Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = visible minority

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6617 KiB  
Article
Natural Plant Oils as Anti-Algae Biocides for Sustainable Application in Cultural Heritage Protection
by Michał Komar, Nathnael Derese, Kamil Szymczak, Paulina Nowicka-Krawczyk and Beata Gutarowska
Sustainability 2025, 17(15), 6996; https://doi.org/10.3390/su17156996 - 1 Aug 2025
Viewed by 231
Abstract
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use [...] Read more.
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use in heritage conservation. This study evaluates the anti-algal activity of Salvia officinalis and Equisetum arvense (essential oils, hydrolates, and extracts) against a mixed culture of five green algae species (Bracteacoccus minor, Stichococcus bacillaris, Klebsormidium nitens, Chloroidium saccharophilum, and Diplosphaera chodatii). The plant materials were processed using hydrodistillation and solvent extraction, followed by chemical characterization through gas chromatography–mass spectrometry (GC-MS). Biological efficacy was assessed by measuring algal growth inhibition, changes in biomass colour, chlorophyll a concentration, and fluorescence. S. officinalis yielded higher extract quantities (extraction yield: 23%) than E. arvense and contained bioactive compounds such as thujone, camphor, and cineole, which correlated with its strong anti-algal effects. The essential oil of S. officinalis demonstrated the highest efficacy, significantly inhibiting biofilm formation (zones of inhibition: 15–94 mm) and photosynthetic activity at 0.5% concentration (reduction in chlorophyll a concentration 90–100%), without causing visible discolouration of treated surfaces (∆E < 2). These findings highlight the potential of S. officinalis essential oil as a natural, effective, and material-safe algicidal biocide for the sustainable protection of cultural heritage sites. Full article
Show Figures

Figure 1

22 pages, 3083 KiB  
Article
Evaluating the Effect of Thermal Treatment on Phenolic Compounds in Functional Flours Using Vis–NIR–SWIR Spectroscopy: A Machine Learning Approach
by Achilleas Panagiotis Zalidis, Nikolaos Tsakiridis, George Zalidis, Ioannis Mourtzinos and Konstantinos Gkatzionis
Foods 2025, 14(15), 2663; https://doi.org/10.3390/foods14152663 - 29 Jul 2025
Viewed by 355
Abstract
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) [...] Read more.
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) spectroscopy (350–2500 nm), integrated with machine learning (ML) algorithms. Random Forest models were employed to classify samples based on flour type, baking temperature, and phenolic concentration. The full spectral range yielded high classification accuracy (0.98, 0.98, and 0.99, respectively), and an explainability framework revealed the wavelengths most relevant for each class. To address concerns regarding color as a confounding factor, a targeted spectral refinement was implemented by sequentially excluding the visible region. Models trained on the 1000–2500 nm and 1400–2500 nm ranges showed minor reductions in accuracy, suggesting that classification is not solely driven by visible characteristics. Results indicated that legume and wheat flours retain higher total phenolic content (TPC) under mild thermal conditions, whereas grape seed flour (GSF) and olive stone flour (OSF) exhibited notable thermal stability of TPC even at elevated temperatures. These first findings suggest that the proposed non-destructive spectroscopic approach enables rapid classification and quality assessment of functional flours, supporting future applications in precision food formulation and quality control. Full article
Show Figures

