Next Issue
Volume 25, June-2
Previous Issue
Volume 25, May-2
 
 
ijms-logo

Journal Browser

Journal Browser

Int. J. Mol. Sci., Volume 25, Issue 11 (June-1 2024) – 716 articles

Cover Story (view full-size image): Traumatic spinal cord injury (SCI) results in a series of secondary molecular processes and intracellular signalling cascades in immune, vascular, glial, and neuronal cell populations. While these intracellular cascades further damage the injured spinal cord, they also present promising translationally relevant targets for therapeutic intervention. Many therapeutics have aimed to target these pathways to improve recovery after SCI. However, the multifaceted pathogenesis of traumatic SCI requires better elucidation of the underlying secondary intracellular signalling cascades to minimize off-target effects and maximize effectiveness. This review article aims to provide a comprehensive overview of the therapeutic potential of secondary intracellular signalling following traumatic SCI. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 4497 KiB  
Article
O-GlcNAc Modification Is a Promising Therapeutic Target for Diabetic Retinopathy
by Wenkang Dong, Laraib Imdad, Shengnan Xu, Yinli Wang, Chengzhi Liu, Shiyu Song, Zechuan Li, Ying Kong, Li Kong and Xiang Ren
Int. J. Mol. Sci. 2024, 25(11), 6286; https://doi.org/10.3390/ijms25116286 - 6 Jun 2024
Viewed by 394
Abstract
Diabetic retinopathy (DR) is a very serious diabetes complication. Changes in the O-linked N-acetylglucosamine (O-GlcNAc) modification are associated with many diseases. However, its role in DR is not fully understood. In this research, we explored the effect of O-GlcNAc modification regulation by activating [...] Read more.
Diabetic retinopathy (DR) is a very serious diabetes complication. Changes in the O-linked N-acetylglucosamine (O-GlcNAc) modification are associated with many diseases. However, its role in DR is not fully understood. In this research, we explored the effect of O-GlcNAc modification regulation by activating AMP-activated protein kinase (AMPK) in DR, providing some evidence for clinical DR treatment in the future. Bioinformatics was used to make predictions from the database, which were validated using the serum samples of diabetic patients. As an in vivo model, diabetic mice were induced using streptozotocin (STZ) injection with/without an AMPK agonist (metformin) or an AMPK inhibitor (compound C) treatment. Electroretinogram (ERG) and H&E staining were used to evaluate the retinal functional and morphological changes. In vitro, 661 w cells were exposed to high-glucose conditions, with or without metformin treatment. Apoptosis was evaluated using TUNEL staining. The protein expression was detected using Western blot and immunofluorescence staining. The angiogenesis ability was detected using a tube formation assay. The levels of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in the serum changed in the DR patients in the clinic. In the diabetic mice, the ERG wave amplitude and retinal thickness decreased. In vitro, the apoptotic cell percentage and Bax expression were increased, and Bcl2 expression was decreased in the 661 w cells under high-glucose conditions. The O-GlcNAc modification was increased in DR. In addition, the expression of GFAT/TXNIP O-GlcNAc was also increased in the 661 w cells after the high-glucose treatment. Additionally, the Co-immunoprecipitation(CO-IP) results show that TXNIP interacted with the O-GlcNAc modification. However, AMPK activation ameliorated this effect. We also found that silencing the AMPKα1 subunit reversed this process. In addition, the conditioned medium of the 661 w cells may have affected the tube formation in vitro. Taken together, O-GlcNAc modification was increased in DR with photoreceptor cell degeneration and neovascularization; however, it was reversed after activating AMPK. The underlying mechanism is linked to the GFAT/TXNIP-O-GlcNAc modification signaling axis. Therefore, the AMPKα1 subunit plays a vital role in the process. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

26 pages, 1949 KiB  
Review
Small Molecule Therapeutics in the Pipeline Targeting for Triple-Negative Breast Cancer: Origin, Challenges, Opportunities, and Mechanisms of Action
by Nneoma James, Esther Owusu, Gildardo Rivera and Debasish Bandyopadhyay
Int. J. Mol. Sci. 2024, 25(11), 6285; https://doi.org/10.3390/ijms25116285 - 6 Jun 2024
Viewed by 285
Abstract
Triple-negative breast cancer (TNBC) cells are devoid of estrogen receptors (ERs), progesterone receptor (PRs), and human epidermal growth factor receptor 2 (HER2), and it (TNBC) counts for about 10–15% of all breast cancers. TNBC is highly invasive, having a faster growth rate and [...] Read more.
Triple-negative breast cancer (TNBC) cells are devoid of estrogen receptors (ERs), progesterone receptor (PRs), and human epidermal growth factor receptor 2 (HER2), and it (TNBC) counts for about 10–15% of all breast cancers. TNBC is highly invasive, having a faster growth rate and a higher risk of metastasis and recurrence. Still, chemotherapy is one of the widely used options for treating TNBC. This study reviewed the histological and molecular characterization of TNBC subtypes, signaling pathways that are aberrantly expressed, and small molecules targeting these pathways, as either single agents or in combination with other therapeutic agents like chemotherapeutics, immunotherapeutics, and antibody–drug conjugates; their mechanisms of action, challenges, and future perspectives were also reviewed. A detailed analytical review was carried out using the literature collected from the SciFinder, PubMed, ScienceDirect, Google Scholar, ACS, Springer, and Wiley databases. Several small molecule inhibitors were found to be therapeutics for treating TNBC. The mechanism of action and the different signaling pathways through which the small molecules exert their effects were studied, including clinical trials, if reported. These small molecule inhibitors include buparlisib, everolimus, vandetanib, apatinib, olaparib, salidroside, etc. Some of the signaling pathways involved in TNBC, including the VEGF, PARP, STAT3, MAPK, EGFR, P13K, and SRC pathways, were discussed. Due to the absence of these biomarkers, drug development for treating TNBC is challenging, with chemotherapy being the main therapeutic agent. However, chemotherapy is associated with chemoresistance and a high toxicity to healthy cells as side effects. Hence, there is a continuous demand for small-molecule inhibitors that specifically target several signaling pathways that are abnormally expressed in TNBC. We attempted to include all the recent developments in this field. Any omission is truly unintentional. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

30 pages, 1728 KiB  
Review
Arrestins: A Small Family of Multi-Functional Proteins
by Vsevolod V. Gurevich
Int. J. Mol. Sci. 2024, 25(11), 6284; https://doi.org/10.3390/ijms25116284 - 6 Jun 2024
Viewed by 283
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking [...] Read more.
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular and Cellular Biology 2024)
Show Figures

Figure 1

13 pages, 1183 KiB  
Review
Angiogenesis and Ovarian Cancer: What Potential Do Different Subtypes of Circulating Endothelial Cells Have for Clinical Application?
by Du-Bois Asante, Domenico Tierno, Michael Woode and Bruna Scaggiante
Int. J. Mol. Sci. 2024, 25(11), 6283; https://doi.org/10.3390/ijms25116283 - 6 Jun 2024
Viewed by 242
Abstract
Ovarian cancer (OC) remains the most fatal disease of gynaecologic malignant tumours. The neovasculature in the tumour microenvironment principally comprises endothelial cells. Haematogenous cancer metastases are significantly impacted by tumour neovascularisation, which predominantly depends on the tumour-derived endothelial vasculogenesis. There is an urgent [...] Read more.
Ovarian cancer (OC) remains the most fatal disease of gynaecologic malignant tumours. The neovasculature in the tumour microenvironment principally comprises endothelial cells. Haematogenous cancer metastases are significantly impacted by tumour neovascularisation, which predominantly depends on the tumour-derived endothelial vasculogenesis. There is an urgent need for biomarkers for the diagnosis, prognosis and prediction of drug response. Endothelial cells play a key role in angiogenesis and other forms of tumour vascularisation. Subtypes of circulating endothelial cells may provide interesting non-invasive biomarkers of advanced OC that might have the potential to be included in clinical analysis for patients’ stratification and therapeutic management. In this review, we summarise the reported studies on circulating endothelial subtypes in OC, detailing their isolation methods as well as their potential diagnostic, prognostic, predictive and therapeutic utility for clinical application. We highlight key biomarkers for the identification of circulating endothelial cell subtypes and their targets for therapies and critically point out future challenges. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

