Journal Description
Applied Biosciences
Applied Biosciences
is an international, peer-reviewed, open access journal on all aspects of applied biosciences published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus and other databases.
- Journal Rank: CiteScore - Q2 (Immunology and Microbiology (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 23.4 days after submission; acceptance to publication is undertaken in 14.9 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Applied Biosciences is a companion journal of Applied Sciences.
Latest Articles
Spatial and Seasonal Analysis of Phyllosphere Bacterial Communities of the Epiphytic Gymnosperm Zamia pseudoparasitica
Appl. Biosci. 2025, 4(3), 35; https://doi.org/10.3390/applbiosci4030035 - 11 Jul 2025
Abstract
►
Show Figures
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during
[...] Read more.
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during the rainy and dry seasons in the Republic of Panama. We used DNA metabarcoding to describe the total bacteria community with the 16S rRNA gene and the diazotrophic community with nifH gene. Common taxa included members of the Rhizobiales, Frankiales, Pseudonocardiales, Acetobacteriales, and the diazotrophic community was dominated by Cyanobacateria. We observed similar patterns of alpha diversity across sites and seasons, and no community differences were seen within sites between the rainy and dry seasons for either the 16S rRNA or nifH genes. However, pairwise comparisons showed some statistically significant differences in community composition between sites and seasons, but these explained only a small portion of the variation. Beta diversity partitioning indicated that communities were more phylogenetically closely related than expected by chance, indicative of strong environmental or host filtering shaping these phyllosphere communities. These results highlight the influence of host-driven selection and habitat stability in shaping phyllosphere microbiota, offering new insights into microbial assembly in tropical canopy ecosystems.
Full article
Open AccessFeature PaperArticle
Bioinformatics Analysis of Unique High-Density Lipoprotein-MicroRNAs Cargo Reveals Its Neurodegenerative Disease Potential
by
Diana Marisol Abrego-Guandique, Maria Cristina Caroleo, Filippo Luciani and Erika Cione
Appl. Biosci. 2025, 4(3), 34; https://doi.org/10.3390/applbiosci4030034 - 8 Jul 2025
Abstract
►▼
Show Figures
Recent findings have identified high-density lipoprotein (HDL) as a carrier of microRNAs, small non-coding RNAs that regulate gene expression, suggesting a potential novel functional and biochemical role for HDL-microRNA cargo. Here, we conduct an in-depth bioinformatics analysis of unique HDL-microRNA cargo to uncover
[...] Read more.
Recent findings have identified high-density lipoprotein (HDL) as a carrier of microRNAs, small non-coding RNAs that regulate gene expression, suggesting a potential novel functional and biochemical role for HDL-microRNA cargo. Here, we conduct an in-depth bioinformatics analysis of unique HDL-microRNA cargo to uncover their molecular mechanisms and potential applications as clinical biomarkers. First, using the Gene Expression Omnibus (GEO), we performed computational analysis on public human microRNA array datasets (GSE 25425; platform GPL11162) obtained from highly purified fractions of HDL in human plasma in order to identify their unique miRNA cargo. This led to the identification of eleven miRNAs present only in HDL, herein listed: hsa-miR-210, hsa-miR-26a-1, hsa-miR-628-3p, hsa-miR-31, hsa-miR-501-5p, hsa-miR-100-3p, hsa-miR-571, hsa-miR-100-5p, hsa-miR-23a, hsa-miR-550, and hsa-miR-432. Then, these unique miRNAs present in HDL were analyzed using a bioinformatics approach to recognize their validated target genes. The ClusterProfiler R package applied gene ontology and KEGG enrichment analysis. The key genes mainly enriched in the biological process of cellular regulation were identified and linked to neurodegeneration. Finally, the protein–protein interaction and co-expression network were analyzed using the STRING and GeneMANIA Cytoscape plugins.
Full article

Figure 1
Open AccessArticle
Evolution of the Genetic Diversity and Spatial Distribution of Self-Establishing Black Locust (Robinia Pseudoacacia L.) Stands
by
Sinilga Černulienė, Rita Verbylaitė and Vidas Stakėnas
Appl. Biosci. 2025, 4(3), 33; https://doi.org/10.3390/applbiosci4030033 - 7 Jul 2025
Abstract
►▼
Show Figures
Robinia pseudoacacia is one of the most widely introduced—but also controversial—tree species in Europe. On the one hand, it is valued for its productivity, timber quality, and melliferous blossom. On the other hand, it is highly invasive and causes habitat change and homogenization.
[...] Read more.
Robinia pseudoacacia is one of the most widely introduced—but also controversial—tree species in Europe. On the one hand, it is valued for its productivity, timber quality, and melliferous blossom. On the other hand, it is highly invasive and causes habitat change and homogenization. The aim of the study reported on here was to assess the genetic diversity of selected R. pseudoacacia stands in Lithuania in districts with the highest black locust stands frequency and to evaluate its spatial distribution in self-establishing stands. To achieve this aim, we employed four nuclear SSR loci (Rops 02, Rops 05, Rops 06, and Rops 08) and investigated the genetic diversity of five R. pseudoacacia plots. The study results reveal that R. pseudoacacia in Lithuania is genetically diverse (the average allele number per plot was 3.66, and the average Ho was 0.83). R. pseudoacacia in the plots forms tight clonal groups that hardly intermix with each other; it also spreads by seeds (66 single-copy genotypes were found in total in all 5 investigated plots). R. pseudoacacia stands in Lithuania originate from different seed sources and from different introduction events, as revealed by the allelic pattern, genetic diversity, and genetic differentiation among the research plots.
Full article

