OS. Altogether, miR-31 quantification emerges as a novel valuable clinical tool to predict both pathological response and outcome in LARC patients. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

664 pages, 6948 KiB  
Article
Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells
Int. J. Mol. Sci. 2016, 17(5), 664; https://doi.org/10.3390/ijms17050664 - 03 May 2016
Cited by 29 | Viewed by 6827
Abstract
Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of [...] Read more.
Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

598 pages, 1607 KiB  
Article
Identification of 42 Genes Linked to Stage II Colorectal Cancer Metastatic Relapse
Int. J. Mol. Sci. 2016, 17(5), 598; https://doi.org/10.3390/ijms17050598 - 28 Apr 2016
Cited by 12 | Viewed by 6101
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Metastasis remains the primary cause of CRC death. Predicting the possibility of metastatic relapse in early-stage CRC is of paramount importance to target therapy for patients who really need it and [...] Read more.
Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Metastasis remains the primary cause of CRC death. Predicting the possibility of metastatic relapse in early-stage CRC is of paramount importance to target therapy for patients who really need it and spare those with low-potential of metastasis. Ninety-six stage II CRC cases were stratified using high-resolution array comparative genomic hybridization (aCGH) data based on a predictive survival algorithm and supervised clustering. All genes included within the resultant copy number aberrations were each interrogated independently at mRNA level using CRC expression datasets available from public repositories, which included 1820 colon cancers, and 167 normal colon tissues. Reduced mRNA expression driven by copy number losses and increased expression driven by copy number gains revealed 42 altered transcripts (29 reduced and 13 increased transcripts) associated with metastatic relapse, short disease-free or overall survival, and/or epithelial to mesenchymal transition (EMT). Resultant genes were classified based on gene ontology (GO), which identified four functional enrichment groups involved in growth regulation, genomic integrity, metabolism, and signal transduction pathways. The identified 42 genes may be useful for predicting metastatic relapse in stage II CRC. Further studies are necessary to validate these findings. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

625 pages, 2379 KiB  
Article
KRAS/BRAF Analysis in Ovarian Low-Grade Serous Carcinoma Having Synchronous All Pathological Precursor Regions
Int. J. Mol. Sci. 2016, 17(5), 625; https://doi.org/10.3390/ijms17050625 - 26 Apr 2016
Cited by 10 | Viewed by 7522
Abstract
Ovarian low-grade serous carcinoma is thought to begin as a serous cystadenoma or adenofibroma that progresses in a slow stepwise fashion. Among the low-grade serous carcinomas, there is a high frequency of activating mutations in the KRAS or BRAF genes; however, it remains [...] Read more.
Ovarian low-grade serous carcinoma is thought to begin as a serous cystadenoma or adenofibroma that progresses in a slow stepwise fashion. Among the low-grade serous carcinomas, there is a high frequency of activating mutations in the KRAS or BRAF genes; however, it remains unclear as to how these mutations contribute to tumor progression. This is the first report to track the histopathological progression of serous adenofibroma to low-grade serous carcinoma. Each stage was individually analyzed by pathological and molecular genetic methods to determine what differences occur between the distinct stages of progression. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

571 pages, 1384 KiB  
Article
Significance of Matrix Metalloproteinase 9 Expression as Supporting Marker to Cytokeratin 19 mRNA in Sentinel Lymph Nodes in Breast Cancer Patients
Int. J. Mol. Sci. 2016, 17(4), 571; https://doi.org/10.3390/ijms17040571 - 21 Apr 2016
Cited by 3 | Viewed by 5150
Abstract
One-step nucleic acid amplification (OSNA) detects and quantifies, with the use of a polymerase chain reaction, the presence of cytokeratin 19 mRNA in sentinel lymph nodes. The main advantage of the OSNA assay is the avoidance of second surgery in case of positive [...] Read more.
One-step nucleic acid amplification (OSNA) detects and quantifies, with the use of a polymerase chain reaction, the presence of cytokeratin 19 mRNA in sentinel lymph nodes. The main advantage of the OSNA assay is the avoidance of second surgery in case of positive sentinel lymph node diagnosis. The objective of this study was to evaluate the significance of matrix metalloproteinase 9 expression by immunohistochemistry as supporting marker to cytokeratin 19 mRNA in sentinel lymph nodes in breast cancer patients and to relate this expression with clinicopathological data. This study was conducted on fresh sentinel lymph nodes obtained from 40 patients with tumors classified as carcinoma of no special type. The presence of metastatic cells in the slices of lymph nodes was evaluated by immunohistochemistry using antibodies for CK19 and MMP-9. Expression of CK19 and MMP-9 in lymph nodes was also confirmed by means of Western blot analysis. Results indicated that the strongest correlation with CK19 mRNA was displayed by MMP-9, CK19 (by immunohistochemistry, IHC), and nodal metastases (p < 0.001). Higher histological grading also positively correlated with CK19 mRNA, however that correlation was less significant. Since MMP-9 shows very strong correlation with CK19 mRNA in breast carcinoma of no special type metastases, expression of MMP-9 in sentinel lymph nodes should be considered as useful method whenever OSNA analysis is not available. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

495 pages, 1445 KiB  
Article
Wnt9A Induction Linked to Suppression of Human Colorectal Cancer Cell Proliferation
Int. J. Mol. Sci. 2016, 17(4), 495; https://doi.org/10.3390/ijms17040495 - 02 Apr 2016
Cited by 18 | Viewed by 6632
Abstract
Most studies of Wnt signaling in malignant tissues have focused on the canonical Wnt pathway (CWP) due to its role in stimulating cellular proliferation. The role of the non-canonical Wnt pathway (NCWP) in tissues with dysregulated Wnt signaling is not fully understood. Understanding [...] Read more.
Most studies of Wnt signaling in malignant tissues have focused on the canonical Wnt pathway (CWP) due to its role in stimulating cellular proliferation. The role of the non-canonical Wnt pathway (NCWP) in tissues with dysregulated Wnt signaling is not fully understood. Understanding NCWP’s role is important since these opposing pathways act in concert to maintain homeostasis in healthy tissues. Our preliminary studies demonstrated that LiCl inhibited proliferation of primary cells derived from colorectal cancer (CRC). Since LiCl stimulates cell proliferation in normal tissues and NCWP suppresses it, the present study was designed to investigate the impact of NCWP components in LiCl-mediated effects. LiCl-mediated inhibition of CRC cell proliferation (p < 0.001) and increased apoptosis (p < 0.01) coincided with 23-fold increase (p < 0.025) in the expression of the NCWP ligand, Wnt9A. LiCl also suppressed β-catenin mRNA (p < 0.03), total β-catenin protein (p < 0.025) and the active form of β-catenin. LiCl-mediated inhibition of CRC cell proliferation was partially reversed by IWP-2, and Wnt9A antibody. Recombinant Wnt9A protein emulated LiCl effects by suppressing β-catenin protein (p < 0.001), inhibiting proliferation (p < 0.001) and increasing apoptosis (p < 0.03). This is the first study to demonstrate induction of a NCWP ligand, Wnt9A as part of a mechanism for LiCl-mediated suppression of CRC cell proliferation. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