Figure 1

24 pages, 3694 KiB  
Article
Enhancing the Distinguishability of Minor Fluctuations in Time Series Classification Using Graph Representation: The MFSI-TSC Framework
by He Nai, Chunlei Zhang and Xianjun Hu
Sensors 2025, 25(15), 4672; https://doi.org/10.3390/s25154672 - 29 Jul 2025
Viewed by 250
Abstract
In industrial systems, sensors often classify collected time series data for incipient fault diagnosis. However, time series data from sensors during the initial stages of a fault often exhibits minor fluctuation characteristics. Existing time series classification (TSC) methods struggle to achieve high classification [...] Read more.
In industrial systems, sensors often classify collected time series data for incipient fault diagnosis. However, time series data from sensors during the initial stages of a fault often exhibits minor fluctuation characteristics. Existing time series classification (TSC) methods struggle to achieve high classification accuracy when these minor fluctuations serve as the primary distinguishing feature. This limitation arises because the low-amplitude variations of these fluctuations, compared with trends, lead the classifier to prioritize and learn trend features while ignoring the minor fluctuations crucial for accurate classification. To address this challenge, this paper proposes a novel graph-based time series classification framework, termed MFSI-TSC. MFSI-TSC first extracts the trend component of the raw time series. Subsequently, both the trend series and the raw series are represented as graphs by extracting the “visible relationship” of the series. By performing a subtraction operation between these graphs, the framework isolates the differential information arising from the minor fluctuations. The subtracted graph effectively captures minor fluctuations by highlighting topological variations, thereby making them more distinguishable. Furthermore, the framework incorporates optimizations to reduce computational complexity, facilitating its deployment in resource-constrained sensor systems. Finally, empirical evaluation of MFSI-TSC on both real-world and publicly available datasets demonstrates its effectiveness. Compared with ten benchmark methods, MFSI-TSC exhibits both high accuracy and computational efficiency, making it more suitable for deployment in sensor systems to complete incipient fault detection tasks. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

25 pages, 10205 KiB  
Article
RTLS-Enabled Bidirectional Alert System for Proximity Risk Mitigation in Tunnel Environments
by Fatima Afzal, Farhad Ullah Khan, Ayaz Ahmad Khan, Ruchini Jayasinghe and Numan Khan
Buildings 2025, 15(15), 2667; https://doi.org/10.3390/buildings15152667 - 28 Jul 2025
Viewed by 267
Abstract
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location [...] Read more.
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location systems (RTLS) with long-range (LoRa) wireless communication and ultra-wideband (UWB) positioning. The system comprises Arduino nano microcontrollers, organic light-emitting diode (OLED) displays, and piezo buzzers to detect and signal proximity breaches between workers and equipment. Using an action research approach, three pilot case studies were conducted in a simulated tunnel environment to test the system’s effectiveness in both static and dynamic risk scenarios. The results showed that the system accurately tracked proximity and generated timely alerts when safety thresholds were crossed, although minor delays of 5–8 s and slight positional inaccuracies were noted. These findings confirm the system’s capacity to enhance situational awareness and reduce reliance on manual safety protocols. The study contributes to the tunnel safety literature by demonstrating the feasibility of low-cost, real-time monitoring solutions that simultaneously track labour and machinery. The proposed RTLS framework offers practical value for safety managers and informs future research into automated safety systems in complex construction environments. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

33 pages, 6970 KiB  
Article
Wake Characteristics and Thermal Properties of Underwater Vehicle Based on DDES Numerical Simulation
by Yu Lu, Jiacheng Cui, Bing Liu, Shuai Shi and Wu Shao
J. Mar. Sci. Eng. 2025, 13(7), 1371; https://doi.org/10.3390/jmse13071371 - 18 Jul 2025
Viewed by 260
Abstract
Investigating the coupled hydrodynamic and thermal wakes induced by underwater vehicles is vital for non-acoustic detection and environmental monitoring. Here, the standard SUBOFF model is simulated under eight operating conditions—speeds of 10, 15, and 20 kn; depths of 10, 20, and 30 m; [...] Read more.
Investigating the coupled hydrodynamic and thermal wakes induced by underwater vehicles is vital for non-acoustic detection and environmental monitoring. Here, the standard SUBOFF model is simulated under eight operating conditions—speeds of 10, 15, and 20 kn; depths of 10, 20, and 30 m; and both with and without thermal discharge—using Delayed Detached Eddy Simulation (DDES) coupled with the Volume of Fluid (VOF) method. Results indicate that, under heat emission conditions, higher speeds accelerate wake temperature decay, making the thermal wake difficult to detect downstream; without heat emission, turbulent mixing dominates the temperature field, and speed effects are minor. With increased speed, wake vorticity at a fixed location grows by about 30%, free-surface wave height rises from 0.05 to 0.15 m, and wavelength remains around 1.8 m, all positively correlated with speed. Dive depth is negatively correlated with wave height, decreasing from 0.15 to 0.04 m as depth increases from 5 to 20 m, while wavelength remains largely unchanged. At a 10 m submergence depth, the thermal wake is clearly detectable on the surface but becomes hard to detect beyond 20 m, indicating a pronounced depth effect on its visibility. These results not only confirm the positive correlation between vessel speed and wake vorticity reported in earlier studies but also extend those findings by providing the first quantitative evaluation of how submergence depth critically limits thermal wake visibility beyond 20 m. This research provides quantitative evaluations of wake characteristics under varying speeds, depths, and heat emissions, offering valuable insights for stealth navigation and detection technologies. Full article
(This article belongs to the Special Issue Advanced Studies in Ship Fluid Mechanics)
Show Figures

