- Article
A Real-World Underwater Video Dataset with Labeled Frames and Water-Quality Metadata for Aquaculture Monitoring
- Osbaldo Aragón-Banderas,
- Leonardo Trujillo and
- Yolocuauhtli Salazar
- + 2 authors
Aquaculture monitoring increasingly relies on computer vision to evaluate fish behavior and welfare under farming conditions. This dataset was collected in a commercial recirculating aquaculture system (RAS) integrated with hydroponics in Queretaro, Mexico, to support the development of robust visual models for Nile tilapia (Oreochromis niloticus). More than ten hours of underwater recordings were curated into 31 clips of 30 s each, a duration selected to balance representativeness of fish activity with a manageable size for annotation and training. Videos were captured using commercial action cameras at multiple resolutions (1920 × 1080 to 5312 × 4648 px), frame rates (24–60 fps), depths, and lighting configurations, reproducing real-world challenges such as turbidity, suspended solids, and variable illumination. For each recording, physicochemical parameters were measured, including temperature, pH, dissolved oxygen and turbidity, and are provided in a structured CSV file. In addition to the raw videos, the dataset includes 3520 extracted frames annotated using a polygon-based JSON format, enabling direct use for training object detection and behavior recognition models. This dual resource of unprocessed clips and annotated images enhances reproducibility, benchmarking, and comparative studies. By combining synchronized environmental data with annotated underwater imagery, the dataset contributes a non-invasive and versatile resource for advancing aquaculture monitoring through computer vision.
18 December 2025