Figure 1
Open AccessArticle
Multi-Sensor Comparison for Nutritional Diagnosis in Olive Plants: A Machine Learning Approach
by
Catarina Manuelito, João de Deus, Miguel Damásio, André Leitão, Luís Alcino Conceição, Rocío Arias-Calderón, Carla Inês, António Manuel Cordeiro, Eduardo Fernandes, Luís Albino, Miguel Barbosa, Filipe Fonseca and José Silvestre
Appl. Biosci. 2025, 4(3), 32; https://doi.org/10.3390/applbiosci4030032 - 2 Jul 2025
Abstract
►▼
Show Figures
The intensification of olive growing has raised environmental concerns, particularly regarding nutrient loss from excessive fertiliser use. In line with the European Union’s Farm to Fork strategy, which aims to halve the soil nutrient losses by 2030, this study evaluates the effectiveness of
[...] Read more.
The intensification of olive growing has raised environmental concerns, particularly regarding nutrient loss from excessive fertiliser use. In line with the European Union’s Farm to Fork strategy, which aims to halve the soil nutrient losses by 2030, this study evaluates the effectiveness of two sensor-based approaches—proximal sensing with a FLAME spectrometer and remote sensing via UAV-mounted multispectral imaging—compared with foliar chemical analyses as the reference standard, for diagnosing the nutritional status of olive trees. The research was conducted in Elvas, Portugal, between 2022 and 2023, across three olive cultivars (‘Azeiteira’, ‘Arbequina’, and ‘Koroneiki’) subjected to different fertilisation regimes. Machine learning (ML) models showed strong correlations between sensor data and nutrient levels: the multispectral sensor performed best for phosphorus (P) (determination coefficient [ ] = 0.75) and potassium (K) ( = 0.73), while the FLAME spectrometer was more accurate for nitrogen (N) ( = 0.64). These findings underscore the potential of sensor-based technologies for non-destructive, real-time nutrient monitoring, with each sensor offering specific strengths depending on the target nutrient. This work contributes to more sustainable and data-driven fertilisation strategies in precision agriculture.
Full article

Figure 1
Open AccessArticle
Microencapsulated Jaboticaba Berry (M. cauliflora) Juice Improves Storage Stability and In Vitro Bioaccessibility of Polyphenols
by
Tatiana de Muros Amaral Barcellos, Mônica Volino-Souza, Carini Aparecida Lelis, Carlos Adam Conte Junior and Thiago da Silveira Alvares
Appl. Biosci. 2025, 4(3), 31; https://doi.org/10.3390/applbiosci4030031 - 20 Jun 2025
Abstract
►▼
Show Figures
Jaboticaba berry is a rich source of polyphenols with bioactive properties. However, polyphenols are known for their high reactivity under environmental conditions, which poses a challenge to producing stable, functional components for the food industry. This study investigated the storage stability and bioaccessibility
[...] Read more.
Jaboticaba berry is a rich source of polyphenols with bioactive properties. However, polyphenols are known for their high reactivity under environmental conditions, which poses a challenge to producing stable, functional components for the food industry. This study investigated the storage stability and bioaccessibility of polyphenols in microencapsulated jaboticaba juice over 21 days at three storage temperatures: −20 °C, 4 °C, and 25 °C. Additionally, phenolic compounds and antioxidant capacity were evaluated before and after in vitro simulated gastrointestinal digestion. Microencapsulation was performed by spray drying at 160 °C using maltodextrin at different concentrations (10%, 12%, and 15%) as the wall material. The results showed that the stability of polyphenols during storage was significantly influenced by both temperature and the proportion of maltodextrin. Greater degradation of phenolic compounds was observed at 25 °C, particularly in the formulation with 10% maltodextrin. On the other hand, the bioaccessibility of polyphenols was significantly higher in microencapsulated juice after simulated gastrointestinal digestion compared to non-encapsulated jaboticaba juice (p < 0.05). These findings suggest that microencapsulation technique improved the bioaccessibility of phenolic compounds in jaboticaba and promoted better stability with the use of a higher concentration of maltodextrin. In conclusion, microencapsulation is a promising strategy for the development of functional food products enriched with natural bioactive compounds, providing greater protection and efficiency in delivering their health benefits.
Full article