Figure 1

13 pages, 272 KiB  
Perspective
The Unheeded Layers of Health Inequity: Visible Minority and Intersectionality
by Nashit Chowdhury and Tanvir C. Turin
Int. J. Environ. Res. Public Health 2025, 22(7), 1007; https://doi.org/10.3390/ijerph22071007 - 26 Jun 2025
Viewed by 400
Abstract
Health disparities among marginalized populations persist in many developed countries despite substantial population health advancements, highlighting persistent systemic inequities. Visible minorities, defined as the non-White and non-Indigenous racialized population in Canada, face earlier disease onset, worse outcomes, barriers to care, and shorter life [...] Read more.
Health disparities among marginalized populations persist in many developed countries despite substantial population health advancements, highlighting persistent systemic inequities. Visible minorities, defined as the non-White and non-Indigenous racialized population in Canada, face earlier disease onset, worse outcomes, barriers to care, and shorter life expectancy. Conventional single-axis research frameworks, which examine factors like race, gender, or socioeconomic status in isolation, often fail to capture the complex realities of these disparities. Intersectionality theory, rooted in Black feminist thought and Critical Race Theory, offers a crucial lens for understanding how multiple systems of oppression intersect to shape health outcomes. However, its application in health research remains inconsistent, with often inadequate and tokenistic applications of this theory attributable to the limitations of a research approaches and resources, as well as biases from researchers. Integrating intersectionality with other relevant frameworks and theories in population health, such as ecosocial theory that explains how social inequalities become biologically embodied to create health inequities, strengthens the capacity to analyze health inequities comprehensively. This article advocates for thoughtful application of intersectionality in research to understand health disparities among visible minorities, urging methodological rigor, contextual awareness, and a focus on actionable interventions. By critically embedding intersectional principles into study design, researchers can move beyond describing disparities to identifying meaningful, equity-driven solutions. This approach supports a deeper, more accurate understanding of health inequities and fosters pathways toward transformative change in public health systems. Full article
(This article belongs to the Special Issue Perspectives in Health Care Sciences)
25 pages, 7146 KiB  
Article
The Spatial Dimension of Interreligious Dialogue: The Case of an Orthodox Church in Turin
by Caterina Pignotti and Maria Chiara Giorda
Religions 2025, 16(7), 833; https://doi.org/10.3390/rel16070833 - 25 Jun 2025
Viewed by 464
Abstract
Urban space is the social field in which religious diversity in contemporary Italy becomes most evident and where religious groups compete for visibility, recognition, and places of worship. The sites of so-called minorities can be observed as indicators of a plural religious geography. [...] Read more.
Urban space is the social field in which religious diversity in contemporary Italy becomes most evident and where religious groups compete for visibility, recognition, and places of worship. The sites of so-called minorities can be observed as indicators of a plural religious geography. Peaceful and conflictual dynamics are both expressed precisely through external recognition, which may be horizontal—religious and social—when between peers or vertical therefore juridical. This study presents the findings of research conducted in the city of Turin, an emblematic case within the Italian religious landscape for the management of religious diversity and interreligious dialogue initiatives. The analysis focuses on the Romanian Orthodox Church located in the historic center, which we interpret as a shared religious place. This case shows how a spatial and material perspective can offer an innovative approach to the field of interreligious dialogue. Places of worship are crucial spaces for interreligious dialogue: they serve as laboratories of local peace-building and experiments in coexistence, mutual respect, encounter, and conflict mediation. However, in a frame of multiple secularities, the ambiguity of both the national and regional legal systems contribute to marginality of the religious dimension in the city’s urban planning policies, ignoring the important role these places play as spaces of cohesion, identity, inclusion. Full article
Show Figures