437 pages, 3832 KiB  
Article
Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer
Int. J. Mol. Sci. 2016, 17(4), 437; https://doi.org/10.3390/ijms17040437 - 24 Mar 2016
Cited by 56 | Viewed by 6160
Abstract
(1) Background: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca2+-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance [...] Read more.
(1) Background: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca2+-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) Methods: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca2+]i). Flow cytometry was used to analyze cell cycle; (3) Results: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca2+]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) Conclusions: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

308 pages, 3958 KiB  
Article
Tamoxifen Treatment of Breast Cancer Cells: Impact on Hedgehog/GLI1 Signaling
Int. J. Mol. Sci. 2016, 17(3), 308; https://doi.org/10.3390/ijms17030308 - 27 Feb 2016
Cited by 22 | Viewed by 6116
Abstract
The selective estrogen receptor (ER) modulator tamoxifen (TAM) has become the standard therapy for the treatment of ER+ breast cancer patients. Despite the obvious benefits of TAM, a proportion of patients acquire resistance to treatment, and this is a significant clinical problem. Consequently, [...] Read more.
The selective estrogen receptor (ER) modulator tamoxifen (TAM) has become the standard therapy for the treatment of ER+ breast cancer patients. Despite the obvious benefits of TAM, a proportion of patients acquire resistance to treatment, and this is a significant clinical problem. Consequently, the identification of possible mechanisms involved in TAM-resistance should help the development of new therapeutic targets. In this study, we present in vitro data using a panel of different breast cancer cell lines and demonstrate the modulatory effect of TAM on cellular proliferation and expression of Hedgehog signaling components, including the terminal effector of the pathway, the transcription factor GLI1. A variable pattern of expression following TAM administration was observed, reflecting the distinctive properties of the ER+ and ER− cell lines analyzed. Remarkably, the TAM-induced increase in the proliferation of the ER+ ZR-75-1 and BT474 cells parallels a sustained upregulation of GLI1 expression and its translocation to the nucleus. These findings, implicating a TAM-GLI1 signaling cross-talk, could ultimately be exploited not only as a means for novel prognostication markers but also in efforts to effectively target breast cancer subtypes. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

271 pages, 420 KiB  
Communication
Using Copy Number Alterations to Identify New Therapeutic Targets for Bladder Carcinoma
Int. J. Mol. Sci. 2016, 17(3), 271; https://doi.org/10.3390/ijms17030271 - 24 Feb 2016
Cited by 10 | Viewed by 4625
Abstract
Bladder cancer represents the ninth most widespread malignancy throughout the world. It is characterized by the presence of two different clinical and prognostic subtypes: non-muscle-invasive bladder cancers (NMIBCs) and muscle-invasive bladder cancers (MIBCs). MIBCs have a poor outcome with a common progression to [...] Read more.
Bladder cancer represents the ninth most widespread malignancy throughout the world. It is characterized by the presence of two different clinical and prognostic subtypes: non-muscle-invasive bladder cancers (NMIBCs) and muscle-invasive bladder cancers (MIBCs). MIBCs have a poor outcome with a common progression to metastasis. Despite improvements in knowledge, treatment has not advanced significantly in recent years, with the absence of new therapeutic targets. Because of the limitations of current therapeutic options, the greater challenge will be to identify biomarkers for clinical application. For this reason, we compared our array comparative genomic hybridization (array-CGH) results with those reported in literature for invasive bladder tumors and, in particular, we focused on the evaluation of copy number alterations (CNAs) present in biopsies and retained in the corresponding cancer stem cell (CSC) subpopulations that should be the main target of therapy. According to our data, CCNE1, MYC, MDM2 and PPARG genes could be interesting therapeutic targets for bladder CSC subpopulations. Surprisingly, HER2 copy number gains are not retained in bladder CSCs, making the gene-targeted therapy less interesting than the others. These results provide precious advice for further study on bladder therapy; however, the clinical importance of these results should be explored. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

214 pages, 2705 KiB  
Article
Generation of Potent Anti-Vascular Endothelial Growth Factor Neutralizing Antibodies from Mouse Phage Display Library for Cancer Therapy
Int. J. Mol. Sci. 2016, 17(2), 214; https://doi.org/10.3390/ijms17020214 - 05 Feb 2016
Cited by 11 | Viewed by 6423
Abstract
Vascular endothelial growth factor (VEGF) is an important stimulator for angiogenesis in solid tumors. Blocking VEGF activity is an effective therapeutic strategy to inhibit tumor growth and metastasis. Avastin, a humanized monoclonal antibody recognizes VEGF, has been approved by the US Food and [...] Read more.
Vascular endothelial growth factor (VEGF) is an important stimulator for angiogenesis in solid tumors. Blocking VEGF activity is an effective therapeutic strategy to inhibit tumor growth and metastasis. Avastin, a humanized monoclonal antibody recognizes VEGF, has been approved by the US Food and Drug Administration. To generate potential VEGF-recognizing antibodies with better tumor regression ability than that of Avastin, we have designed a systematic antibody selection plan. From mice immunized with recombinant human VEGF, we generated three phage display libraries, scFv-M13KO7, Fab-M13KO7, and scFv-Hyperphage, in single-chain Fv (scFv) or Fab format, displayed using either M13KO7 helper phage or Hyperphage. Solid-phase and solution-phase selection strategies were then applied to each library, generating six panning combinations. A total of sixty-four antibodies recognizing VEGF were obtained. Based on the results of epitope mapping, binding affinity, and biological functions in tumor inhibition, eight antibodies were chosen to examine their abilities in tumor regression in a mouse xenograft model using human COLO 205 cancer cells. Three of them showed improvement in the inhibition of tumor growth (328%–347% tumor growth ratio (% of Day 0 tumor volume) on Day 21 vs. 435% with Avastin). This finding suggests a potential use of these three antibodies for VEGF-targeted therapy. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