10 pages, 3296 KiB  
Article
SCGB1C1 Plays a Critical Role in Suppression of Allergic Airway Inflammation through the Induction of Regulatory T Cell Expansion
by Sung-Dong Kim, Shin-Ae Kang, Sue-Jean Mun, Hak-Sun Yu, Hwan-Jung Roh and Kyu-Sup Cho
Int. J. Mol. Sci. 2024, 25(11), 6282; https://doi.org/10.3390/ijms25116282 - 6 Jun 2024
Viewed by 211
Abstract
The nanosized vesicles secreted from various cell types into the surrounding extracellular space are called extracellular vesicles (EVs). Although mesenchymal stem cell-derived EVs are known to have immunomodulatory effects in asthmatic mice, the role of identified pulmonary genes in the suppression of allergic [...] Read more.
The nanosized vesicles secreted from various cell types into the surrounding extracellular space are called extracellular vesicles (EVs). Although mesenchymal stem cell-derived EVs are known to have immunomodulatory effects in asthmatic mice, the role of identified pulmonary genes in the suppression of allergic airway inflammation remains to be elucidated. Moreover, the major genes responsible for immune regulation in allergic airway diseases have not been well documented. This study aims to evaluate the immunomodulatory effects of secretoglobin family 1C member 1 (SCGB1C1) on asthmatic mouse models. C57BL/6 mice were sensitized to ovalbumin (OVA) using intraperitoneal injection and were intranasally challenged with OVA. To evaluate the effect of SCGB1C1 on allergic airway inflammation, 5 μg/50 μL of SCGB1C1 was administrated intranasally before an OVA challenge. We evaluated airway hyperresponsiveness (AHR), total inflammatory cells, eosinophils in the bronchoalveolar lavage fluid (BALF), lung histology, serum immunoglobulin (Ig), the cytokine profiles of BALF and lung-draining lymph nodes (LLN), and the T cell populations in LLNs. The intranasal administration of SCGB1C1 significantly inhibited AHR, the presence of eosinophils in BALF, eosinophilic inflammation, goblet cell hyperplasia in the lung, and serum total and allergen-specific IgE. SCGB1C1 treatment significantly decreased the expression of interleukin (IL)-5 in the BALF and IL-4 in the LLN, but significantly increased the expression of IL-10 and transforming growth factor (TGF)-β in the BALF. Furthermore, SCGB1C1 treatment notably increased the populations of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in asthmatic mice. The intranasal administration of SCGB1C1 provides a significant reduction in allergic airway inflammation and improvement of lung function through the induction of Treg expansion. Therefore, SCGB1C1 may be the major regulator responsible for suppressing allergic airway inflammation. Full article
(This article belongs to the Special Issue Stem Cells in Human Health and Diseases)
Show Figures

Figure 1

14 pages, 1127 KiB  
Article
The Uptake of Heparanase into Mast Cells Is Regulated by Its Enzymatic Activity to Degrade Heparan Sulfate
by Jia Shi, Yoshiki Onuki, Fumiya Kawanami, Naoko Miyagawa, Fumika Iwasaki, Haruna Tsuda, Katsuhiko Takahashi, Teruaki Oku, Masato Suzuki, Kyohei Higashi, Hayamitsu Adachi, Yoshio Nishimura, Motowo Nakajima, Tatsuro Irimura and Nobuaki Higashi
Int. J. Mol. Sci. 2024, 25(11), 6281; https://doi.org/10.3390/ijms25116281 - 6 Jun 2024
Viewed by 225
Abstract
Mast cells take up extracellular latent heparanase and store it in secretory granules. The present study examined whether the enzymatic activity of heparanase regulates its uptake efficiency. Recombinant mouse heparanase mimicking both the latent and mature forms (L-Hpse and M-Hpse, respectively) was internalized [...] Read more.
Mast cells take up extracellular latent heparanase and store it in secretory granules. The present study examined whether the enzymatic activity of heparanase regulates its uptake efficiency. Recombinant mouse heparanase mimicking both the latent and mature forms (L-Hpse and M-Hpse, respectively) was internalized into mastocytoma MST cells, peritoneal cell-derived mast cells, and bone marrow-derived mast cells. The internalized amount of L-Hpse was significantly higher than that of M-Hpse. In MST cells, L-Hpse was continuously internalized for up to 8 h, while the uptake of M-Hpse was saturated after 2 h of incubation. L-Hpse and M-Hpse are similarly bound to the MST cell surface. The expression level of cell surface heparan sulfate was reduced in MST cells incubated with M-Hpse. The internalized amount of M-Hpse into mast cells was significantly increased in the presence of heparastatin (SF4), a small molecule heparanase inhibitor that does not affect the binding of heparanase to immobilized heparin. Enzymatically quiescent M-Hpse was prepared with a point mutation at Glu335. The internalized amount of mutated M-Hpse was significantly higher than that of wild-type M-Hpse but similar to that of wild-type and mutated L-Hpse. These results suggest that the enzymatic activity of heparanase negatively regulates the mast cell-mediated uptake of heparanase, possibly via the downregulation of cell surface heparan sulfate expression. Full article
(This article belongs to the Special Issue Heparin, Heparan Sulfate and Heparanase in Health and Disease)
Show Figures

Graphical abstract

22 pages, 5140 KiB  
Article
Cilostazol Attenuates Hepatic Steatosis and Intestinal Disorders in Nonalcoholic Fatty Liver Disease
by Tianqi Min, Shuting Qiu, Yan Bai, Hua Cao, Jiao Guo and Zhengquan Su
Int. J. Mol. Sci. 2024, 25(11), 6280; https://doi.org/10.3390/ijms25116280 - 6 Jun 2024
Viewed by 161
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in the world, which begins with liver lipid accumulation and is associated with metabolic syndrome. Also, the name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in the world, which begins with liver lipid accumulation and is associated with metabolic syndrome. Also, the name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). We performed focused drug screening and found that Cilostazol effectively ameliorated hepatic steatosis and might offer potential for NAFLD treatment. Our aim was to investigate the therapeutic effects of Cilostazol on the glycolipid metabolism and intestinal flora in NAFLD mice and explore the specific mechanism. In this study, 7-week-old male C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD, and then treated with intragastric administration for 12 weeks. The results showed that Cilostazol inhibited liver lipid de novo synthesis by regulating the AMPK-ACC1/SCD1 pathway and inhibited liver gluconeogenesis by the AMPK-PGC1α-G6P/PEPCK pathway. Cilostazol improved the intestinal flora diversity and intestinal microbial composition in the NAFLD mice, and specifically regulated Desulfovibrio and Akkermansia. In addition, Cilostazol increased the level of short-chain fatty acids in the NAFLD mice to a level similar to that in the blank Control group. Cilostazol reduces liver lipid accumulation in NAFLD mice by improving glucose and lipid metabolism disorders and intestinal dysfunction, thereby achieving the purpose of treating NAFLD. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

17 pages, 1700 KiB  
Article
EGFRvIII Confers Sensitivity to Saracatinib in a STAT5-Dependent Manner in Glioblastoma
by Mylan R. Blomquist, Ryan Eghlimi, Angad Beniwal, Dustin Grief, David G. Nascari, Landon Inge, Christopher P. Sereduk, Serdar Tuncali, Alison Roos, Hannah Inforzato, Ritin Sharma, Patrick Pirrotte, Shwetal Mehta, Shannon P. Fortin Ensign, Joseph C. Loftus and Nhan L. Tran
Int. J. Mol. Sci. 2024, 25(11), 6279; https://doi.org/10.3390/ijms25116279 - 6 Jun 2024
Viewed by 280
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with few effective treatments. EGFR alterations, including expression of the truncated variant EGFRvIII, are among the most frequent genomic changes in these tumors. EGFRvIII is known to preferentially signal through STAT5 [...] Read more.
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with few effective treatments. EGFR alterations, including expression of the truncated variant EGFRvIII, are among the most frequent genomic changes in these tumors. EGFRvIII is known to preferentially signal through STAT5 for oncogenic activation in GBM, yet targeting EGFRvIII has yielded limited clinical success to date. In this study, we employed patient-derived xenograft (PDX) models expressing EGFRvIII to determine the key points of therapeutic vulnerability within the EGFRvIII-STAT5 signaling axis in GBM. Our findings reveal that exogenous expression of paralogs STAT5A and STAT5B augments cell proliferation and that inhibition of STAT5 phosphorylation in vivo improves overall survival in combination with temozolomide (TMZ). STAT5 phosphorylation is independent of JAK1 and JAK2 signaling, instead requiring Src family kinase (SFK) activity. Saracatinib, an SFK inhibitor, attenuates phosphorylation of STAT5 and preferentially sensitizes EGFRvIII+ GBM cells to undergo apoptotic cell death relative to wild-type EGFR. Constitutively active STAT5A or STAT5B mitigates saracatinib sensitivity in EGFRvIII+ cells. In vivo, saracatinib treatment decreased survival in mice bearing EGFR WT tumors compared to the control, yet in EGFRvIII+ tumors, treatment with saracatinib in combination with TMZ preferentially improves survival. Full article
(This article belongs to the Special Issue The Occurrence, Evolution and Treatment of Glioblastoma 2.0)
Show Figures