Figure 1

9 pages, 1924 KiB  
Case Report
Cosmetic Outcomes of the First Bodybuilder Using a Low-Cost Modified Culture Technique for Burn Wound Coverage: A Case Report and Long-Term Follow-Up
by Wayne George Kleintjes and Tarryn Kay Prinsloo
Eur. Burn J. 2025, 6(2), 29; https://doi.org/10.3390/ebj6020029 - 3 Jun 2025
Viewed by 410
Abstract
Cultured epidermal autografts (CEAs) serve as an alternative permanent skin replacement, though high costs often limit their use in resource-constrained settings and to life-saving cases. This case report presents the first documented cosmetic application of a modified CEA technique in a bodybuilder, demonstrating [...] Read more.
Cultured epidermal autografts (CEAs) serve as an alternative permanent skin replacement, though high costs often limit their use in resource-constrained settings and to life-saving cases. This case report presents the first documented cosmetic application of a modified CEA technique in a bodybuilder, demonstrating favorable aesthetic outcomes. A 28-year-old Black male with a 20% total body surface area burn sustained in a domestic fire exhibited superficial and deep partial-thickness burns to the face, arms, torso, and feet. Refusing grafts from visible donor sites, treatment using a low-cost modified CEA approach was employed to minimize donor site morbidity. Keratinocytes harvested from a groin biopsy were cultured on Cutimed Sorbact® (Essity AB, BSN Medical (Pty) Ltd., Pinetown, RSA) dressings with autogenous plasma and hydrogel supplementation and incubated at 37 °C for two weeks. Xenografts provided temporary coverage before CEA transplantation. Graft take was 85%, with minor (15%) loss at 21 days, requiring small autograft coverage. At two months, the Vancouver Scar Scale score was 4, indicating optimal pigmentation, smoother texture, and minimal scarring. These findings align with limited studies on CEAs for cosmetic applications, suggesting this cost-effective technique may broaden the scope of CEAs beyond life-saving interventions to include aesthetic reconstruction, reducing both donor site morbidity and scarring. Full article
Show Figures