9 pages, 979 KiB  
Article
Histone Methylation Marks on Circulating Nucleosomes as Novel Blood-Based Biomarker in Colorectal Cancer
Int. J. Mol. Sci. 2015, 16(12), 29654-29662; https://doi.org/10.3390/ijms161226180 - 11 Dec 2015
Cited by 59 | Viewed by 6940
Abstract
Circulating nucleic acids (CNAs) are under investigation as a liquid biopsy in cancer as potential non-invasive biomarkers, as stable structure in circulation nucleosomes could be valuable sources for detection of cancer-specific alterations in histone modifications. Our interest is in histone methylation marks with [...] Read more.
Circulating nucleic acids (CNAs) are under investigation as a liquid biopsy in cancer as potential non-invasive biomarkers, as stable structure in circulation nucleosomes could be valuable sources for detection of cancer-specific alterations in histone modifications. Our interest is in histone methylation marks with a focus on colorectal cancer, one of the leading cancers respective the incidence and mortality. Our previous work included the analysis of trimethylations of lysine 9 on histone 3 (H3K9me3) and of lysine 20 on histone 4 (H4K20me3) by chromatin immuno- precipitation-related PCR in circulating nucleosomes. Here we asked whether global immunologic measurement of histone marks in circulation could be a suitable approach to show their potential as biomarkers. In addition to H3K9me3 and H4K20me3 we also measured H3K27me3 in plasma samples from CRC patients (n = 63) and cancer free individuals (n = 40) by ELISA-based methylation assays. Our results show that of three marks, the amounts of H3K27me3 (p = 0.04) and H4K20me3 (p < 0.001) were significantly lower in CRC patients than in healthy controls. For H3K9me3 similar amounts were measured in both groups. Areas under the curve (AUC) in receiver operating characteristic (ROC) curves indicating the power of CRC detection were 0.620 for H3K27me3, 0.715 for H4K20me3 and 0.769 for the combination of both markers. In conclusion, findings of this preliminary study reveal the potential of blood-based detection of CRC by quantification of histone methylation marks and the additive effect of the marker combination. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

12 pages, 948 KiB  
Article
Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker
Int. J. Mol. Sci. 2015, 16(12), 28486-28497; https://doi.org/10.3390/ijms161226113 - 01 Dec 2015
Cited by 21 | Viewed by 6232
Abstract
One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects’ positive fecal occult blood test (FOBT). In order to [...] Read more.
One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects’ positive fecal occult blood test (FOBT). In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals’ FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006). In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001). Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = −0.926, p = 0.0001). With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108) in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007). While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

15 pages, 1257 KiB  
Article
The Importance of Caveolin-1 as Key-Regulator of Three-Dimensional Growth in Thyroid Cancer Cells Cultured under Real and Simulated Microgravity Conditions
Int. J. Mol. Sci. 2015, 16(12), 28296-28310; https://doi.org/10.3390/ijms161226108 - 30 Nov 2015
Cited by 35 | Viewed by 6700
Abstract
We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed [...] Read more.
We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed to microgravity. The evidence is based on proteins detected in cells and their supernatants of the recent spaceflight experiment: “NanoRacks-CellBox-Thyroid Cancer”. The culture supernatant had been collected in a special container adjacent to the flight hardware incubation chamber and stored at low temperature until it was analyzed by Multi-Analyte Profiling (MAP) technology, while the cells remaining in the incubation chamber were fixed by RNAlater and examined by mass spectrometry. The soluble proteins identified by MAP were investigated in regard to their mutual interactions and their influence on proteins, which were associated with the cells secreting the soluble proteins and had been identified in a preceding study. A Pathway Studio v.11 analysis of the soluble and cell-associated proteins together with protein kinase C alpha (PRKCA) suggests that caveolin-1 is involved, when plasminogen enriched in the extracellular space is not activated and the vascular cellular adhesion molecule (VCAM-1) mediated cell–cell adhesion is simultaneously strengthened and activated PRKCA is recruited in caveolae, while the thyroid cancer cells do not form spheroids. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

13 pages, 6385 KiB  
Article
Silencing of Kv1.5 Gene Inhibits Proliferation and Induces Apoptosis of Osteosarcoma Cells
Int. J. Mol. Sci. 2015, 16(11), 26914-26926; https://doi.org/10.3390/ijms161126002 - 11 Nov 2015
Cited by 18 | Viewed by 5513
Abstract
Kv1.5 (also known as KCNA5) is a protein encoded by the KCNA5 gene, which belongs to the voltage-gated potassium channel, shaker-related subfamily. Recently, a number of studies have suggested that Kv1.5 is overexpressed in numerous cancers and plays crucial roles in cancer development. [...] Read more.
Kv1.5 (also known as KCNA5) is a protein encoded by the KCNA5 gene, which belongs to the voltage-gated potassium channel, shaker-related subfamily. Recently, a number of studies have suggested that Kv1.5 is overexpressed in numerous cancers and plays crucial roles in cancer development. However, until now, the expression and functions of Kv1.5 in osteosarcoma are still unclear. To characterize the potential biological functions of Kv1.5 in osteosarcoma, herein, we examined the expression levels of Kv1.5 in osteosarcoma cells and tissues using quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and immunohistochemistry assays. Four short hairpin RNAs (shRNAs) targeting Kv1.5 were designed and homologous recombination technology was used to construct pGeneSil-Kv1.5 vectors. In addition, the vectors were transfected into osteosarcoma MG63 cells and Kv1.5 mRNA level was measured by qRT-PCR and the Kv1.5 protein level was examined by western blot. We also examined the effects of Kv1.5 silencing on proliferation, cell cycle and apoptosis of the osteosarcoma cells using CCK-8, colony formation, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. Our results showed that Kv1.5 was aberrantly expressed in osteosarcoma and that the synthesized shRNA targeting Kv1.5 reduced Kv1.5 mRNA and protein expression effectively. Silencing Kv1.5 expression in the osteosarcoma cells significantly inhibited the proliferation of osteosarcoma cells, induced cell cycle arrest at G0/G1 phase, and induced cell apoptosis through up-regulation of p21, p27, Bax, Bcl-XL and caspase-3 and down-regulation of cyclins A, cyclins D1, cyclins E, Bcl-2 and Bik. In summary, our results indicate that Kv1.5 silencing could suppress osteosarcoma progression through multiple signaling pathways and suggest that Kv1.5 may be a novel target for osteosarcoma therapeutics. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