Figure 1

15 pages, 3367 KiB  
Article
Enhancement of Solubility, Stability, Cellular Uptake, and Bioactivity of Curcumin by Polyvinyl Alcohol
by Smee Kang, Minkyoung Kim, Hyelin Kim and Jungil Hong
Int. J. Mol. Sci. 2024, 25(11), 6278; https://doi.org/10.3390/ijms25116278 - 6 Jun 2024
Viewed by 248
Abstract
The biological activities and related mechanisms of curcumin, a major polyphenolic compound in turmeric, the rhizome of Curcuma longa, have been extensively investigated. Due to its poor solubility in water, the analysis of curcumin’s biological activities is limited in most aqueous experimental [...] Read more.
The biological activities and related mechanisms of curcumin, a major polyphenolic compound in turmeric, the rhizome of Curcuma longa, have been extensively investigated. Due to its poor solubility in water, the analysis of curcumin’s biological activities is limited in most aqueous experimental systems. In the present study, the effects of polyvinyl alcohol (PVA), a dietary-compatible vehicle, on the solubility, stability, cellular uptake, and bioactivities of curcumin were investigated. Curcumin solubility was improved significantly by PVA; the color intensity of curcumin aqueous solution in the presence of PVA increased concentration-dependently with its peak shift to a shorter wavelength. Improved suspension stability and photostability of curcumin in an aqueous solution were also observed in the presence of PVA, even at 62.5 μg/mL. The scavenging activities of curcumin against DPPH, ABTS, AAPH radicals, and nitric oxide were enhanced significantly in the presence of PVA. PVA at 250 μg/mL also significantly enhanced the cytotoxic activity of curcumin against both HCT 116 colon cancer and INT 407 (HeLa-derived) embryonic intestinal cells by reducing the IC50 from 16 to 11 μM and 25 to 15 μM, respectively. PVA improved the cellular uptake of curcumin in a concentration-dependent manner in INT 407 cells; it increased the cellular levels more effectively at lower curcumin treatment concentrations. The present results indicate that PVA improves the solubility and stability of curcumin, and changes in these chemical behaviors of curcumin in aqueous systems by PVA could enhance the bioavailability and pharmacological efficacy of curcumin. Full article
Show Figures

Figure 1

12 pages, 3998 KiB  
Review
Self-Assembly of Molecular Landers Equipped with Functional Moieties on the Surface: A Mini Review
by Nadia El Hasnaoui, Ahmed Fatimi and Youness Benjalal
Int. J. Mol. Sci. 2024, 25(11), 6277; https://doi.org/10.3390/ijms25116277 - 6 Jun 2024
Viewed by 211
Abstract
The bottom-up fabrication of supramolecular and self-assembly on various substrates has become an extremely relevant goal to achieve prospects in the development of nanodevices for electronic circuitry or sensors. One of the branches of this field is the self-assembly of functional molecular components [...] Read more.
The bottom-up fabrication of supramolecular and self-assembly on various substrates has become an extremely relevant goal to achieve prospects in the development of nanodevices for electronic circuitry or sensors. One of the branches of this field is the self-assembly of functional molecular components driven through non-covalent interactions on the surfaces, such as van der Waals (vdW) interactions, hydrogen bonding (HB), electrostatic interactions, etc., allowing the controlled design of nanostructures that can satisfy the requirements of nanoengineering concepts. In this context, non-covalent interactions present opportunities that have been previously explored in several molecular systems adsorbed on surfaces, primarily due to their highly directional nature which facilitates the formation of well-ordered structures. Herein, we review a series of research works by combining STM (scanning tunneling microscopy) with theoretical calculations, to reveal the processes used in the area of self-assembly driven by molecule Landers equipped with functional groups on the metallic surfaces. Combining these processes is necessary for researchers to advance the self-assembly of supramolecular architectures driven by multiple non-covalent interactions on solid surfaces. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

17 pages, 2953 KiB  
Article
SARS-CoV-2 Spike Protein Enhances Carboxypeptidase Activity of Angiotensin-Converting Enzyme 2
by Xóchitl Andrea Mendiola-Salazar, Melanie A. Munguía-Laguna, Martha Franco, Agustina Cano-Martínez, José Santamaría Sosa and Rocío Bautista-Pérez
Int. J. Mol. Sci. 2024, 25(11), 6276; https://doi.org/10.3390/ijms25116276 - 6 Jun 2024
Viewed by 328
Abstract
In this study, we investigated whether severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein may modify angiotensin-converting enzyme 2 (ACE2) activity in the plasma, heart, kidney, liver, lung, and six brain regions (amygdala, brain stem, cortex, hippocampus, hypothalamus, and striatum) of diabetic and [...] Read more.
In this study, we investigated whether severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein may modify angiotensin-converting enzyme 2 (ACE2) activity in the plasma, heart, kidney, liver, lung, and six brain regions (amygdala, brain stem, cortex, hippocampus, hypothalamus, and striatum) of diabetic and hypertensive rats. We determine ACE2 activity in the plasma and lysates of heart, kidney, liver, lung, and six brain regions. MLN-4760 inhibits ACE2 activity in the plasma and all organs. On the other hand, soluble ACE2 (sACE2) activity increased in the plasma of diabetic rats, and there was no change in the plasma of hypertensive rats. ACE2 activity was augmented in the liver, brain stem, and striatum, while it decreased in the kidney, amygdala, cortex, and hippocampus of diabetic rats. ACE2 activity increased in the kidney, liver, and lung, while it decreased in the heart, amygdala, cortex, and hypothalamus of hypertensive rats. We measured the ACE2 content via enzyme-linked immunosorbent assay and found that ACE2 protein levels increased in the heart, while it decreased in the plasma, kidney, brain stem, cortex, hippocampus, hypothalamus, and striatum of diabetic rats. ACE2 protein levels decreased in the brain stem, cortex, hippocampus, and hypothalamus of hypertensive rats. Our data showed that the spike protein enhanced ACE2 activity in the liver and lungs of diabetic rats, as well as in the heart and three of the brain regions (cortex, hypothalamus, and striatum) of hypertensive rats. Full article
(This article belongs to the Special Issue Advances in the Renin-Angiotensin System)
Show Figures