Figure 1

17 pages, 2944 KiB  
Article
Gemological Characteristics and Coloration Mechanism of Vanadium-Bearing Beryl from Nigeria
by Yunlong Hong, Yu Zhang, Xinyi Shao, Yanyi Mu and Yuemiao Yu
Minerals 2025, 15(6), 557; https://doi.org/10.3390/min15060557 - 23 May 2025
Viewed by 587
Abstract
Vanadium-bearing beryl is a vanadium-bearing variety of green beryl (distinct from emerald) that exhibits an “electro-optical” green (blue-green) color, which has led to its commercial popularity. However, the underlying coloration mechanism remains unclear. The present study adopted standard gemological tests and non-destructive spectroscopic [...] Read more.
Vanadium-bearing beryl is a vanadium-bearing variety of green beryl (distinct from emerald) that exhibits an “electro-optical” green (blue-green) color, which has led to its commercial popularity. However, the underlying coloration mechanism remains unclear. The present study adopted standard gemological tests and non-destructive spectroscopic tests, such as X-ray fluorescence, UV-visible-near infrared (UV-Vis-NIR), infrared and Raman spectroscopy, to analyze the vanadium-bearing beryl from Nigeria. The results of these tests indicated the presence of Fe as the predominant chromogenic element of vanadium-bearing beryl, followed by V, at a level exceeding that of Cr. Furthermore, the samples displayed lower levels of alkali and magnesium when compared to other beryls, accompanied by lower refractive indices and specific gravities. Spectroscopic analysis indicates that the structural channels are dominated by type I H2O, with CO2, HDO, and D2O molecules also present. The inclusions observed in vanadium-bearing beryl bear a resemblance to those found in typical aquamarines, which are raindrop-shaped inclusions, and to those found in emeralds of various origins, which are irregular, jagged, gas–liquid two-phase/three-phase inclusions. The broad UV-Vis-NIR absorption bands at 427 and 610 nm are characteristic of V3+ (and a minor amount of Cr3+). Charge transfer between Fe2+ and Fe3+ may also contribute to the 610 nm band, which is superimposed on the absorption bands of V3+ and Cr3+. These factors primarily contribute to the blue-green coloration of beryl. The absorption induced by V3+ in the visible violet-blue region exhibits stronger intensity and a greater tendency towards the blue region compared to Cr3+. Consequently, the resultant vanadium-bearing beryl acquires the yellow-green hue (induced by V) overlaid with the light blue (induced by charge transfer between Fe2+-Fe3+ pairs), resulting in the so-called “electro-optical” green (blue-green) beryl. Full article
(This article belongs to the Special Issue Formation Study of Gem Deposits)
Show Figures

Figure 1

21 pages, 4967 KiB  
Article
Evaluation of MODIS and VIIRS BRDF Parameter Differences and Their Impacts on the Derived Indices
by Chenxia Wang, Ziti Jiao, Yaowei Feng, Jing Guo, Zhilong Li, Ge Gao, Zheyou Tan, Fangwen Yang, Sizhe Chen and Xin Dong
Remote Sens. 2025, 17(11), 1803; https://doi.org/10.3390/rs17111803 - 22 May 2025
Cited by 1 | Viewed by 534
Abstract
Multi-angle remote sensing observations play an important role in the remote sensing of solar radiation absorbed by land surfaces. Currently, the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) teams have successively applied the Ross–Li kernel-driven bidirectional reflectance distribution [...] Read more.
Multi-angle remote sensing observations play an important role in the remote sensing of solar radiation absorbed by land surfaces. Currently, the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) teams have successively applied the Ross–Li kernel-driven bidirectional reflectance distribution function (BRDF) model to integrate multi-angle observations to produce long time series BRDF model parameter products (MCD43 and VNP43), which can be used for the inversion of various surface parameters and the angle correction of remote sensing data. Even though the MODIS and VIIRS BRDF products originate from sensors and algorithms with similar designs, the consistency between BRDF parameters for different sensors is still unknown, and this likely affects the consistency and accuracy of various downstream parameter inversions. In this study, we applied BRDF model parameter time-series data from the overlapping period of the MODIS and VIIRS services to systematically analyze the temporal and spatial differences between the BRDF parameters and derived indices of the two sensors from the site scale to the region scale in the red band and NIR band, respectively. Then, we analyzed the sensitivity of the BRDF parameters to variations in Normalized Difference Hotspot–Darkspot (NDHD) and examined the spatiotemporal distribution of zero-valued pixels in the BRDF parameter products generated by the constraint method in the Ross–Li model from both sensors, assessing their potential impact on NDHD derivation. The results confirm that among the three BRDF parameters, the isotropic scattering parameters of MODIS and VIIRS are more consistent, whereas the volumetric and geometric-optical scattering parameters are more sensitive and variable; this performance is more pronounced in the red band. The indices derived from the MODIS and VIIRS BRDF parameters were compared, revealing increasing discrepancies between the albedo and typical directional reflectance and the NDHD. The isotropic scattering parameter and the volumetric scattering parameter show responses that are very sensitive to increases in the equal interval of the NDHD, indicating that the differences between the MODIS and VIIRS products may strongly influence the consistency of NDHD estimation. In addition, both MODIS and VIIRS have a large proportion of zero-valued pixels (volumetric and geometric-optical parameter layers), whereas the spatiotemporal distribution of zero-valued pixels in VIIRS is more widespread. While the zero-valued pixels have a minor influence on reflectance and albedo estimation, such pixels should be considered with attention to the estimation accuracy of the vegetation angular index, which relies heavily on anisotropic characteristics, e.g., the NDHD. This study reveals the need in optimizing the Clumping Index (CI)-NDHD algorithm to produce VIIRS CI product and highlights the importance of considering BRDF product quality flags for users in their specific applications. The method used in this study also helps improve the theoretical framework for cross-sensor product consistency assessment and clarify the uncertainty in high-precision ecological monitoring and various remote sensing applications. Full article
(This article belongs to the Special Issue Remote Sensing of Solar Radiation Absorbed by Land Surfaces)
Show Figures