16 pages, 7619 KiB  
Article
Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study
Int. J. Mol. Sci. 2015, 16(11), 26754-26769; https://doi.org/10.3390/ijms161125992 - 09 Nov 2015
Cited by 38 | Viewed by 6955
Abstract
Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the [...] Read more.
Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure–activity relationship of myricetin (MN), fisetin (FN), quercetin (QN), kaempferol (KL) and galangin (GN). Using single cell alkaline gel electrophoresis (comet assay), we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

20 pages, 4224 KiB  
Article
Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma
Int. J. Mol. Sci. 2015, 16(10), 23405-23424; https://doi.org/10.3390/ijms161023405 - 29 Sep 2015
Cited by 35 | Viewed by 6685
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone and is most prevalent in children and adolescents. OS is frequently associated with pulmonary metastasis, which is the main cause of OS-related mortality. OS has a poor prognosis and is often unresponsive to conventional [...] Read more.
Osteosarcoma (OS) is a primary malignant tumor of bone and is most prevalent in children and adolescents. OS is frequently associated with pulmonary metastasis, which is the main cause of OS-related mortality. OS has a poor prognosis and is often unresponsive to conventional chemotherapy. In this study, we determined that Nimbolide, a novel anti-cancer therapy, acts by modulating multiple mechanisms in osteosarcoma cells. Nimbolide induces apoptosis by increasing endoplasmic reticulum (ER) stress, mitochondrial dysfunction, accumulation of reactive oxygen species (ROS), and finally, caspase activation. We also determined that Nimbolide inhibits cell migration, which is crucial for metastasis, by reducing the expression of integrin αvβ5. In addition, our results demonstrate that integrin αvβ5 expression is modulated by the PI3K/Akt and NF-κB signaling cascade. Nimbolide has potential as an anti-tumor drug given its multifunctional effects in OS. Collectively, these results help us to understand the mechanisms of action of Nimbolide and will aid in the development of effective therapies for OS. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

16 pages, 21991 KiB  
Article
Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule
Int. J. Mol. Sci. 2015, 16(8), 19920-19935; https://doi.org/10.3390/ijms160819920 - 21 Aug 2015
Cited by 4 | Viewed by 6448
Abstract
Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer [...] Read more.
Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

11 pages, 830 KiB  
Communication
Pyrosequencing-Based Assays for Rapid Detection of HER2 and HER3 Mutations in Clinical Samples Uncover an E332E Mutation Affecting HER3 in Retroperitoneal Leiomyosarcoma
Int. J. Mol. Sci. 2015, 16(8), 19447-19457; https://doi.org/10.3390/ijms160819447 - 17 Aug 2015
Cited by 3 | Viewed by 6531
Abstract
Mutations in Human Epidermal Growth Factor Receptors (HER) are associated with poor prognosis of several types of solid tumors. Although HER-mutation detection methods are currently available, such as Next-Generation Sequencing (NGS), alternative pyrosequencing allow the rapid characterization of specific mutations. We developed specific [...] Read more.
Mutations in Human Epidermal Growth Factor Receptors (HER) are associated with poor prognosis of several types of solid tumors. Although HER-mutation detection methods are currently available, such as Next-Generation Sequencing (NGS), alternative pyrosequencing allow the rapid characterization of specific mutations. We developed specific PCR-based pyrosequencing assays for identification of most prevalent HER2 and HER3 mutations, including S310F/Y, R678Q, L755M/P/S/W, V777A/L/M, 774-776 insertion, and V842I mutations in HER2, as well as M91I, V104M/L, D297N/V/Y, and E332E/K mutations in HER3. We tested 85 Formalin Fixed and Paraffin Embbeded (FFPE) samples and we detected three HER2-V842I mutations in colorectal carcinoma (CRC), ovarian carcinoma, and pancreatic carcinoma patients, respectively, and a HER2-L755M mutation in a CRC specimen. We also determined the presence of a HER3-E332K mutation in an urothelial carcinoma sample, and two HER3-D297Y mutations, in both gastric adenocarcinoma and CRC specimens. The D297Y mutation was previously detected in breast and gastric tumors, but not in CRC. Moreover, we found a not-previously-described HER3-E332E synonymous mutation in a retroperitoneal leiomyosarcoma patient. The pyrosequencing assays presented here allow the detection and characterization of specific HER2 and HER3 mutations. These pyrosequencing assays might be implemented in routine diagnosis for molecular characterization of HER2/HER3 receptors as an alternative to complex NGS approaches. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