Figure 1

23 pages, 6784 KiB  
Article
ZmNF-YA1 Contributes to Maize Thermotolerance by Regulating Heat Shock Response
by Yaling Yang, Zhaoxia Li and Juren Zhang
Int. J. Mol. Sci. 2024, 25(11), 6275; https://doi.org/10.3390/ijms25116275 - 6 Jun 2024
Viewed by 234
Abstract
Zea mays (maize) is a staple food, feed, and industrial crop. Heat stress is one of the major stresses affecting maize production and is usually accompanied by other stresses, such as drought. Our previous study identified a heterotrimer complex, ZmNF-YA1-YB16-YC17, in maize. ZmNF-YA1 [...] Read more.
Zea mays (maize) is a staple food, feed, and industrial crop. Heat stress is one of the major stresses affecting maize production and is usually accompanied by other stresses, such as drought. Our previous study identified a heterotrimer complex, ZmNF-YA1-YB16-YC17, in maize. ZmNF-YA1 and ZmNF-YB16 were positive regulators of the drought stress response and were involved in maize root development. In this study, we investigated whether ZmNF-YA1 confers heat stress tolerance in maize. The nf-ya1 mutant and overexpression lines were used to test the role of ZmNF-YA1 in maize thermotolerance. The nf-ya1 mutant was more temperature-sensitive than the wild-type (WT), while the ZmNF-YA1 overexpression lines showed a thermotolerant phenotype. Higher malondialdehyde (MDA) content and reactive oxygen species (ROS) accumulation were observed in the mutant, followed by WT and overexpression lines after heat stress treatment, while an opposite trend was observed for chlorophyll content. RNA-seq was used to analyze transcriptome changes in nf-ya1 and its wild-type control W22 in response to heat stress. Based on their expression profiles, the heat stress response-related differentially expressed genes (DEGs) in nf-ya1 compared to WT were grouped into seven clusters via k-means clustering. Gene Ontology (GO) enrichment analysis of the DEGs in different clades was performed to elucidate the roles of ZmNF-YA1-mediated transcriptional regulation and their contribution to maize thermotolerance. The loss function of ZmNF-YA1 led to the failure induction of DEGs in GO terms of protein refolding, protein stabilization, and GO terms for various stress responses. Thus, the contribution of ZmNF-YA1 to protein stabilization, refolding, and regulation of abscisic acid (ABA), ROS, and heat/temperature signaling may be the major reason why ZmNF-YA1 overexpression enhanced heat tolerance, and the mutant showed a heat-sensitive phenotype. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Abiotic Stress Tolerance)
Show Figures

Figure 1

9 pages, 1201 KiB  
Case Report
BRCA1 Intragenic Duplication Combined with a Likely Pathogenic TP53 Variant in a Patient with Triple-Negative Breast Cancer: Clinical Risk and Management
by Vuthy Ea, Claudine Berthozat, Hélène Dreyfus, Clémentine Legrand, Estelle Rousselet, Magalie Peysselon, Laura Baudet, Guillaume Martinez, Charles Coutton and Marie Bidart
Int. J. Mol. Sci. 2024, 25(11), 6274; https://doi.org/10.3390/ijms25116274 - 6 Jun 2024
Viewed by 234
Abstract
For patients with hereditary breast and ovarian cancer, the probability of carrying two pathogenic variants (PVs) in dominant cancer-predisposing genes is rare. Using targeted next-generation sequencing (NGS), we investigated a 49-year-old Caucasian woman who developed a highly aggressive breast tumor. Our analyses identified [...] Read more.
For patients with hereditary breast and ovarian cancer, the probability of carrying two pathogenic variants (PVs) in dominant cancer-predisposing genes is rare. Using targeted next-generation sequencing (NGS), we investigated a 49-year-old Caucasian woman who developed a highly aggressive breast tumor. Our analyses identified an intragenic germline heterozygous duplication in BRCA1 with an additional likely PV in the TP53 gene. The BRCA1 variant was confirmed by multiplex ligation probe amplification (MLPA), and genomic breakpoints were characterized at the nucleotide level (c.135-2578_442-1104dup). mRNA extracted from lymphocytes was amplified by RT-PCR and then Sanger sequenced, revealing a tandem duplication r.135_441dup; p.(Gln148Ilefs*20). This duplication results in the synthesis of a truncated and, most likely, nonfunctional protein. Following functional studies, the TP53 exon 5 c.472C > T; p.(Arg158Cys) missense variant was classified as likely pathogenic by the Li-Fraumeni Syndrome (LFS) working group. This type of unexpected association will be increasingly identified in the future, with the switch from targeted BRCA sequencing to hereditary breast and ovarian cancer (HBOC) panel sequencing, raising the question of how these patients should be managed. It is therefore important to record and investigate these rare double-heterozygous genotypes. Full article
(This article belongs to the Special Issue Molecular Genetics of Breast Cancer—Recent Progress)
Show Figures

Figure 1

19 pages, 7695 KiB  
Article
The Expansion of Sirtuin Gene Family in Gilthead Sea Bream (Sparus aurata)—Phylogenetic, Syntenic, and Functional Insights across the Vertebrate/Fish Lineage
by Paula Simó-Mirabet, Fernando Naya-Català, Josep Alvar Calduch-Giner and Jaume Pérez-Sánchez
Int. J. Mol. Sci. 2024, 25(11), 6273; https://doi.org/10.3390/ijms25116273 - 6 Jun 2024
Viewed by 247
Abstract
The Sirtuin (SIRT1-7) family comprises seven evolutionary-conserved enzymes that couple cellular NAD availability with health, nutrition and welfare status in vertebrates. This study re-annotated the sirt3/5 branch in the gilthead sea bream, revealing three paralogues of sirt3 (sirt3.1a/sirt3.1b/sirt3.2 [...] Read more.
The Sirtuin (SIRT1-7) family comprises seven evolutionary-conserved enzymes that couple cellular NAD availability with health, nutrition and welfare status in vertebrates. This study re-annotated the sirt3/5 branch in the gilthead sea bream, revealing three paralogues of sirt3 (sirt3.1a/sirt3.1b/sirt3.2) and two of sirt5 (sirt5a/sirt5b) in this Perciform fish. The phylogeny and synteny analyses unveiled that the Sirt3.1/Sirt3.2 dichotomy was retained in teleosts and aquatic-living Sarcopterygian after early vertebrate 2R whole genome duplication (WGD). Additionally, only certain percomorphaceae and gilthead sea bream showed a conserved tandem-duplicated synteny block involving the mammalian-clustered sirt3.1 gene (psmd13-sirt3.1a/b-drd4-cdhr5-ctsd). Conversely, the expansion of the Sirt5 branch was shaped by the teleost-specific 3R WGD. As extensively reviewed in the literature, human-orthologues (sirt3.1/sirt5a) showed a high, conserved expression in skeletal muscle that increased as development advanced. However, recent sirt3.2 and sirt5b suffered an overall muscle transcriptional silencing across life, as well as an enhanced expression on immune-relevant tissues and gills. These findings fill gaps in the ontogeny and differentiation of Sirt genes in the environmentally adaptable gilthead sea bream, becoming a good starting point to advance towards a full understanding of its neo-functionalization. The mechanisms originating from these new paralogs also open new perspectives in the study of cellular energy sensing processes in vertebrates. Full article
(This article belongs to the Special Issue Fish Genomics and Developmental Biology)
Show Figures

Figure 1

17 pages, 698 KiB  
Review
Investigating Vitamin D-Binding Protein’s Role in Childhood Health and Development
by Charlotte Delrue, Reinhart Speeckaert, Joris R. Delanghe, Agnieszka Prytuła and Marijn M. Speeckaert
Int. J. Mol. Sci. 2024, 25(11), 6272; https://doi.org/10.3390/ijms25116272 - 6 Jun 2024
Viewed by 209
Abstract
Vitamin D-binding protein (DBP), also known as Gc-globulin, is a protein that affects several physiological processes, including the transport and regulation of vitamin D metabolites. Genetic polymorphisms in the DBP gene have a significant impact on vitamin D levels and may have implications [...] Read more.
Vitamin D-binding protein (DBP), also known as Gc-globulin, is a protein that affects several physiological processes, including the transport and regulation of vitamin D metabolites. Genetic polymorphisms in the DBP gene have a significant impact on vitamin D levels and may have implications for disease risk. DBP polymorphisms are linked to differential immune responses, which could influence the onset of juvenile diseases. This narrative review examines the various roles of DBP, with a focus on bone health, immunological regulation, and lipid metabolism in children. Chronic disorders affected by DBP polymorphisms include bone abnormalities, autoimmune diseases, cardiovascular issues, childhood asthma, allergies, cystic fibrosis, acute liver failure, celiac disease, inflammatory bowel disease, and chronic kidney disease. Future research should focus on identifying the processes that underpin the many roles that DBP plays and developing customized therapeutics to improve health outcomes in the juvenile population. Full article
(This article belongs to the Special Issue Vitamin D and Vitamin D Binding Protein in Health and Disease 3.0)
Show Figures