Figure 1
Open AccessArticle
A Two-Stage Method for Decorrelating the Errors in Log-Linear Models for Spectral Density Comparisons in Neural Spike Sequences
by
Georgios E. Michailidis, Vassilios G. Vassiliadis and Alexandros G. Rigas
Appl. Biosci. 2025, 4(2), 30; https://doi.org/10.3390/applbiosci4020030 - 12 Jun 2025
Abstract
►▼
Show Figures
In this paper, we present three log-linear models for comparing spectral density functions (SDFs) of neural spike sequences (NSSs). The logarithmic (ln) ratios of the estimated SDFs are modeled as polynomial expressions with respect to angular frequencies plus residual series with autocorrelated errors.
[...] Read more.
In this paper, we present three log-linear models for comparing spectral density functions (SDFs) of neural spike sequences (NSSs). The logarithmic (ln) ratios of the estimated SDFs are modeled as polynomial expressions with respect to angular frequencies plus residual series with autocorrelated errors. The advantage of the proposed models is that they can be applied within certain frequency ranges. Analysis of point processes in the frequency domain can be performed to obtain estimates of the SDFs of NSSs by smoothing the mean-corrected periodograms using moving average weighting schemes. The weighting schemes may differ in the estimated SDFs. To decorrelate the error terms in the log models, we apply a two-stage method: in the first stage, the error terms are identified by choosing a suitable model, while in the second stage, the reliable estimates of the unknown parameters involved in the polynomial expressions are derived by decorrelating the data. An illustrative example from the field of neurophysiology is described, in which the neuromuscular system of the muscle spindle is affected by three different stimuli: (a) a gamma motoneuron, (b) an alpha motoneuron, and (c) a combination of gamma and alpha motoneurons. It is shown that the effect of the gamma motoneuron on the muscle spindle is shifted by the presence of the alpha motoneuron to lower frequencies in the range of [1.03, 7.6] Hz, whereas the presence of the gamma motoneuron shifts the effect of the alpha motoneuron in two bands of frequencies: one in the range of [13.5, 19.9) Hz and the other in the range of [19.9, 30.8] Hz.
Full article

Figure 1
Open AccessArticle
Linear DNA–Chitosan Nanoparticles: Formulation Challenges and Transfection Efficiency in Lung Cell Line
by
Chiara Migone, Angela Fabiano, Ylenia Zambito, Rebecca Piccarducci, Laura Marchetti, Chiara Giacomelli, Claudia Martini and Anna Maria Piras
Appl. Biosci. 2025, 4(2), 29; https://doi.org/10.3390/applbiosci4020029 - 6 Jun 2025
Abstract
►▼
Show Figures
Linear DNA constructs are used in gene delivery and therapy application due to their capacity of integration into the mammalian genome, offering stable transgene expression. Compared to circular plasmids, linear DNA also has the advantage that its dimension and steric hindrance are directly
[...] Read more.
Linear DNA constructs are used in gene delivery and therapy application due to their capacity of integration into the mammalian genome, offering stable transgene expression. Compared to circular plasmids, linear DNA also has the advantage that its dimension and steric hindrance are directly correlated to the length of the nucleotide chain. These considerations make linear DNA an effective choice for gene delivery pilot studies, where formulations and transfection efficiency calculations are studied considering the nucleic acid dimensions. Meanwhile, the development of DNA–chitosan nanoparticles (NPs) has gained significant interest for their potential in nucleic acid delivery, especially as non-viral gene delivery systems and for embedding linear DNA fragments, as well as gene delivery to the lung. This study explored an easy polyelectrolyte complexing preparation of linear DNA-loaded chitosan nanoparticles. Among the different formulations of nanoparticles prepared, the optimal one exhibited a size of approximately 290 nm, an encapsulation efficiency of 86% and a zeta potential of 25 mV. Additionally, this study examined how the concentration of DNA in solution influenced nanoparticle formation, encapsulation efficiency and particle size. In particular, transient transfection of the chitosan–linear DNA fragment complex, encoding for green fluorescent protein (GFP), was conducted in human pulmonary distal lung cells (NCI-H441 cells), demonstrating successful cellular internalization and protein expression. These studies highlight the potential of DNA–chitosan NPs in nucleic acid delivery, particularly for pulmonary applications. Future works will focus on formulating the achieved carrier into an inhalable dosage form to improve its translational application.
Full article

Figure 1
Open AccessArticle
A Flow Cytometry Protocol for Measurement of Plant Genome Size Using Frozen Material
by
Abhishek Soni, Lena Constantin, Agnelo Furtado and Robert J Henry
Appl. Biosci. 2025, 4(2), 28; https://doi.org/10.3390/applbiosci4020028 - 4 Jun 2025
Abstract
►▼
Show Figures
Flow cytometry is widely applied to infer the ploidy and genome size (GS) of plant nuclei. The conventional approach of sample preparation, reliant on fresh plant material to release intact nuclei, often results in poor yields of nuclei in conditions when a plant
[...] Read more.
Flow cytometry is widely applied to infer the ploidy and genome size (GS) of plant nuclei. The conventional approach of sample preparation, reliant on fresh plant material to release intact nuclei, often results in poor yields of nuclei in conditions when a plant material cannot be kept fresh due to logistical constraints. Previous attempts to use frozen plant material were mainly limited to ploidy analysis and relied on chopping methods, which restrict the material input and often result in poor nuclei yield, especially in frozen samples, due to incomplete disruption. Here, we present a modified protocol for GS estimation using frozen plant material that facilitates larger volumes of tissue to be processed while improving debris removal. Nuclei isolated from this protocol can also be used for DNA or RNA extraction. Genome size estimates from frozen material are similar to those from fresh material, with a reduction in error range, although not always significant (p > 0.05). In certain species, frozen samples can yield substantially more nuclei than fresh material. With the addition of specific debris compensation algorithms, coefficient of variation (CV%) can be maintained below 5%. This method has special value in estimating the GS of samples collected from remote locations and frozen for use in plant genome sequencing. Freezing preserves high-quality DNA and RNA, enabling the same sample to be used for both flow cytometry and genome sequencing.
Full article