18 pages, 1674 KiB  
Article
UV Differentially Induces Oxidative Stress, DNA Damage and Apoptosis in BCR-ABL1-Positive Cells Sensitive and Resistant to Imatinib
Int. J. Mol. Sci. 2015, 16(8), 18111-18128; https://doi.org/10.3390/ijms160818111 - 05 Aug 2015
Cited by 13 | Viewed by 5740
Abstract
Chronic myeloid leukemia (CML) cells express the active BCR-ABL1 protein, which has been targeted by imatinib in CML therapy, but resistance to this drug is an emerging problem. BCR-ABL1 induces endogenous oxidative stress promoting genomic instability and imatinib resistance. In the present work, [...] Read more.
Chronic myeloid leukemia (CML) cells express the active BCR-ABL1 protein, which has been targeted by imatinib in CML therapy, but resistance to this drug is an emerging problem. BCR-ABL1 induces endogenous oxidative stress promoting genomic instability and imatinib resistance. In the present work, we investigated the extent of oxidative stress, DNA damage, apoptosis and expression of apoptosis-related genes in BCR-ABL1 cells sensitive and resistant to imatinib. The resistance resulted either from the Y253H mutation in the BCR-ABL1 gene or incubation in increasing concentrations of imatinib (AR). UV irradiation at a dose rate of 0.12 J/(m2·s) induced more DNA damage detected by the T4 pyrimidine dimers glycosylase and hOGG1, recognizing oxidative modifications to DNA bases in imatinib-resistant than -sensitive cells. The resistant cells displayed also higher susceptibility to UV-induced apoptosis. These cells had lower native mitochondrial membrane potential than imatinib-sensitive cells, but UV-irradiation reversed that relationship. We observed a significant lowering of the expression of the succinate dehydrogenase (SDHB) gene, encoding a component of the complex II of the mitochondrial respiratory chain, which is involved in apoptosis sensing. Although detailed mechanism of imatinib resistance in AR cells in unknown, we detected the presence of the Y253H mutation in a fraction of these cells. In conclusion, imatinib-resistant cells may display a different extent of genome instability than their imatinib-sensitive counterparts, which may follow their different reactions to both endogenous and exogenous DNA-damaging factors, including DNA repair and apoptosis. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

16 pages, 3202 KiB  
Article
Dysregulation of PAK1 Is Associated with DNA Damage and Is of Prognostic Importance in Primary Esophageal Small Cell Carcinoma
Int. J. Mol. Sci. 2015, 16(6), 12035-12050; https://doi.org/10.3390/ijms160612035 - 27 May 2015
Cited by 16 | Viewed by 5158
Abstract
Primary esophageal small cell carcinoma (PESCC) is a rare, but fatal subtype of esophageal carcinoma. No effective therapeutic regimen for it. P21-activated kinase 1 (PAK1) is known to function as an integrator and an indispensable node of major growth factor signaling and the [...] Read more.
Primary esophageal small cell carcinoma (PESCC) is a rare, but fatal subtype of esophageal carcinoma. No effective therapeutic regimen for it. P21-activated kinase 1 (PAK1) is known to function as an integrator and an indispensable node of major growth factor signaling and the molecular therapy targeting PAK1 has been clinical in pipeline. We thus set to examine the expression and clinical impact of PAK1 in PESCC. The expression of PAK1 was detected in a semi-quantitative manner by performing immunohistochemistry. PAK1 was overexpressed in 22 of 34 PESCC tumors, but in only 2 of 18 adjacent non-cancerous tissues. Overexpression of PAK1 was significantly associated with tumor location (p = 0.011), lymph node metastasis (p = 0.026) and patient survival (p = 0.032). We also investigated the association of PAK1 with DNA damage, a driven cause for malignancy progression. γH2AX, a DNA damage marker, was detectable in 18 of 24 (75.0%) cases, and PAK1 expression was associated with γH2AX (p = 0.027). Together, PAK1 is important in metastasis and progression of PESCC. The contribution of PAK1 to clinical outcomes may be involved in its regulating DNA damage pathway. Further studies are worth determining the potentials of PAK1 as prognostic indicator and therapeutic target for PESCC. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

17 pages, 4560 KiB  
Article
Exposure of Tumor-Associated Macrophages to Apoptotic MCF-7 Cells Promotes Breast Cancer Growth and Metastasis
Int. J. Mol. Sci. 2015, 16(6), 11966-11982; https://doi.org/10.3390/ijms160611966 - 26 May 2015
Cited by 34 | Viewed by 7400 | Correction
Abstract
Tumor-associated macrophages (TAMs) have been found to be associated with the progression and metastasis of breast cancer. To clarify the mechanisms underlying the crosstalk between TAMs and cancer stem cells (CSCs) in breast cancer recurrence and metastasis, we used a co-culture model of [...] Read more.
Tumor-associated macrophages (TAMs) have been found to be associated with the progression and metastasis of breast cancer. To clarify the mechanisms underlying the crosstalk between TAMs and cancer stem cells (CSCs) in breast cancer recurrence and metastasis, we used a co-culture model of macrophages and apoptotic human breast cancer cell line MCF-7 cells to investigate the effects of TAMs on MCF-7 in vitro and in vivo. Macrophages co-cultured with apoptotic MCF-7 had increased tumor growth and metastatic ability in a nude mouse transplantation assay. The macrophages exposed to apoptotic cells also induce an increase in the proportion of CD44+/CD24 cancer stem-like cells, as well as their proliferative ability accompanied with an increase in mucin1 (MUC1) expression. During this process, macrophages secreted increased amounts of interleukin 6 (IL-6) leading to increased phosphorylation of signal transducers and activators of transcription 3 (STAT3), which likely explains the increased transcription of STAT3 target genes such as TGF-β1 and HIF-1α. Our results indicate that when cancer cells endure chemotherapy induced apoptosis, macrophages in their microenvironment can then activate cancer stem cells to promote cancer growth and metastasis by secreting IL-6, which activates STAT3 phosphorylation to regulate the transcription of its downstream target genes. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