Figure 1

18 pages, 8633 KiB  
Article
Investigating the Pharmacological Mechanisms of Total Flavonoids from Eucommia ulmoides Oliver Leaves for Ischemic Stroke Protection
by Jing Qin, Kewei Chen, Xiaomin Wang, Sirong He, Jiaqi Chen, Qianlin Zhu, Zhizhou He, Pengcheng Lv and Kun Chen
Int. J. Mol. Sci. 2024, 25(11), 6271; https://doi.org/10.3390/ijms25116271 - 6 Jun 2024
Viewed by 235
Abstract
The aim of this study was to explore how the total flavonoids from Eucommia ulmoides leaves (EULs) regulate ischemia-induced nerve damage, as well as the protective effects mediated by oxidative stress. The cell survival rate was significantly improved compared to the ischemic group [...] Read more.
The aim of this study was to explore how the total flavonoids from Eucommia ulmoides leaves (EULs) regulate ischemia-induced nerve damage, as well as the protective effects mediated by oxidative stress. The cell survival rate was significantly improved compared to the ischemic group (p < 0.05) after treatment with the total flavonoids of EULs. The levels of reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) decreased, while catalase (CAT) and glutathione (GSH) increased, indicating that the total flavonoids of EULs can significantly alleviate neurological damage caused by ischemic stroke by inhibiting oxidative stress (p < 0.01). The mRNA expression level of VEGF increased (p < 0.01), which was consistent with the protein expression results. Meanwhile, the protein expression of ERK and CCND1 increased (p < 0.01), suggesting that the total flavonoids of EULs could protect PC12 cells from ischemic injury via VEGF-related pathways. MCAO rat models indicated that the total flavonoids of EULs could reduce brain ischemia–reperfusion injury. In conclusion, this study demonstrates the potential mechanisms of the total flavonoids of EULs in treating ischemic stroke and their potential therapeutic effects in reducing ischemic injury, which provides useful information for ischemic stroke drug discovery. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

15 pages, 771 KiB  
Review
Generalized Pustular Psoriasis and Systemic Organ Dysfunctions
by Romane Teshima, Natsuko Saito-Sasaki and Yu Sawada
Int. J. Mol. Sci. 2024, 25(11), 6270; https://doi.org/10.3390/ijms25116270 - 6 Jun 2024
Viewed by 190
Abstract
This review explores the intricate relationship between generalized pustular psoriasis (GPP) and various systemic diseases, shedding light on the broader impacts of this severe skin condition beyond its primary dermatological manifestations. GPP is identified as not only a profound contributor to skin pathology [...] Read more.
This review explores the intricate relationship between generalized pustular psoriasis (GPP) and various systemic diseases, shedding light on the broader impacts of this severe skin condition beyond its primary dermatological manifestations. GPP is identified as not only a profound contributor to skin pathology but also a significant risk factor for systemic diseases affecting cardiovascular, hepatic, renal, pulmonary, and skeletal systems, as well as associated with an increased incidence of anemia, depression, anxiety, and arthritis. The research highlights the complex interplay of cytokines, particularly IL-17 and IL-36, which are central to the pathophysiology of GPP and implicated in the exacerbation of systemic conditions. Key findings indicate a higher incidence of cardiovascular events in GPP patients compared to those with other severe forms of psoriasis, notably with a stronger correlation between myocardial infarction history and GPP development. Liver disturbances, frequently reversible upon psoriasis remission, suggest a cytokine-mediated link to hepatic health. Renal dysfunction appears elevated in GPP sufferers, with IL-17 and IL-36 potentially driving renal fibrosis. Similarly, interstitial lung disease and osteoporosis in GPP patients underscore the systemic reach of inflammatory processes initiated in the skin. The associations with anemia, depression, anxiety, and arthritis further complicate the clinical management of GPP, requiring a multidisciplinary approach. The study concludes that managing GPP effectively requires a holistic approach that addresses both the cutaneous and systemic dimensions of the disease, advocating for continued research into the mechanisms that connect GPP with broader health implications to refine therapeutic strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 3305 KiB  
Article
SPRED2 Is a Novel Regulator of Autophagy in Hepatocellular Carcinoma Cells and Normal Hepatocytes
by Tianyi Wang, Tong Gao, Masayoshi Fujisawa, Toshiaki Ohara, Masakiyo Sakaguchi, Teizo Yoshimura and Akihiro Matsukawa
Int. J. Mol. Sci. 2024, 25(11), 6269; https://doi.org/10.3390/ijms25116269 - 6 Jun 2024
Viewed by 209
Abstract
Sprouty-related enabled/vasodilator-stimulated phosphoprotein homology 1 domain containing 2 (SPRED2) is an inhibitor of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and has been shown to promote autophagy in several cancers. Here, we aimed to determine whether SPRED2 plays a role in [...] Read more.
Sprouty-related enabled/vasodilator-stimulated phosphoprotein homology 1 domain containing 2 (SPRED2) is an inhibitor of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and has been shown to promote autophagy in several cancers. Here, we aimed to determine whether SPRED2 plays a role in autophagy in hepatocellular carcinoma (HCC) cells. The Cancer Genome Atlas (TCGA) Liver Cancer Database showed a negative association between the level of SPRED2 and p62, a ubiquitin-binding scaffold protein that accumulates when autophagy is inhibited. Immunohistochemically, accumulation of p62 was detected in human HCC tissues with low SPRED2 expression. Overexpression of SPRED2 in HCC cells increased the number of autophagosomes and autophagic vacuoles containing damaged mitochondria, decreased p62 levels, and increased levels of light-chain-3 (LC3)-II, an autophagy marker. In contrast, SPRED2 deficiency increased p62 levels and decreased LC3-II levels. SPRED2 expression levels were negatively correlated with translocase of outer mitochondrial membrane 20 (TOM20) expression levels, suggesting its role in mitophagy. Mechanistically, SPRED2 overexpression reduced ERK activation followed by the mechanistic or mammalian target of rapamycin complex 1 (mTORC1)-mediated signaling pathway, and SPRED2 deficiency showed the opposite pattern. Finally, hepatic autophagy was impaired in the liver of SPRED2-deficient mice with hepatic lipid droplet accumulation in response to starvation. These results indicate that SPRED2 is a critical regulator of autophagy not only in HCC cells, but also in hepatocytes, and thus the manipulation of this process may provide new insights into liver pathology. Full article
Show Figures

Figure 1

42 pages, 2788 KiB  
Review
Cannabinoid Analgesia in Postoperative Pain Management: From Molecular Mechanisms to Clinical Reality
by Antonio J. Carrascosa, Francisco Navarrete, Raquel Saldaña, María S. García-Gutiérrez, Belinda Montalbán, Daniela Navarro, Fernando M. Gómez-Guijarro, Ani Gasparyan, Elena Murcia-Sánchez, Abraham B. Torregrosa, Paloma Pérez-Doblado, Luisa Gutiérrez and Jorge Manzanares
Int. J. Mol. Sci. 2024, 25(11), 6268; https://doi.org/10.3390/ijms25116268 - 6 Jun 2024
Viewed by 346
Abstract
Postoperative pain (POP) is a challenging clinical phenomenon that affects the majority of surgical patients and demands effective management to mitigate adverse outcomes such as persistent pain. The primary goal of POP management is to alleviate suffering and facilitate a seamless return to [...] Read more.
Postoperative pain (POP) is a challenging clinical phenomenon that affects the majority of surgical patients and demands effective management to mitigate adverse outcomes such as persistent pain. The primary goal of POP management is to alleviate suffering and facilitate a seamless return to normal function for the patient. Despite compelling evidence of its drawbacks, opioid analgesia remains the basis of POP treatment. Novel therapeutic approaches rely on multimodal analgesia, integrating different pharmacological strategies to optimize efficacy while minimizing adverse effects. The recognition of the imperative role of the endocannabinoid system in pain regulation has prompted the investigation of cannabinoid compounds as a new therapeutic avenue. Cannabinoids may serve as adjuvants, enhancing the analgesic effects of other drugs and potentially replacing or at least reducing the dependence on other long-term analgesics in pain management. This narrative review succinctly summarizes pertinent information on the molecular mechanisms, clinical therapeutic benefits, and considerations associated with the plausible use of various cannabinoid compounds in treating POP. According to the available evidence, cannabinoid compounds modulate specific molecular mechanisms intimately involved in POP. However, only two of the eleven clinical trials that evaluated the efficacy of different cannabinoid interventions showed positive results. Full article
Show Figures