Figure 1
Open AccessArticle
Green Synthesis and Characterization of Iron Oxide Nanoparticles Using Egeria densa Plant Extract
by
Maruf Olaide Yekeen, Mubarak Ibrahim, James Wachira and Saroj Pramanik
Appl. Biosci. 2025, 4(2), 27; https://doi.org/10.3390/applbiosci4020027 - 2 Jun 2025
Abstract
►▼
Show Figures
An aqueous leaf extract of Egeria densa was used to green-synthesize iron (II) and iron (III) oxide nanoparticles from ferrous sulphate and ferric chloride, respectively. The successful green synthesis of the nanoparticles was confirmed through UV–visible spectroscopy, and the colour of the mixtures
[...] Read more.
An aqueous leaf extract of Egeria densa was used to green-synthesize iron (II) and iron (III) oxide nanoparticles from ferrous sulphate and ferric chloride, respectively. The successful green synthesis of the nanoparticles was confirmed through UV–visible spectroscopy, and the colour of the mixtures changed from light-yellow to green-black and reddish-brown for FeO–NPs and Fe2O3–NPs, respectively. The morphological characteristics of the nanoparticles were determined using an X-ray diffractometer (XRD), a Fourier transform infrared spectrophotometer (FTIR), a transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy (EDX). The UV–Vis spectrum of the FeO–NPs showed a sharp peak at 290 nm due to the surface plasmon resonance, while that of the Fe2O3–NPs showed a sharp peak at 300 nm. TEM analysis revealed that the FeO–NPs were oval to hexagonal in shape and were clustered together with an average size of 18.49 nm, while the Fe2O3-NPs were also oval to hexagonal in shape, but some were irregularly shaped, and they clustered together with an average size of 27.96 nm. EDX analysis showed the presence of elemental iron and oxygen in both types of nanoparticles, indicating that these nanoparticles were essentially present in oxide form. The XRD patterns of both the FeO–NPs and Fe2O3–NPs depicted that the nanoparticles produced were crystalline in nature and exhibited the rhombohedral crystal structure of hematite. The FT-IR spectra revealed that phenolic compounds were present on the surface of the nanoparticles and were responsible for reducing the iron salts into FeO–NPs and Fe2O3–NPs. Conclusively, this work demonstrated for the first time the ability of Elodea aqueous extract to synthesize iron-based nanoparticles from both iron (II) and iron (III) salts, highlighting its versatility as a green reducing and stabilizing agent. The dual-path synthesis approach provides new insights into the influence of the precursor oxidation state on nanoparticle formation, thereby expanding our understanding of plant-mediated nanoparticle production and offering a sustainable route for the fabrication of diverse iron oxide nanostructures. Furthermore, it provides a simple, cost-effective, and environmentally friendly method for the synthesis of the FeO–NPs and Fe2O3–NPs using Egeria densa.
Full article

Figure 1
Open AccessReview
Edible Terrestrial Cyanobacteria for Food Security in the Context of Climate Change: A Comprehensive Review
by
Midori Kurahashi and Angelica Naka
Appl. Biosci. 2025, 4(2), 26; https://doi.org/10.3390/applbiosci4020026 - 16 May 2025
Abstract
►▼
Show Figures
This review examines the history of consumption, life cycle, and culture conditions of seven edible mucilaginous terrestrial cyanobacterial strains—Nostoc flagelliforme, Nostoc commune, Nostoc sphaeroides, Nostoc sphaericum, Nostoc verrucosum, Aphanothece sacrum, and Nostochopsis lobatus—as resilient and
[...] Read more.
This review examines the history of consumption, life cycle, and culture conditions of seven edible mucilaginous terrestrial cyanobacterial strains—Nostoc flagelliforme, Nostoc commune, Nostoc sphaeroides, Nostoc sphaericum, Nostoc verrucosum, Aphanothece sacrum, and Nostochopsis lobatus—as resilient and sustainable food sources in the face of climate change. Traditionally consumed across various cultures and known for their resilience in extreme environments, these cyanobacteria offer high nutritional value, including proteins, vitamins, and essential fatty acids, making them promising candidates for addressing food security. Their ability to fix nitrogen reduces reliance on synthetic fertilizers, enhancing agricultural applications by improving soil fertility and minimizing dependence on fossil fuel-derived chemicals. Unlike conventional crops, these cyanobacteria require minimal resources and do not compete for arable land, positioning them as ideal candidates for low-impact food production. Despite these advantages, the review highlights the need for scalable and cost-effective cultivation methods to fully realize their potential in supporting a resilient global food supply. Additionally, it underscores the importance of ensuring their safety for consumption, particularly regarding toxin content.
Full article