16 pages, 3912 KiB  
Article
VEGFR-1 Overexpression Identifies a Small Subgroup of Aggressive Prostate Cancers in Patients Treated by Prostatectomy
Int. J. Mol. Sci. 2015, 16(4), 8591-8606; https://doi.org/10.3390/ijms16048591 - 16 Apr 2015
Cited by 4 | Viewed by 6409
Abstract
The VEGFR-1 is suggested to promote tumor progression. In the current study we analyzed prevalence and prognostic impact of the VEGFR-1 by immunohistochemistry on a tissue microarray containing more than 3000 prostate cancer specimens. Results were compared to tumor phenotype, ETS-related gene (ERG) [...] Read more.
The VEGFR-1 is suggested to promote tumor progression. In the current study we analyzed prevalence and prognostic impact of the VEGFR-1 by immunohistochemistry on a tissue microarray containing more than 3000 prostate cancer specimens. Results were compared to tumor phenotype, ETS-related gene (ERG) status, and biochemical recurrence. Membranous VEGFR-1 expression was detectable in 32.6% of 2669 interpretable cancers and considered strong in 1.7%, moderate in 6.7% and weak in 24.2% of cases. Strong VEGFR-1 expression was associated with TMPRSS2:ERG fusion status as determined by fluorescence in situ hybridization (FISH) and immunohistochemistry (p < 0.0001 each). Elevated VEGFR-1 expression was linked to high Gleason grade and advanced pT stage in TMPRSS2:ERG negative cancers (p = 0.0008 and p = 0.001), while these associations were absent in TMPRSS2:ERG positive cancers. VEGFR-1 expression was also linked to phosphatase and tensin homolog (PTEN) deletions. A comparison with prostate specific antigen (PSA) recurrence revealed that the 1.7% of prostate cancers with the highest VEGFR-1 levels had a strikingly unfavorable prognosis. This could be seen in all cancers, in the subsets of TMPRSS2:ERG positive or negative, PTEN deleted or undeleted carcinomas (p < 0.0001 each). High level VEGFR-1 expression is infrequent in prostate cancer, but identifies a subgroup of aggressive cancers, which may be candidates for anti-VEGFR-1 targeted therapy. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

16 pages, 1962 KiB  
Article
Psoralea glandulosa as a Potential Source of Anticancer Agents for Melanoma Treatment
Int. J. Mol. Sci. 2015, 16(4), 7944-7959; https://doi.org/10.3390/ijms16047944 - 09 Apr 2015
Cited by 16 | Viewed by 6287
Abstract
With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on melanoma cancer, the present study was undertaken to investigate the biological activity of the resinous exudate of aerial parts from Psoralea glandulosa, and its active components (bakuchiol (1 [...] Read more.
With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on melanoma cancer, the present study was undertaken to investigate the biological activity of the resinous exudate of aerial parts from Psoralea glandulosa, and its active components (bakuchiol (1), 3-hydroxy-bakuchiol (2) and 12-hydroxy-iso-bakuchiol (3)) against melanoma cells (A2058). In addition, the effect in cancer cells of bakuchiol acetate (4), a semi-synthetic derivative of bakuchiol, was examined. The results obtained show that the resinous exudate inhibited the growth of cancer cells with IC50 value of 10.5 μg/mL after 48 h of treatment, while, for pure compounds, the most active was the semi-synthetic compound 4. Our data also demonstrate that resin is able to induce apoptotic cell death, which could be related to an overall action of the meroterpenes present. In addition, our data seem to indicate that the apoptosis correlated to the tested products appears, at least in part, to be associated with an increase of reactive oxygen species (ROS) production. In summary, our study provides the first evidence that P. glandulosa may be considered a source of useful molecules in the development of analogues with more potent efficacy against melanoma cells. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology 2014)
Show Figures

Figure 1

17 pages, 3645 KiB  
Article
In Utero Exposure to Low-Dose Alcohol Induces Reprogramming of Mammary Development and Tumor Risk in MMTV-erbB-2 Transgenic Mice
Int. J. Mol. Sci. 2015, 16(4), 7655-7671; https://doi.org/10.3390/ijms16047655 - 07 Apr 2015
Cited by 5 | Viewed by 5391
Abstract
There is increasing evidence that prenatal exposure to environmental factors may modify breast cancer risk later in life. This study aimed to investigate the effects of in utero exposure to low-dose alcohol on mammary development and tumor risk. Pregnant MMTV-erbB-2 mice were exposed [...] Read more.
There is increasing evidence that prenatal exposure to environmental factors may modify breast cancer risk later in life. This study aimed to investigate the effects of in utero exposure to low-dose alcohol on mammary development and tumor risk. Pregnant MMTV-erbB-2 mice were exposed to alcohol (6 g/kg/day) between day 13 and day 19 of gestation, and the female offspring were examined for tumor risk. Whole mount analysis indicated that in utero exposure to low-dose alcohol induced significant increases in ductal extension at 10 weeks of age. Molecular analysis showed that in utero alcohol exposure induced upregulation of ERα signaling and activation of Akt and Erk1/2 in pubertal mammary glands. However, enhanced signaling in the EGFR/erbB-2 pathway appeared to be more prominent in 10-week-old glands than did signaling in the other pathways. Interestingly, tumor development in mice with in utero exposure to low-dose alcohol was slightly delayed compared to control mice, but tumor multiplicity was increased. The results indicate that in utero exposure to low-dose alcohol induces the reprogramming of mammary development by mechanisms that include altered signaling in the estrogen receptor (ER) and erbB-2 pathways. The intriguing tumor development pattern might be related to alcohol dose and exposure conditions, and warrants further investigation. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology 2014)
Show Figures

Figure 1

12 pages, 1729 KiB  
Article
Tetraspanin 8-Rictor-Integrin α3 Complex Is Required for Glioma Cell Migration
Int. J. Mol. Sci. 2015, 16(3), 5363-5374; https://doi.org/10.3390/ijms16035363 - 09 Mar 2015
Cited by 32 | Viewed by 5725
Abstract
The malignant glioma remains one of the most aggressive human malignancies with extremely poor prognosis. Glioma cell invasion and migration are the main causes of death. In the current study, we studied the expression and the potential functions of tetraspanin 8 (Tspan8) in [...] Read more.
The malignant glioma remains one of the most aggressive human malignancies with extremely poor prognosis. Glioma cell invasion and migration are the main causes of death. In the current study, we studied the expression and the potential functions of tetraspanin 8 (Tspan8) in malignant gliomas. We found that Tspan8 expression level is high in both malignant glioma tissues and in several human glioma cell lines, where it formed a complex integrin α3 and rictor, the latter is a key component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Disruption of this complex, through siRNA-mediated knockdown of anyone of these three proteins, inhibited U251MG glioma cell migration in vitro. We further showed that Tspan8-rictor association appeared required for mTORC2 activation. Knockdown of Tspan8 by the targeted siRNAs prevented mTOR-rictor (mTORC2) assembly as well as phosphorylation of AKT (Ser-473) and protein kinase C α (PKCα) in U251MG cells. Together, these results demonstrate that over-expressed Tspan8 in malignant glioma forms a complex with rictor and integrin α3 to mediate mTORC2 activation and glioma cell migration. Therefore, targeting Tspan8-rictor-integrin α3 complex may provide a potential therapeutic intervention for malignant glioma. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