Figure 1

24 pages, 21734 KiB  
Article
Formation Mechanism and Gemological Characteristics of “Yellow-Skinned” Nanhong Agate in Northeastern Yunnan, China: Evidence from Mineralogy and Geochemistry
by Qiuyun Song, Shitao Zhang, Wenzhou Pu, Liurunxuan Chen, Ruohan Zuo, Xianchao Chen, Dai Zhang and Wenlian Liu
Crystals 2025, 15(5), 488; https://doi.org/10.3390/cryst15050488 - 21 May 2025
Viewed by 486
Abstract
The “yellow-skinned” Nanhong agate represents a unique variety of Nanhong agate found in northeastern Yunnan, China, and it is highly valued for its distinctive yellow exterior and clear red–yellow interface. Owing to the limited research on this variety, the present study provides the [...] Read more.
The “yellow-skinned” Nanhong agate represents a unique variety of Nanhong agate found in northeastern Yunnan, China, and it is highly valued for its distinctive yellow exterior and clear red–yellow interface. Owing to the limited research on this variety, the present study provides the first comprehensive analysis. Field surveys and various laboratory techniques—including polarizing microscopy, scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectrometry, ultraviolet–visible (UV-VIS) absorption spectrometry, Raman spectroscopy, micro X-ray diffraction (µ-XRD) with Rietveld refinement, electron microprobe analysis (EPMA), and laser ablation–inductively coupled plasma mass spectrometry (LA-ICP-MS)—were utilized to investigate its gemological, microtextural, spectroscopic, and geochemical characteristics. Field surveys identified the occurrence states of the “yellow-skinned” Nanhong agate. The laboratory results indicate that the agate primarily consists of α-quartz, with minor amounts of moganite, goethite, and hematite. The coloring mechanism observed in this study is consistent with the findings of previous studies: the external yellow coloration is due to goethite, while the internal red hue is attributed to hematite. Its unique pseudo-granular silica (Type III) structure provides a foundational basis for the later formation of the “yellow-skinned” agate variety, and geochemical data reveal the distribution patterns of elements. Based on geological surveys and experimental data, the formation of the “yellow-skinned” Nanhong agate in northeastern Yunnan can be divided into two stages: first, hydrothermal fluids filled the vesicles in the Permian Emeishan Basalt Formation (P2β), leading to the formation of primary Nanhong agate. Subsequently, the Type III primary agate underwent weathering, erosion, transport, and deposition in the red–brown sandy mudstone of the Lower Triassic Feixianguan Formation (T1f). The sedimentary environment in the second stage facilitated the conversion of outer hematite into goethite, resulting in the distinct “yellow-skinned” appearance with a clear red–yellow boundary. Based on the occurrence and stratigraphic relations, this study constrains the formation age of the “yellow-skinned” Nanhong agate to approximately 261.6 Ma. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

15 pages, 2549 KiB  
Article
Automated Implementation of the Edinburgh Visual Gait Score (EVGS)
by Ishaasamyuktha Somasundaram, Albert Tu, Ramiro Olleac, Natalie Baddour and Edward D. Lemaire
Sensors 2025, 25(10), 3226; https://doi.org/10.3390/s25103226 - 21 May 2025
Viewed by 665
Abstract
The Edinburgh Visual Gait Score (EVGS) is a commonly used clinical scale for assessing gait abnormalities, providing insight into diagnosis and treatment planning. However, its manual implementation is resource-intensive and requires time, expertise, and a controlled environment for video recording and analysis. To [...] Read more.
The Edinburgh Visual Gait Score (EVGS) is a commonly used clinical scale for assessing gait abnormalities, providing insight into diagnosis and treatment planning. However, its manual implementation is resource-intensive and requires time, expertise, and a controlled environment for video recording and analysis. To address these issues, an automated approach for scoring the EVGS was developed. Unlike past methods dependent on controlled environments or simulated videos, the proposed approach integrates pose estimation with new algorithms to handle operational challenges present in the dataset, such as minor camera movement during sagittal recordings, slight zoom variations in coronal views, and partial visibility (e.g., missing head) in some videos. The system uses OpenPose for pose estimation and new algorithms for automatic gait event detection, stride segmentation, and computation of the 17 EVGS parameters across the sagittal and coronal planes. Evaluation of gait videos of patients with cerebral palsy showed high accuracy for parameters such as hip and knee flexion but a need for improvement in pelvic rotation and hindfoot alignment scoring. This automated EVGS approach can minimize the workload for clinicians through the introduction of automated, rapid gait analysis and enable mobile-based applications for clinical decision-making. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

18 pages, 3160 KiB  
Article
Ultrasonic Beamforming-Based Visual Localisation of Minor and Multiple Gas Leaks Using a Microelectromechanical System (MEMS) Microphone Array
by Tao Wang, Jiawen Ji, Jianglong Lan and Bo Wang
Sensors 2025, 25(10), 3190; https://doi.org/10.3390/s25103190 - 19 May 2025
Viewed by 691
Abstract
The development of a universal method for real-time gas leak localisation imaging is crucial for preventing substantial financial losses and hazardous incidents. To achieve this objective, this study integrates array signal processing and electronic techniques to construct an ultrasonic sensor array for gas [...] Read more.
The development of a universal method for real-time gas leak localisation imaging is crucial for preventing substantial financial losses and hazardous incidents. To achieve this objective, this study integrates array signal processing and electronic techniques to construct an ultrasonic sensor array for gas leak detection and localisation. A digital microelectromechanical system microphone array is used to capture spatial ultrasonic information. By processing the array signals using beamforming algorithms, an acoustic spatial power spectrum is obtained, which facilitates the estimation of the locations of potential gas leak sources. In the pre-processing of beamforming, the Hilbert transform is employed instead of the fast Fourier transform to save computational resources. Subsequently, the spatial power spectrum is fused with visible-light images to generate acoustic localisation images, which enables the visualisation of gas leak sources. Experimental validation demonstrates that the system detects minor and multiple gas leaks in real time, meeting the sensitivity and accuracy requirements of embedded industrial applications. These findings contribute to the development of practical, cost-effective, and scalable gas leak detection systems for industrial and environmental safety applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 4511 KiB  
Article
Assessment of Feldspars from Central Portugal Pegmatites for Sustainable Ceramic Applications
by Carla Candeias, Adga Gomes and Fernando Rocha
Minerals 2025, 15(5), 527; https://doi.org/10.3390/min15050527 - 15 May 2025
Viewed by 570
Abstract
This study investigates the mineralogical, chemical, and fusibility characteristics of feldspar samples collected from eight pegmatitic bodies in central Portugal. The primary aim was to evaluate their suitability for use in ceramic applications, driven by the need to valorize local georesources, reduce dependence [...] Read more.
This study investigates the mineralogical, chemical, and fusibility characteristics of feldspar samples collected from eight pegmatitic bodies in central Portugal. The primary aim was to evaluate their suitability for use in ceramic applications, driven by the need to valorize local georesources, reduce dependence on imported raw materials, and contribute to the sustainability and competitiveness of the Portuguese ceramic sector. Samples were analyzed by X-Ray Diffraction (XRD), X-ray Fluorescence (XRF), inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Firing tests were performed to assess fusibility, whiteness, and visible impurity behavior. Results indicate that seven of the eight samples were dominated by a combination of microcline and albite, with minor amounts of quartz and muscovite. Crystallinity indices varied across samples, reflecting differences in mineral order and thermal reactivity. Chemical compositions showed acceptable levels of SiO2 and Al2O3, and total alkali contents (Na2O + K2O) between 10% and 16%, aligning with industrial standards for ceramic raw materials. The Fe2O3 contents were below 0.3% in most samples, suggesting favorable conditions for whiteness upon firing. Loss on ignition (LOI) values were generally low, except for one sample rich in muscovite. Fusibility behavior varied significantly between samples, with albite-rich samples showing lower melting points and better flow characteristics, while microcline-dominant samples required higher temperatures for vitrification but contributed to structural stability. The K2O/Na2O ratio presented values favoring earlier softening and fluxing. Whiteness revealed that samples with low Fe2O3 and TiO2 content, particularly those with low mica content, achieved the best aesthetic outcomes post-firing. Full article
(This article belongs to the Collection Clays and Other Industrial Mineral Materials)
Show Figures