Figure 1
Open AccessArticle
Direct Expression of CPT1a Enables a High Throughput Platform for the Discovery of CPT1a Modulators
by
Jason Chen, Tuyen Tran, Anthony Wong, Luofei Wang, Pranavi Annaluru, Vibha Sreekanth, Samika Murthy, Laasya Munjeti, Tanya Park, Utkarsh Bhat, Glynnis Leong, Yumeng Li, Simeng Chen, Natalie Kong, Rushika Raval, Yining Xie, Shreya Somani, Aditi Manohar Bhambhani, Zoey Zhu, Landen Chu, Kimai Dosch, Edward Njoo and Zhan Chenadd
Show full author list
remove
Hide full author list
Appl. Biosci. 2025, 4(2), 25; https://doi.org/10.3390/applbiosci4020025 - 12 May 2025
Abstract
►▼
Show Figures
Carnitine palmitoyltransferase 1 (CPT1), which catalyzes the rate-limiting step of fatty acid oxidation, has been implicated in therapeutic approaches to several human diseases characterized by aberrant lipid metabolism. The isoform-specific quantification of CPT1 activity is essential in the characterization of small molecule inhibitors
[...] Read more.
Carnitine palmitoyltransferase 1 (CPT1), which catalyzes the rate-limiting step of fatty acid oxidation, has been implicated in therapeutic approaches to several human diseases characterized by aberrant lipid metabolism. The isoform-specific quantification of CPT1 activity is essential in the characterization of small molecule inhibitors of CPT1, but several existing means to quantify enzymatic activity, including the use of radioisotope-labeled carnitine, are not amenable to scalable, high throughput screening. Here, we demonstrate that mitochondrial extracts from Expi293 cells transfected with a CPT1a plasmid are a reliable and robust source of catalytically active human CPT1. Moreover, with a source of catalytically active enzyme in hand, we modified a previously reported colorimetric method of coenzyme A (CoA) easily scalable to a 96-well format for the screening of CPT1a inhibitors. This assay platform was validated by two previously reported inhibitors of CPT1a: R-etomoxir and perhexiline. To further demonstrate the applicability of this method in small molecule screening, we prepared and screened a library of 87 known small molecule APIs, validating the inhibitory effect of chlorpromazine on CPT1.
Full article

Graphical abstract
Open AccessReview
Urinary Markers for Prostate Cancer: State of the Art
by
Carlo Giorgio Costi, Serena Sartori, Riccardo Danuso, Andrea Piasentin, Paolo Umari and Giovanni Liguori
Appl. Biosci. 2025, 4(2), 24; https://doi.org/10.3390/applbiosci4020024 - 8 May 2025
Cited by 1
Abstract
Prostate cancer (PCa) is one of the most common malignancies in men, where early and accurate detection is crucial. While PSA testing has been the diagnostic standard, its limited specificity leads to unnecessary biopsies and missed significant cancers. Urinary biomarkers such as PCA3
[...] Read more.
Prostate cancer (PCa) is one of the most common malignancies in men, where early and accurate detection is crucial. While PSA testing has been the diagnostic standard, its limited specificity leads to unnecessary biopsies and missed significant cancers. Urinary biomarkers such as PCA3 and TMPRSS2-ERG and multi-marker assays (MyProstateScore, SelectMDx, and ExoDx) offer a promising alternative. This narrative review examines their diagnostic performance and clinical utility with the aim of understanding whether they can be integrated with the established tests and exams already in use. A literature search of PubMed, Scopus, and Medline identified some relevant recent studies (2010–2025). The findings show that PCA3 and TMPRSS2-ERG improve specificity over PSA, while multi-marker tests enhance risk stratification and reduce unnecessary procedures. MPS integrates urinary biomarkers with PSA, achieving over 95% sensitivity and negative predictive value for clinically significant cancers. SelectMDx demonstrates ~90% negative predictive value, and ExoDx assesses urinary exosomes to predict aggressive disease. Despite their advantages, challenges persist, including variability in performance, cost, and accessibility. Urinary biomarkers represent a major step toward more precise, less invasive diagnostics, with future research needed to optimize clinical integration and cost-effectiveness.
Full article
(This article belongs to the Special Issue Feature Review for Applied Biosciences)
►▼
Show Figures

Figure 1
Open AccessReview
Can Caenorhabditis elegans Serve as a Reliable Model for Drug and Nutraceutical Discovery?
by
Opeyemi. O. Deji-Oloruntoba, Taiwo. O. Elufioye, Stephen Adeniyi Adefegha and Miran Jang
Appl. Biosci. 2025, 4(2), 23; https://doi.org/10.3390/applbiosci4020023 - 2 May 2025
Cited by 1
Abstract
►▼
Show Figures
Experimental research demands the selection of appropriate models to align with study objectives and conditions. Traditional experimental models, such as in vivo animal studies and in vitro systems like organoids, present nutraceutical and pharmaceutical research limitations such as high cost, ethical concerns, long
[...] Read more.
Experimental research demands the selection of appropriate models to align with study objectives and conditions. Traditional experimental models, such as in vivo animal studies and in vitro systems like organoids, present nutraceutical and pharmaceutical research limitations such as high cost, ethical concerns, long lifespan, and difficult genetic manipulation. Caenorhabditis elegans has proved to be a valuable model as a result of its genetic and physiological similarities to higher organisms, fully sequenced genome, short life cycle, and transparency. These features enable high-throughput screening, molecular pathway analysis, and lifespan and healthspan assays. C. elegans has significantly advanced the discovery of bioactive molecules with therapeutic potential, shedding light on aging, neurodegeneration, metabolic disorders, and immune responses. Its utility in pharmacokinetics and validation of nutraceuticals underscores its role in longevity and metabolic health research. Additionally, its conserved stress response, apoptosis, and pathogen recognition pathways facilitate the study of pharmacological interventions for inflammation, oxidative stress, and infections. This study evaluates the applicability of C. elegans as a model for in vivo screening, analyses its role in drug efficacy testing, and discusses relevant advancements, associated difficulties, and what to expect of C. elegans in research.
Full article