14 pages, 1287 KiB  
Article
Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence after Radical Prostatectomy
Int. J. Mol. Sci. 2015, 16(2), 3856-3869; https://doi.org/10.3390/ijms16023856 - 11 Feb 2015
Cited by 13 | Viewed by 8197
Abstract
The multifocal nature of prostate cancer (PCa) creates a challenge to patients’ outcome prediction and their clinical management. An approach that scrutinizes every cancer focus is needed in order to generate a comprehensive evaluation of the disease, and by correlating to patients’ clinico-pathological [...] Read more.
The multifocal nature of prostate cancer (PCa) creates a challenge to patients’ outcome prediction and their clinical management. An approach that scrutinizes every cancer focus is needed in order to generate a comprehensive evaluation of the disease, and by correlating to patients’ clinico-pathological information, specific prognostic biomarker can be identified. Our study utilized the Affymetrix SNP 6.0 Genome-wide assay to investigate forty-three fresh frozen PCa tissue foci from twenty-three patients. With a long clinical follow-up period that ranged from 2.0–9.7 (mean 5.4) years, copy number variation (CNV) data was evaluated for association with patients’ PSA status during follow-up. From our results, the loss of unique genes on 10q23.31 and 10q23.2–10q23.31 were identified to be significantly associated to PSA recurrence (p < 0.05). The implication of PTEN and FAS loss (10q23.31) support previous reports due to their critical roles in prostate carcinogenesis. Furthermore, we hypothesize that the PAPSS2 gene (10q23.2–10q23.31) may be functionally relevant in post-operative PSA recurrence because of its reported role in androgen biosynthesis. It is suggestive that the loss of the susceptible region on chromosome 10q, which implicates PTEN, FAS and PAPSS2 may serve as genetic predictors of PSA recurrence after radical prostatectomy. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology 2014)
Show Figures

Figure 1

14 pages, 1480 KiB  
Article
Expression and Significance of CD44, CD47 and c-met in Ovarian Clear Cell Carcinoma
Int. J. Mol. Sci. 2015, 16(2), 3391-3404; https://doi.org/10.3390/ijms16023391 - 04 Feb 2015
Cited by 59 | Viewed by 7010
Abstract
Aims: The aim of the present study is to investigate the differential expression of CD44, CD47 and c-met in ovarian clear cell carcinoma (OCCC), the correlation in their expression and their relationship with the biological behavior of OCCC. Methods: We used immunohistochemistry to [...] Read more.
Aims: The aim of the present study is to investigate the differential expression of CD44, CD47 and c-met in ovarian clear cell carcinoma (OCCC), the correlation in their expression and their relationship with the biological behavior of OCCC. Methods: We used immunohistochemistry to examine the expression of CD44, CD47 and c-met in OCCC (86 cases) and investigated the effects of the expression and interaction of these molecules on the development of OCCC. Results: CD44, CD47 and c-met expression was significantly high in OCCC. Expression of CD44 and CD47 correlated with patient surgical stage, chemotherapy resistance and prognosis (all p < 0.05), and expression of c-met correlated with chemotherapy resistance and prognosis (all p < 0.05), but did not correlate with lymph node metastasis (all p > 0.05). The surgical stage, CD44, CD47 and c-met expression were independent risk factors for OCCC prognosis (all p < 0.05). Patients with low levels of CD44, CD47 and c-met showed better survival than those with high levels (all p < 0.05). There was a positive correlation between CD44 (or CD47) and c-met, as well as between CD44 and CD47 (the Spearman correlation coefficient rs was 0.783, 0.776 and 0.835, respectively, all p < 0.01). Additionally, pairwise correlation analysis of these three markers shows that the high expression of CD44/CD47, CD44/c-met and CD47/c-met were correlated with patient surgical stage, chemotherapy resistance and prognosis (all p < 0.05), but did not correlate with lymph node metastasis (all p > 0.05). Conclusions: Expression of CD44, CD47 and c-met was upregulated in OCCC and pairwise correlation. CD44, CD47 and c-met may have synergistic effects on the development of OCCC and are prognostic factors for ovarian cancer. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology 2014)
Show Figures

Figure 1

13 pages, 2427 KiB  
Article
FBXW7 Acts as an Independent Prognostic Marker and Inhibits Tumor Growth in Human Osteosarcoma
Int. J. Mol. Sci. 2015, 16(2), 2294-2306; https://doi.org/10.3390/ijms16022294 - 22 Jan 2015
Cited by 18 | Viewed by 6180
Abstract
F-box and WD repeat domain-containing 7 (FBXW7) is a potent tumor suppressor in human cancers including breast cancer, colorectal cancer, gastric cancer and hepatocellular carcinoma. In this study, we found that the expressions of FBXW7 protein and mRNA levels in osteosarcoma (OS) cases [...] Read more.
F-box and WD repeat domain-containing 7 (FBXW7) is a potent tumor suppressor in human cancers including breast cancer, colorectal cancer, gastric cancer and hepatocellular carcinoma. In this study, we found that the expressions of FBXW7 protein and mRNA levels in osteosarcoma (OS) cases were significantly lower than those in normal bone tissues. Clinical analysis indicated that FBXW7 was expressed at lower levels in OS patients with advanced clinical stage, high T classification and poor histological differentiation. Furthermore, we demonstrated that high expression of FBXW7 was correlated with a better 5-year survival of OS patients. Multivariate Cox regression analysis indicated that FBXW7 was an independent prognostic marker in OS. Our in vitro studies showed that FBXW7 overexpression inhibited cell cycle transition and cell proliferation, and promoted apoptosis in both U2OS and MG-63 cells. In a nude mouse xenograft model, FBXW7 overexpression slowed down tumor growth by inducing apoptosis and growth arrest. Mechanistically, FBXW7 inversely regulated oncoprotein c-Myc and cyclin E levels in both U2OS and MG-63 cells. Together these findings suggest that FBXW7 may serve as a prognostic biomarker and inhibit tumor progression by inducing apoptosis and growth arrest in OS. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology 2014)
Show Figures