Figure 1

18 pages, 3874 KiB  
Article
Rome’s Religious Diversity: Cultural Memory, Mnemosyne, and Urban Heritage
by Angelica Federici
Religions 2025, 16(5), 610; https://doi.org/10.3390/rel16050610 - 12 May 2025
Viewed by 502
Abstract
Rome, historically regarded as a monumental center of Catholic Christendom, now stands as a multi-layered environment shaped by diverse religious communities whose overlapping architectures, rites, and narratives expand the city’s cultural memory. This article employs Warburg’s Mnemosyne methodology to investigate how symbolic motifs, [...] Read more.
Rome, historically regarded as a monumental center of Catholic Christendom, now stands as a multi-layered environment shaped by diverse religious communities whose overlapping architectures, rites, and narratives expand the city’s cultural memory. This article employs Warburg’s Mnemosyne methodology to investigate how symbolic motifs, architectural forms, and intangible practices—from Eastern Orthodox iconography to the Great Mosque of Rome’s transnational design—migrate, adapt, and reconfigure within Rome’s urban fabric. Drawing on interdisciplinary approaches from cultural memory studies, religious studies, and urban geography, it reveals how minority communities—Jewish, Muslim, Orthodox Christian, Protestant, Methodist, and Scientology—act as “memory agents”, negotiating visibility and introducing new heritage layers that challenge monolithic perceptions of Rome’s identity. The analysis underscores that intangible heritage, such as chanting, prayer, and interfaith festivals, is equally central to understanding how collective memory is produced and transmitted. Tensions arise when key stakeholders do not validate these emerging cultural forms or question their “authenticity”, reflecting the contested nature of heritage-making. Ultimately, Rome’s religious plurality, shaped by migration and historical transformations, emerges as a dynamic memoryscape. By recognizing the vital role of minority faiths in heritage-making, this study contributes to broader debates on cultural pluralism, super-diversity, and the evolving definitions of religious and cultural heritage in contemporary global cities. Full article
Show Figures

Figure 1

Back to TopTop