Figure 1
Open AccessArticle
Maximizing Common Bean (Phaseolus vulgaris L.) Productivity Through Application of Organic and Inorganic Fertilizers in Alkaline Soil
by
Safiullah Habibi, Shafiqullah Aryan, Ali Yawar Seerat, Kalimullah Saighani and Mohammad Daud Haidari
Appl. Biosci. 2025, 4(2), 22; https://doi.org/10.3390/applbiosci4020022 - 1 May 2025
Abstract
►▼
Show Figures
Common beans are a vital source of protein, vitamins, and minerals. Increasing common beans productivity is crucial for improving food security and farmers’ incomes globally. This study evaluated the growth and yield responses of common beans to integrated organic and inorganic fertilizers under
[...] Read more.
Common beans are a vital source of protein, vitamins, and minerals. Increasing common beans productivity is crucial for improving food security and farmers’ incomes globally. This study evaluated the growth and yield responses of common beans to integrated organic and inorganic fertilizers under field conditions at the Faculty of Agriculture, Kabul University. The trial was repeated over two consecutive growing seasons in 2020 and 2021, using a randomized complete block design with 18 treatments and three replications. The fertilizers used included urea (N) (0, 60, and 90 kg/ha), diammonium phosphate (D) (0, 50, and 100 kg/ha), and farmyard manure (O) (0 and 5000 kg/ha). The results show that integrated fertilizers, particularly O5000N60D50, O5000N60D100, O5000N90D50, and O5000N90D100, significantly increased growth and yield parameters. In 2020, the grain yield increased significantly (p < 0.05) by 75.6, 76.7, and 68.4% with the O5000N60D50, O5000N60D100, and O5000N90D100 treatments, respectively. In 2021, O5000N60D50, O5000N60D100, and O5000N90D50 showed significant yield increases of 94.7, 89.6, and 97.9%, respectively. The grain yield strongly correlated with the SPAD value (r = 0.84), number of pods per plant (r = 0.71), and number of seeds per pod (r = 0.66) in 2020, and it more strongly correlated with the SPAD value (r = 0.91), number of pods per plant (r = 0.77), and number of seeds per pod (r = 0.76) in 2021. A principal component analysis highlighted the effectiveness of organic–inorganic fertilizer combinations, particularly O5000N60D50, in enhancing productivity while potentially reducing inorganic fertilizer application. This study demonstrates that integrating organic and inorganic fertilizers enhances sustainable crop productivity and reduces negative environmental impacts, particularly in regions facing nutrient depletion and drought conditions.
Full article

Figure 1
Open AccessCommunication
Bioactive Factors Isolated and Purified from Bovine Colostrum Can Restore Extracellular Matrix Under Degradation by Metalloproteinases
by
Federica Coppa, Graziella Giuffrida, Giulia Iannello, Stefania Pennisi, Greta Ferruggia and Maria Violetta Brundo
Appl. Biosci. 2025, 4(2), 21; https://doi.org/10.3390/applbiosci4020021 - 8 Apr 2025
Abstract
The ECM is composed of a considerable number of biochemically and structurally diverse constituents. ECM is a highly dynamic system that constantly receives and sends biological, chemical and mechanical signals. Several studies suggest that mechanical signals derived from the extracellular microenvironment regulate skin
[...] Read more.
The ECM is composed of a considerable number of biochemically and structurally diverse constituents. ECM is a highly dynamic system that constantly receives and sends biological, chemical and mechanical signals. Several studies suggest that mechanical signals derived from the extracellular microenvironment regulate skin regeneration and wound healing. Tests measuring collagen contraction showed a significant difference in contraction activation in samples treated with the 2% colostrum derivative mixture compared to the control. The analysis of the supernatant showed an inhibition of metalloproteinase-2 expression and an increase in collagen secretion by fibroblasts in treatment samples. Our hypothesis is that the molecules extracted and purified from bovine colostrum can restore the ECM environment qualitative and quantitative characteristics, thus permitting, through a mechanical action, the restoration of the wound due to the transduction of the signal activated by the integrins.
Full article
(This article belongs to the Special Issue Anatomy and Regenerative Medicine: From Methods to Applications)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Umckalin Promotes Melanogenesis in B16F10 Cells Through the Activation of Wnt/β-Catenin and MAPK Signaling Pathways
by
So-Yeon Oh and Chang-Gu Hyun
Appl. Biosci. 2025, 4(2), 20; https://doi.org/10.3390/applbiosci4020020 - 2 Apr 2025
Abstract
Melanogenesis is regulated by melanogenic enzymes such as tyrosinase (TYR), TRP-1, and TRP-2, whose expression is controlled by the microphthalmia-associated transcription factor (MITF). Various signaling pathways, including cAMP/PKA, MAPK/ERK, Wnt/β-catenin, and PI3K/Akt, are involved in this process and have been a focal point
[...] Read more.
Melanogenesis is regulated by melanogenic enzymes such as tyrosinase (TYR), TRP-1, and TRP-2, whose expression is controlled by the microphthalmia-associated transcription factor (MITF). Various signaling pathways, including cAMP/PKA, MAPK/ERK, Wnt/β-catenin, and PI3K/Akt, are involved in this process and have been a focal point of research for treating pigmentation disorders. However, developing effective therapies for conditions like vitiligo remains a significant challenge. In this study, the effects of umckalin on melanogenesis and its molecular mechanisms were investigated using B16F10 cells, a mouse melanoma cell line widely used as a model for melanin production studies. B16F10 cells produce melanin via melanosomes and express key melanogenic enzymes such as TYR, TRP-1, and TRP-2, making them a reliable model system. Our findings demonstrate that umckalin promotes melanogenesis in a concentration-dependent manner by upregulating TRP-1 expression and activating the MITF signaling pathway. Additionally, umckalin modulated key signaling pathways, including GSK3β/β-catenin and MAPK, to enhance melanogenesis. In conclusion, umckalin enhances melanogenic enzyme activity by activating critical signaling pathways, thereby promoting melanin synthesis. These findings suggest that umckalin could be a promising candidate for developing therapeutic agents for pigmentation disorders such as vitiligo. Further studies are required to explore its mechanisms and clinical applications in greater detail.
Full article
(This article belongs to the Special Issue Plant Natural Compounds: From Discovery to Application)
►▼
Show Figures