Figure 1

13 pages, 2334 KiB  
Article
Connexin 43 Suppresses Tumor Angiogenesis by Down-Regulation of Vascular Endothelial Growth Factor via Hypoxic-Induced Factor-1α
Int. J. Mol. Sci. 2015, 16(1), 439-451; https://doi.org/10.3390/ijms16010439 - 26 Dec 2014
Cited by 46 | Viewed by 6727
Abstract
Previous work showed that connexin 43 (Cx43) reduced the expression of hypoxic-induced factor-1α (HIF-1α) in astrocytes. HIF-1α is a master transcription factor for angiogenesis in tumor. Angiogenesis is essential for tumor progression. Here, we investigated the role of Cx43 in vascular endothelial growth [...] Read more.
Previous work showed that connexin 43 (Cx43) reduced the expression of hypoxic-induced factor-1α (HIF-1α) in astrocytes. HIF-1α is a master transcription factor for angiogenesis in tumor. Angiogenesis is essential for tumor progression. Here, we investigated the role of Cx43 in vascular endothelial growth factor (VEGF) production and angiogenesis in murine tumor. In the study, mouse B16F10 and 4T1 cells were overexpressed or knockdown with Cx43. The expression profiles as well as activity of the treated cells were examined. Furthermore, reduced Cx43 expression in B16F10 and 4T1 cells causes increased expression of VEGF and enhanced the proliferation of endothelial cells. On the contrary, the expression of VEGF and the proliferation of endothelial were increased in the conditioned medium of Cx43-knockdown tumor cells. We subcutaneously transplanted Cx43-overexpressing B16F10 cells into mice to evaluate the roles of Cx43 in the tumor angiogenesis. Both tumor size and the number of vessels growing in the tumor were markedly decreased compare with control group. Our findings suggest that Cx43 inhibited tumor growth by reducing angiogenesis. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology 2014)
Show Figures

Figure 1

15 pages, 10295 KiB  
Article
High Levels of KAP1 Expression Are Associated with Aggressive Clinical Features in Ovarian Cancer
Int. J. Mol. Sci. 2015, 16(1), 363-377; https://doi.org/10.3390/ijms16010363 - 26 Dec 2014
Cited by 41 | Viewed by 6789
Abstract
KAP1 is an universal corepressor for Kruppel-associated box zinc finger proteins in both normal and tumor cells. In this study, the biological function and clinical significance of KAP1 expression in ovarian cancer were investigated. Immunohistological staining of KAP1 was evaluated in 111 patients [...] Read more.
KAP1 is an universal corepressor for Kruppel-associated box zinc finger proteins in both normal and tumor cells. In this study, the biological function and clinical significance of KAP1 expression in ovarian cancer were investigated. Immunohistological staining of KAP1 was evaluated in 111 patients with ovarian epithelial cancer, 15 with ovarian borderline tumor, and 20 normal ovarian tissue. The correlations of KAP1 expression with clinicopathological features were studied. Kaplan-Meier analysis and Cox proportional hazard modeling were used to assess overall survival to analyze the effect of KAP1 expression on the prognosis of ovarian cancer. The positive rates of KAP1 were significantly higher in ovarian epithelial cancer (55.7%) and borderline tumor (20.0%) than in normal ovarian tissue (5.0%) (all p < 0.01). KAP1 expression correlated significantly with clinical stage (χ2 = 14.57, p < 0.0001), pathological grade (χ2 = 6.06, p = 0.048) and metastases (χ2 =10.38, p = 0.001). Patients with high KAP 1 levels showed poor survival (p < 0.0001). Multivariate analysis showed that KAP1 high expression was an independent predictor for ovarian cancer patients (hazard ratio = 0.463; 95% confidence interval = 0.230–0.9318, p = 0.031). Functionally, depletion of KAP1 by siRNA inhibited ovarian cancer cell proliferation, cell migration. KAP1 expression correlated with aggressive clinical features in ovarian cancer. High KAP1 expression was a prognostic factor of ovarian cancer. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology 2014)
Show Figures

Figure 1

10 pages, 1018 KiB  
Article
Twist-1 Up-Regulation in Carcinoma Correlates to Poor Survival
Int. J. Mol. Sci. 2014, 15(12), 21621-21630; https://doi.org/10.3390/ijms151221621 - 25 Nov 2014
Cited by 65 | Viewed by 6894
Abstract
Epithelial-to-mesenchymal transition (EMT) facilitates tumor metastasis. Twist is a basic helix-loop-helix protein that modulates many target genes through E-box-responsive elements. There are two twist-like proteins, Twist-1 and Twist-2, sharing high structural homology in mammals. Twist-1 was found to [...] Read more.
Epithelial-to-mesenchymal transition (EMT) facilitates tumor metastasis. Twist is a basic helix-loop-helix protein that modulates many target genes through E-box-responsive elements. There are two twist-like proteins, Twist-1 and Twist-2, sharing high structural homology in mammals. Twist-1 was found to be a key factor in the promotion of metastasis of cancer cells, and is known to induce EMT. Twist-1 participation in carcinoma progression and metastasis has been reported in a variety of tumors. However, controversy exists concerning the correlation between Twist-1 and prognostic value with respect to carcinoma. A systematic review and meta-analysis were performed to determine whether the expression of Twist-1 was associated with the prognosis of carcinoma patients. This analysis included 17 studies: four studies evaluated lung cancer, three evaluated head and neck cancer, two evaluated breast cancer, two evaluated esophageal cancer, two evaluated liver cancer and one each evaluated osteosarcoma, bladder, cervical and ovarian cancer. A total of 2006 patients were enrolled in these studies, and the median trial sample size was 118 patients. Twist-1 expression was associated with worse overall survival (OS) at both 3 years (hazard ratio “HR” for death = 2.13, 95% CI = 1.86 to 2.45, p < 0.001) and 5 years (HR for death = 2.01, 95% CI = 1.76 to 2.29, p < 0.001). Expression of Twist-1 is associated with worse survival in carcinoma. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology 2014)
Show Figures

Figure 1

15 pages, 6877 KiB  
Article
Growth Suppression of Colorectal Cancer by Plant-Derived Multiple mAb CO17-1A × BR55 via Inhibition of ERK1/2 Phosphorylation