Figure 1

19 pages, 1514 KiB  
Article
A Comprehensive Analysis of Non-Desmosomal Rare Genetic Variants in Arrhythmogenic Cardiomyopathy: Integrating in Padua Cohort Literature-Derived Data
by Maria Bueno Marinas, Marco Cason, Riccardo Bariani, Rudy Celeghin, Monica De Gaspari, Serena Pinci, Alberto Cipriani, Ilaria Rigato, Alessandro Zorzi, Stefania Rizzo, Gaetano Thiene, Martina Perazzolo Marra, Domenico Corrado, Cristina Basso, Barbara Bauce and Kalliopi Pilichou
Int. J. Mol. Sci. 2024, 25(11), 6267; https://doi.org/10.3390/ijms25116267 - 6 Jun 2024
Viewed by 245
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken [...] Read more.
Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken for the most relevant non-desmosomal disease genes. We retrospectively studied 320 unrelated Italian ACM patients, including 243 cases with predominant right-ventricular (ARVC) and 77 cases with predominant left-ventricular (ALVC) involvement, who did not carry pathogenic/likely pathogenic (P/LP) variants in desmosome-coding genes. The aim was to assess rare genetic variants in transmembrane protein 43 (TMEM43), desmin (DES), phospholamban (PLN), filamin c (FLNC), cadherin 2 (CDH2), and tight junction protein 1 (TJP1), based on current adjudication guidelines and reappraisal on reported literature data. Thirty-five rare genetic variants, including 23 (64%) P/LP, were identified in 39 patients (16/243 ARVC; 23/77 ALVC): 22 FLNC, 9 DES, 2 TMEM43, and 2 CDH2. No P/LP variants were found in PLN and TJP1 genes. Gene-based burden analysis, including P/LP variants reported in literature, showed significant enrichment for TMEM43 (3.79-fold), DES (10.31-fold), PLN (117.8-fold) and FLNC (107-fold). A non-desmosomal rare genetic variant is found in a minority of ARVC patients but in about one third of ALVC patients; as such, clinical decision-making should be driven by genes with robust evidence. More than two thirds of non-desmosomal P/LP variants occur in FLNC. Full article
(This article belongs to the Special Issue Novel Biomarkers for Cardiovascular Diseases)
Show Figures

Figure 1

16 pages, 1104 KiB  
Review
Immune Checkpoints in Endometriosis—A New Insight in the Pathogenesis
by Dorota Suszczyk, Wiktoria Skiba, Anna Pawłowska-Łachut, Izabela Dymanowska-Dyjak, Karolina Włodarczyk, Roman Paduch and Iwona Wertel
Int. J. Mol. Sci. 2024, 25(11), 6266; https://doi.org/10.3390/ijms25116266 - 6 Jun 2024
Viewed by 233
Abstract
Endometriosis (EMS) is an oestrogen-dependent, chronic disease affecting women of a reproductive age. One of the important factors involved in the development of this disease is the complex disorders associated with the functioning of the immune system. Recent evidence has shown that EMS [...] Read more.
Endometriosis (EMS) is an oestrogen-dependent, chronic disease affecting women of a reproductive age. One of the important factors involved in the development of this disease is the complex disorders associated with the functioning of the immune system. Recent evidence has shown that EMS development is associated with changes in systemic and local immunity, including functional disturbances of effector and antigen-presenting cells. One of the reasons for immune imbalance can be the improper expression of immune checkpoints (ICPs). ICPs and their ligands are responsible for maintaining self-tolerance and the modulation of the initiation, duration, and magnitude of the immune response of effector cells in normal tissues to avoid tissue damage. Considering the complex nature of co-stimulatory or co-inhibitory ICPs and the signalling between effector cells and APCs, we hypothesise that changes in cells’ activity caused by ICPs may lead to serious immune system disturbances in patients with endometriosis. Moreover, both upregulation and downregulation in the expression of ICPs may be implicated in this process, including the reduced activity of effector cells against endometrial implants and disturbances in the antigen-presenting process. In this narrative review, we discuss, for the first time, key findings from the emerging literature, describing the associations between ICPs and their possible implication in the pathogenesis of endometriosis. Full article
(This article belongs to the Special Issue Endometriosis: From Molecular Basis to Therapy)
Show Figures

Figure 1

21 pages, 2118 KiB  
Article
Diagnostic Utility of Selected Matrix Metalloproteinases (MMP-2, MMP-3, MMP-11, MMP-26), HE4, CA125 and ROMA Algorithm in Diagnosis of Ovarian Cancer
by Aleksandra Kicman, Ewa Gacuta, Monika Kulesza, Ewa Grażyna Będkowska, Rafał Marecki, Ewa Klank-Sokołowska, Paweł Knapp, Marek Niczyporuk and Sławomir Ławicki
Int. J. Mol. Sci. 2024, 25(11), 6265; https://doi.org/10.3390/ijms25116265 - 6 Jun 2024
Viewed by 249
Abstract
Ovarian cancer (OC) has an unfavorable prognosis. Due to the lack of effective screening tests, new diagnostic methods are being sought to detect OC earlier. The aim of this study was to evaluate the concentration and diagnostic utility of selected matrix metalloproteinases (MMPs) [...] Read more.
Ovarian cancer (OC) has an unfavorable prognosis. Due to the lack of effective screening tests, new diagnostic methods are being sought to detect OC earlier. The aim of this study was to evaluate the concentration and diagnostic utility of selected matrix metalloproteinases (MMPs) as OC markers in comparison with HE4, CA125 and the ROMA algorithm. The study group consisted of 120 patients with OC; the comparison group consisted of 70 patients with benign lesions and 50 healthy women. MMPs were determined via the ELISA method, HE4 and CA125 by CMIA. Patients with OC had elevated levels of MMP-3 and MMP-11, similar to HE4, CA125 and ROMA values. The highest SE, SP, NPV and PPV values were found for MMP-26, CA125 and ROMA in OC patients. Performing combined analyses of ROMA with selected MMPs increased the values of diagnostic parameters. The topmost diagnostic power of the test was obtained for MMP-26, CA125, HE4 and ROMA and performing combined analyses of MMPs and ROMA enhanced the diagnostic power of the test. The obtained results indicate that the tested MMPs do not show potential as stand-alone OC biomarkers, but can be considered as additional tests to raise the diagnostic utility of the ROMA algorithm. Full article
(This article belongs to the Special Issue Molecular Advances in Ovarian Cancer)
Show Figures

Figure 1

12 pages, 558 KiB  
Article
Associations between Serum Kallistatin Levels and Markers of Glucose Homeostasis, Inflammation, and Lipoprotein Metabolism in Patients with Type 2 Diabetes and Nondiabetic Obesity
by Hajnalka Lőrincz, Sára Csiha, Balázs Ratku, Sándor Somodi, Ferenc Sztanek, György Paragh and Mariann Harangi
Int. J. Mol. Sci. 2024, 25(11), 6264; https://doi.org/10.3390/ijms25116264 - 6 Jun 2024
Viewed by 212
Abstract
Kallistatin is an endogenous serine proteinase inhibitor with various functions, including antioxidative, anti-inflammatory, and anti-atherosclerotic properties. To date, associations between kallistatin and lipoprotein subfractions are poorly investigated. In this study, we enrolled 62 obese patients with type 2 diabetes (T2D), 106 nondiabetic obese [...] Read more.
Kallistatin is an endogenous serine proteinase inhibitor with various functions, including antioxidative, anti-inflammatory, and anti-atherosclerotic properties. To date, associations between kallistatin and lipoprotein subfractions are poorly investigated. In this study, we enrolled 62 obese patients with type 2 diabetes (T2D), 106 nondiabetic obese (NDO) subjects matched in gender, age, and body mass index, as well as 49 gender- and age-matched healthy, normal-weight controls. Serum kallistatin levels were measured with ELISA, and lipoprotein subfractions were analyzed using Lipoprint® (Quantimetrix Corp., Redondo Beach, CA, USA) gel electrophoresis. Kallistatin concentrations were significantly higher in T2D patients compared to NDO and control groups. We found significant positive correlations between very-low-density lipoprotein (VLDL), small high-density lipoprotein (HDL) subfractions, glucose, hemoglobin A1c (HbA1c), betatrophin, and kallistatin, while negative correlations were detected between mean low-density lipoprotein (LDL) size, large and intermediate HDL subfractions, and kallistatin in the whole study population. The best predictor of kallistatin was HbA1c in T2D patients, high-sensitivity C-reactive protein (hsCRP) and betatrophin in NDO patients, and hsCRP in controls. Our results indicate that kallistatin expression might be induced by persistent hyperglycemia in T2D, while in nondiabetic subjects, its production might be associated with systemic inflammation. The correlation of kallistatin with lipid subfractions may suggest its putative role in atherogenesis. Full article
(This article belongs to the Special Issue Lipoprotein Metabolism in Health and Disease 2.0)
Show Figures

