- Article
A New Energy-Saving Management Framework for Hospitality Operations Based on Model Predictive Control Theory
- Juan Huang and
- Aimi Binti Anuar
To address the pervasive challenges of resource inefficiency and static management in the hospitality sector, this study proposes a novel management framework that synergistically integrates Model Predictive Control (MPC) with Green Human Resource Management (GHRM). Methodologically, the framework establishes a dynamic closed-loop architecture that cyclically links environmental sensing, predictive optimization, plan execution and organizational learning. The MPC component generates data-driven forecasts and optimal control signals for resource allocation. Crucially, these technical outputs are operationally translated into specific, actionable directives for employees through integrated GHRM practices, including real-time task allocation via management systems, incentives-aligned performance metrics, and structured environmental training. This practical integration ensures that predictive optimization is directly coupled with human behavior. Theoretically, this study redefines hospitality operations as adaptive sociotechnical systems, and advances the hospitality energy-saving management framework by formally incorporating human execution feedback, predictive control theory, and dynamic optimization theory. Empirical validation across a sample of 40 hotels confirms the framework’s effectiveness, demonstrating significant reductions in daily average water consumption by 15.5% and electricity usage by 13.6%. These findings provide a robust, data-driven paradigm for achieving sustainable operational transformations in the hospitality industry.
15 January 2026