Figure 1
Open AccessReview
Enzymatic Oxidants, Antioxidants, and Inflammatory Bowel Disease
by
R. Steven Esworthy
Appl. Biosci. 2025, 4(2), 19; https://doi.org/10.3390/applbiosci4020019 - 1 Apr 2025
Abstract
The role of oxidants and antioxidants in inflammatory bowel disease (IBD) has been actively explored since the early 1980s, starting with the role of the respiratory burst of neutrophils and ischemia in bowel pathology. Since that time, the enzymatic components contributing to the
[...] Read more.
The role of oxidants and antioxidants in inflammatory bowel disease (IBD) has been actively explored since the early 1980s, starting with the role of the respiratory burst of neutrophils and ischemia in bowel pathology. Since that time, the enzymatic components contributing to the pool of reactive oxygen species, including superoxide, H2O2, and lipid hydroperoxides, and the counteracting antioxidants—catalase, glutathione peroxidases (Gpx), peroxiredoxins (PRDX), superoxide dismutases, and others—have been fleshed out. My perspective on IBD is from the role of the balance or imbalance of enzymatic oxidant sources and enzymatic antioxidants in the inflammatory process. I will present evidence on the involvement of oxidant and antioxidant processes in IBD based, as much as possible, on my experiences with Gpxs. This evidence will be discussed in terms of both the immune system and local bowel oxidant and antioxidant systems. As Gpxs are generally selenium-dependent, possible deficiencies in selenium uptake in active IBD and the impact on Gpx expression will be explored. The more recently introduced ferroptosis, an iron-dependent lipid peroxidation-based pathological process, will be reviewed for its possible involvement in IBD.
Full article
(This article belongs to the Special Issue Feature Papers in Applied Biosciences 2024)
Open AccessArticle
AssayBLAST: A Bioinformatic Tool for In Silico Analysis of Molecular Multiparameter Assays
by
Maximilian Collatz, Sascha D. Braun, Martin Reinicke, Elke Müller, Stefan Monecke and Ralf Ehricht
Appl. Biosci. 2025, 4(2), 18; https://doi.org/10.3390/applbiosci4020018 - 1 Apr 2025
Abstract
►▼
Show Figures
Accurate primer and probe design is essential for molecular applications, including PCR, qPCR, and molecular multiparameter assays like microarrays. The novel software tool AssayBLAST addresses this need by simulating interactions between oligonucleotides and target sequences. AssayBLAST handles large sets of primer and probe
[...] Read more.
Accurate primer and probe design is essential for molecular applications, including PCR, qPCR, and molecular multiparameter assays like microarrays. The novel software tool AssayBLAST addresses this need by simulating interactions between oligonucleotides and target sequences. AssayBLAST handles large sets of primer and probe sequences simultaneously and supports comprehensive assay designs by allowing users to identify off-target binding, calculate melting temperatures, and ensure strand specificity, a critical but often overlooked aspect. AssayBLAST performs two optimized BLAST-based searches for each primer or probe sequence, checking the forward and reverse strands for off-target interactions and strand-specific binding accuracy. The results are compiled into a mapping table containing binding sites, mismatches, and strand orientation, allowing users to validate large sets of oligonucleotides across predefined custom databases for a complete and optimal theoretical assay design. AssayBLAST was evaluated against experimental Staphylococcus aureus microarray data, achieving 97.5% accuracy in predicting probe–target hybridization outcomes. This high accuracy demonstrates the method’s effectiveness in reliably using BLAST hits and mismatch counts to predict microarray results. AssayBLAST provides a reliable, scalable solution for in silico primer and probe validation, effectively supporting large-scale assay designs and optimizations. Its accurate prediction of hybridization outcomes demonstrates its utility in enhancing the efficiency and reliability of molecular assays.
Full article

Figure 1
Open AccessReview
Bacterial Sialidases: Biological Significance and Application
by
Stephan Engibarov, Yana Gocheva, Irina Lazarkevich and Rumyana Eneva
Appl. Biosci. 2025, 4(2), 17; https://doi.org/10.3390/applbiosci4020017 - 1 Apr 2025
Abstract
►▼
Show Figures
This review summarizes recent findings on the diverse roles of bacterial sialidases in microbial biology. Bacterial sialidases, also known as neuraminidases, are exog α-lycosidases that cleave terminal sialic acid residues from a number of complex compounds designated as sialoglycoconjugates (glycoproteins, glycolipids and oligosaccharides).
[...] Read more.
This review summarizes recent findings on the diverse roles of bacterial sialidases in microbial biology. Bacterial sialidases, also known as neuraminidases, are exog α-lycosidases that cleave terminal sialic acid residues from a number of complex compounds designated as sialoglycoconjugates (glycoproteins, glycolipids and oligosaccharides). Metabolically, they are involved in sialic acid catabolism, providing energy, carbon and nitrogen sources. Catabolic degradation of sialic acids is a physiological feature that can be considered an important virulence factor in pathogenic microorganisms. Sialidases play a pivotal role in host–pathogen interactions and promotion of bacterial colonization. The activity of these enzymes enables bacterial adhesion, biofilm formation, tissue invasion, and also provides immune evasion by exposing cryptic receptors and modifying immune components. Many different perspectives are being developed for the potential application of sialidases. In the field of medicine, they are being explored as appropriate targets for antimicrobials, vaccines, diagnostic preparations and in tumor immunotherapy. In the field of enzymatic synthesis, they are used for the regioselective production of oligosaccharide analogs, enzymatic separation of isoenzymes and as a tool for structural analysis of sialylated glycans, among other applications.
Full article

Figure 1
Open AccessReview
Advancements in Nanotechnology for Targeted and Controlled Drug Delivery in Hematologic Malignancies: Shaping the Future of Targeted Therapeutics
by
Abdurraouf Mokhtar Mahmoud and Clara Deambrogi
Appl. Biosci. 2025, 4(1), 16; https://doi.org/10.3390/applbiosci4010016 - 5 Mar 2025
Cited by 3
Abstract
Hematologic malignancies, including leukemia, lymphoma, and multiple myeloma, pose significant therapeutic challenges due to their heterogeneity and high relapse rates. Nanotechnology has emerged as a promising avenue for precision drug delivery in these malignancies, allowing for enhanced drug concentration at tumor sites and
[...] Read more.
Hematologic malignancies, including leukemia, lymphoma, and multiple myeloma, pose significant therapeutic challenges due to their heterogeneity and high relapse rates. Nanotechnology has emerged as a promising avenue for precision drug delivery in these malignancies, allowing for enhanced drug concentration at tumor sites and reducing systemic toxicity. Recent developments in nanocarriers—such as liposomes, polymeric nanoparticles, and inorganic nanoparticles—have enabled targeted approaches, utilizing molecular markers specific to malignant cells to increase therapeutic efficacy while minimizing adverse effects. Evidence from preclinical and clinical studies underscores the potential of nanotechnology to improve patient outcomes by facilitating controlled release, improved bioavailability, and reduced toxicity. However, translating these advancements into clinical practice requires further research to validate their safety and efficacy. This review provides a comprehensive analysis of the latest innovations in nanotechnology for targeted drug delivery in hematologic malignancies, addressing current achievements and future directions for integrating these approaches into Clinical Hemato-Oncology.
Full article
(This article belongs to the Special Issue Feature Papers in Applied Biosciences 2024)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Atmosphere, Energies, Sustainability, Toxics, Applied Sciences, Applied Biosciences
Biomass Use and its Health and Environmental Effects
Topic Editors: Wei Du, Zhaofeng Chang, Yuanchen ChenDeadline: 30 September 2025
Topic in
Biomass, Microorganisms, Sustainability, Water, Fermentation, Energies, Materials, Applied Biosciences
Recovery and Use of Bioactive Materials and Biomass
Topic Editors: Xiang Li, Tianfeng Wang, Xianbao XuDeadline: 25 November 2025
Topic in
Applied Biosciences, Forests, Genes, Horticulturae, IJMS, Plants
Genetic Breeding and Biotechnology of Garden Plants
Topic Editors: Bin Dong, Guirong Qiao, Shiwei ZhongDeadline: 30 December 2025
Topic in
Applied Biosciences, Applied Sciences, Fermentation, Marine Drugs, Microorganisms, Phycology
Microalgae: Current Trends in Basic Research and Applications
Topic Editors: Nhuan Nghiem, Tae Hyun KimDeadline: 31 March 2026

Conferences
Special Issues
Special Issue in
Applied Biosciences
Experimental Biology: From Methods to Applications. Under the Auspices of the Italian Society of Experimental Biology, SIBS-1925
Guest Editors: Francesco Cappello, Maria Grazia PalmeriniDeadline: 31 August 2025
Special Issue in
Applied Biosciences
Anatomy and Regenerative Medicine: From Methods to Applications (2nd Edition)
Guest Editors: Alessandro Pitruzzella, Alberto Fucarino, Fabio BucchieriDeadline: 30 November 2025
Special Issue in
Applied Biosciences
Feature Review for Applied BiosciencesGuest Editor: Robert HenryDeadline: 31 December 2025
Special Issue in
Applied Biosciences
Plant Natural Compounds: From Discovery to Application (2nd Edition)
Guest Editors: Adriana Basile, Viviana Maresca, Alessia PostiglioneDeadline: 31 December 2025