Figure 1

25 pages, 5024 KiB  
Article
Characterization and Hydrolysis Studies of a Prodrug Obtained as Ester Conjugate of Geraniol and Ferulic Acid by Enzymatic Way
by Lindomar Alberto Lerin, Giada Botti, Alessandro Dalpiaz, Anna Bianchi, Luca Ferraro, Chaimae Chaibi, Federico Zappaterra, Domenico Meola, Pier Paolo Giovannini and Barbara Pavan
Int. J. Mol. Sci. 2024, 25(11), 6263; https://doi.org/10.3390/ijms25116263 - 6 Jun 2024
Viewed by 322
Abstract
Ferulic acid (Fer) and geraniol (Ger) are natural compounds whose antioxidant and anti-inflammatory activity confer beneficial properties, such as antibacterial, anticancer, and neuroprotective effects. However, the short half-lives of these compounds impair their therapeutic activities after conventional administration. We propose, therefore, a new [...] Read more.
Ferulic acid (Fer) and geraniol (Ger) are natural compounds whose antioxidant and anti-inflammatory activity confer beneficial properties, such as antibacterial, anticancer, and neuroprotective effects. However, the short half-lives of these compounds impair their therapeutic activities after conventional administration. We propose, therefore, a new prodrug (Fer-Ger) obtained by a bio-catalyzed ester conjugation of Fer and Ger to enhance the loading of solid lipid microparticles (SLMs) designed as Fer-Ger delivery and targeting systems. SLMs were obtained by hot emulsion techniques without organic solvents. HPLC-UV analysis evidenced that Fer-Ger is hydrolyzed in human or rat whole blood and rat liver homogenates, with half-lives of 193.64 ± 20.93, 20.15 ± 0.75, and 3.94 ± 0.33 min, respectively, but not in rat brain homogenates. Studies on neuronal-differentiated mouse neuroblastoma N2a cells incubated with the reactive oxygen species (ROS) inductor H2O2 evidenced the Fer-Ger ability to prevent oxidative injury, despite the fact that it appears ROS-promoting. The amounts of Fer-Ger encapsulated in tristearin SLMs, obtained in the absence or presence of glucose, were 1.5 ± 0.1%, allowing the control of the prodrug release (glucose absence) or to sensibly enhance its water dissolution rate (glucose presence). These new “green” carriers can potentially prolong the beneficial effects of Fer and Ger or induce neuroprotection as nasal formulations. Full article
Show Figures

Graphical abstract

14 pages, 8408 KiB  
Article
Modified mRNA-Mediated CCN5 Gene Transfer Ameliorates Cardiac Dysfunction and Fibrosis without Adverse Structural Remodeling
by Min Ho Song, Jimeen Yoo, Do-A Kwon, Elena Chepurko, Sunghye Cho, Anthony Fargnoli, Roger J. Hajjar, Woo Jin Park, Lior Zangi and Dongtak Jeong
Int. J. Mol. Sci. 2024, 25(11), 6262; https://doi.org/10.3390/ijms25116262 - 6 Jun 2024
Viewed by 221
Abstract
Modified mRNAs (modRNAs) are an emerging delivery method for gene therapy. The success of modRNA-based COVID-19 vaccines has demonstrated that modRNA is a safe and effective therapeutic tool. Moreover, modRNA has the potential to treat various human diseases, including cardiac dysfunction. Acute myocardial [...] Read more.
Modified mRNAs (modRNAs) are an emerging delivery method for gene therapy. The success of modRNA-based COVID-19 vaccines has demonstrated that modRNA is a safe and effective therapeutic tool. Moreover, modRNA has the potential to treat various human diseases, including cardiac dysfunction. Acute myocardial infarction (MI) is a major cardiac disorder that currently lacks curative treatment options, and MI is commonly accompanied by fibrosis and impaired cardiac function. Our group previously demonstrated that the matricellular protein CCN5 inhibits cardiac fibrosis (CF) and mitigates cardiac dysfunction. However, it remains unclear whether early intervention of CF under stress conditions is beneficial or more detrimental due to potential adverse effects such as left ventricular (LV) rupture. We hypothesized that CCN5 would alleviate the adverse effects of myocardial infarction (MI) through its anti-fibrotic properties under stress conditions. To induce the rapid expression of CCN5, ModRNA-CCN5 was synthesized and administrated directly into the myocardium in a mouse MI model. To evaluate CCN5 activity, we established two independent experimental schemes: (1) preventive intervention and (2) therapeutic intervention. Functional analyses, including echocardiography and magnetic resonance imaging (MRI), along with molecular assays, demonstrated that modRNA-mediated CCN5 gene transfer significantly attenuated cardiac fibrosis and improved cardiac function in both preventive and therapeutic models, without causing left ventricular rupture or any adverse cardiac remodeling. In conclusion, early intervention in CF by ModRNA-CCN5 gene transfer is an efficient and safe therapeutic modality for treating MI-induced heart failure. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease)
Show Figures

Figure 1

18 pages, 5275 KiB  
Article
Comprehensive Insights into the Remarkable Function and Regulatory Mechanism of FluG during Asexual Development in Beauveria bassiana
by Fang Li, Juefeng Zhang, Haiying Zhong, Kaili Yu and Jianming Chen
Int. J. Mol. Sci. 2024, 25(11), 6261; https://doi.org/10.3390/ijms25116261 - 6 Jun 2024
Viewed by 219
Abstract
Asexual development is the main propagation and transmission mode of Beauveria bassiana and the basis of its pathogenicity. The regulation mechanism of conidiation and the key gene resources for utilization are key links to improving the conidia yield and quality of Beauveria bassiana [...] Read more.
Asexual development is the main propagation and transmission mode of Beauveria bassiana and the basis of its pathogenicity. The regulation mechanism of conidiation and the key gene resources for utilization are key links to improving the conidia yield and quality of Beauveria bassiana. Their clarification may promote the industrialization of fungal pesticides. Here, we compared the regulation of morphology, resistance to external stress, virulence, and nutrient utilization capacity between the upstream developmental regulatory gene fluG and the key genes brlA, abaA, and wetA in the central growth and development pathway. The results showed that the ΔbrlA and ΔabaA mutants completely lost the capacity to conidiate and that the ΔwetA mutant had seriously reduced conidiation capacity. Although the deletion of fluG did not reduce the conidiation ability as much as deletions of brlA, abaA, and wetA, it significantly reduced the fungal response to external stress, virulence, and nutrient utilization, while the deletion of the three other genes had little effect. Via transcriptome analysis and screening the yeast nuclear system library, we found that the differentially expressed genes in the ΔfluG mutants were concentrated in the signaling pathways of ABC transporters, propionate metabolism, tryptophan metabolism, DNA replication, mismatch repair, and fatty acid metabolism. FluG directly acted on 40 proteins that were involved in various signaling pathways such as metabolism, oxidative stress, and cell homeostasis. The analysis indicated that the regulatory function of fluG was mainly involved in DNA replication, cell homeostasis, fungal growth and metabolism, and the response to external stress. Our results revealed the biological function of fluG in asexual development and the responses to several environmental stresses as well as its influence on the asexual development regulatory network in B. bassiana. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

11 pages, 3078 KiB  
Article
Investigating Contributions of Canonical Transient Receptor Potential Channel 3 to Hippocampal Hyperexcitability and Seizure-Induced Neuronal Cell Death
by Kevin D. Phelan, U Thaung Shwe, Hong Wu and Fang Zheng
Int. J. Mol. Sci. 2024, 25(11), 6260; https://doi.org/10.3390/ijms25116260 - 6 Jun 2024
Viewed by 218
Abstract
Canonical transient receptor potential channel 3 (TRPC3) is the most abundant TRPC channel in the brain and is highly expressed in all subfields of the hippocampus. Previous studies have suggested that TRPC3 channels may be involved in the hyperexcitability of hippocampal pyramidal neurons [...] Read more.
Canonical transient receptor potential channel 3 (TRPC3) is the most abundant TRPC channel in the brain and is highly expressed in all subfields of the hippocampus. Previous studies have suggested that TRPC3 channels may be involved in the hyperexcitability of hippocampal pyramidal neurons and seizures. Genetic ablation of TRPC3 channel expression reduced the intensity of pilocarpine-induced status epilepticus (SE). However, the underlying cellular mechanisms remain unexplored and the contribution of TRPC3 channels to SE-induced neurodegeneration is not determined. In this study, we investigated the contribution of TRPC3 channels to the electrophysiological properties of hippocampal pyramidal neurons and hippocampal synaptic plasticity, and the contribution of TRPC3 channels to seizure-induced neuronal cell death. We found that genetic ablation of TRPC3 expression did not alter basic electrophysiological properties of hippocampal pyramidal neurons and had a complex impact on epileptiform bursting in CA3. However, TRPC3 channels contribute significantly to long-term potentiation in CA1 and SE-induced neurodegeneration. Our results provided further support for therapeutic potential of TRPC3 inhibitors and raised new questions that need to be answered by future studies. Full article
Show Figures

Figure 1

20 pages, 3763 KiB  
Article
Bisphenol-A in Drinking Water Accelerates Mammary Cancerogenesis and Favors an Immunosuppressive Tumor Microenvironment in BALB–neuT Mice
by Chiara Focaccetti, Daniela Nardozi, Monica Benvenuto, Valeria Lucarini, Valentina Angiolini, Raffaele Carrano, Manuel Scimeca, Francesca Servadei, Alessandro Mauriello, Patrizia Mancini, Zein Mersini Besharat, Michele Milella, Silvia Migliaccio, Elisabetta Ferretti, Loredana Cifaldi, Laura Masuelli, Camilla Palumbo and Roberto Bei
Int. J. Mol. Sci. 2024, 25(11), 6259; https://doi.org/10.3390/ijms25116259 - 6 Jun 2024
Viewed by 267
Abstract
Bisphenol-A (BPA), a synthetic compound ubiquitously present in the environment, can act as an endocrine disruptor by binding to both canonical and non-canonical estrogen receptors (ERs). Exposure to BPA has been linked to various cancers, in particular, those arising in hormone-targeted tissues such [...] Read more.
Bisphenol-A (BPA), a synthetic compound ubiquitously present in the environment, can act as an endocrine disruptor by binding to both canonical and non-canonical estrogen receptors (ERs). Exposure to BPA has been linked to various cancers, in particular, those arising in hormone-targeted tissues such as the breast. In this study, we evaluated the effect of BPA intake through drinking water on ErbB2/neu-driven cancerogenesis in BALB–neuT mice, transgenic for a mutated ErbB2/neu receptor gene, which reproducibly develop carcinomas in all mammary glands. In this model, BPA accelerated mammary cancerogenesis with an increase in the number of tumors per mouse and a concurrent decrease in tumor-free and overall survival. As assessed by immunohistochemistry, BALB–neuT tumors were ER-negative but expressed high levels of the alternative estrogen receptor GPR30, regardless of BPA exposure. On the other hand, BPA exposure resulted in a marked upregulation of progesterone receptors in preinvasive tumors and of Ki67, CD31, and phosphorylated Akt in invasive tumors. Moreover, based on several infiltration markers of immune cells, BPA favored an immunosuppressive tumor microenvironment. Finally, in vitro cell survival studies performed on a cell line established from a BALB–neuT breast carcinoma confirmed that BPA’s impact on cancer progression can be particularly relevant after chronic, low-dose exposure. Full article
(This article belongs to the Special Issue Endocrine Disruption and Human Diseases 2.0)
Show Figures

Figure 1

16 pages, 2192 KiB  
Article
Expression of Wild-Type and Mutant Human TDP-43 in Yeast Inhibits TOROID (TORC1 Organized in Inhibited Domain) Formation and Autophagy Proportionally to the Levels of TDP-43 Toxicity
by Sangeun Park, Sei-Kyoung Park and Susan W. Liebman
Int. J. Mol. Sci. 2024, 25(11), 6258; https://doi.org/10.3390/ijms25116258 - 6 Jun 2024
Viewed by 263
Abstract
TDP-43 forms aggregates in the neurons of patients with several neurodegenerative diseases. Human TDP-43 also aggregates and is toxic in yeast. Here, we used a yeast model to investigate (1) the nature of TDP-43 aggregates and (2) the mechanism of TDP-43 toxicity. Thioflavin [...] Read more.
TDP-43 forms aggregates in the neurons of patients with several neurodegenerative diseases. Human TDP-43 also aggregates and is toxic in yeast. Here, we used a yeast model to investigate (1) the nature of TDP-43 aggregates and (2) the mechanism of TDP-43 toxicity. Thioflavin T, which stains amyloid but not wild-type TDP-43 aggregates, also did not stain mutant TDP-43 aggregates made from TDP-43 with intragenic mutations that increase or decrease its toxicity. However, 1,6-hexanediol, which dissolves liquid droplets, dissolved wild-type or mutant TDP-43 aggregates. To investigate the mechanism of TDP-43 toxicity, the effects of TDP-43 mutations on the autophagy of the GFP-ATG8 reporter were examined. Mutations in TDP-43 that enhance its toxicity, but not mutations that reduce its toxicity, caused a larger reduction in autophagy. TOROID formation, which enhances autophagy, was scored as GFP-TOR1 aggregation. TDP-43 inhibited TOROID formation. TORC1 bound to both toxic and non-toxic TDP-43, and to TDP-43, with reduced toxicity due to pbp1Δ. However, extragenic modifiers and TDP-43 mutants that reduced TDP-43 toxicity, but not TDP-43 mutants that enhanced toxicity, restored TOROID formation. This is consistent with the hypothesis that TDP-43 is toxic in yeast because it reduces TOROID formation, causing the inhibition of autophagy. Whether TDP-43 exerts a similar effect in higher cells remains to be determined. Full article
(This article belongs to the Special Issue Yeast as a Model System to Study Human Diseases)
Show Figures

Figure 1

16 pages, 2492 KiB  
Article
Exploring the Ocular Surface Microbiome and Tear Proteome in Glaucoma
by Livia Spörri, Anne-Christine Uldry, Marco Kreuzer, Elio L. Herzog, Martin S. Zinkernagel, Jan D. Unterlauft and Denise C. Zysset-Burri
Int. J. Mol. Sci. 2024, 25(11), 6257; https://doi.org/10.3390/ijms25116257 - 6 Jun 2024
Viewed by 240
Abstract
Although glaucoma is a leading cause of irreversible blindness worldwide, its pathogenesis is incompletely understood, and intraocular pressure (IOP) is the only modifiable risk factor to target the disease. Several associations between the gut microbiome and glaucoma, including the IOP, have been suggested. [...] Read more.
Although glaucoma is a leading cause of irreversible blindness worldwide, its pathogenesis is incompletely understood, and intraocular pressure (IOP) is the only modifiable risk factor to target the disease. Several associations between the gut microbiome and glaucoma, including the IOP, have been suggested. There is growing evidence that interactions between microbes on the ocular surface, termed the ocular surface microbiome (OSM), and tear proteins, collectively called the tear proteome, may also play a role in ocular diseases such as glaucoma. This study aimed to find characteristic features of the OSM and tear proteins in patients with glaucoma. The whole-metagenome shotgun sequencing of 32 conjunctival swabs identified Actinobacteria, Firmicutes, and Proteobacteria as the dominant phyla in the cohort. The species Corynebacterium mastitidis was only found in healthy controls, and their conjunctival microbiomes may be enriched in genes of the phospholipase pathway compared to glaucoma patients. Despite these minor differences in the OSM, patients showed an enrichment of many tear proteins associated with the immune system compared to controls. In contrast to the OSM, this emphasizes the role of the proteome, with a potential involvement of immunological processes in glaucoma. These findings may contribute to the design of new therapeutic approaches targeting glaucoma and other associated diseases. Full article
(This article belongs to the Special Issue Genetic and Molecular Advances in Glaucoma)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop