On the Spectral Identification and Wavelength Dependence of Rare-Earth Ore Emission by Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Experimental Section
3. Spectral Lines Identification
4. Results and Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nomenclature of Inorganic Chemistry; Connelly, N.G.; Damhus, T.; Hartshorn, R.M.; Hutton, A.T. (Eds.) Royal Society of Chemistry Publishing: Cambridge, UK; IUPAC: Research Triangle, NC, USA, 2005. [Google Scholar]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT). In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015; pp. 219–224. [Google Scholar]
- Fernandez, V. Rare-earth elements market: A historical and financial perspective. Resour. Policy 2017, 53, 26–45. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Li, Q.; Wu, P.; Ye, H. Rare earth elements and yttrium (REY) in coal mine drainage from Southwest China: Geochemical distribution and resource evaluation. Sci. Total Environ. 2021, 782, 146904. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, Y.; Chen, Y. Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data. Resour. Policy 2021, 71, 101996. [Google Scholar] [CrossRef]
- Reisfeld, R.; Gaft, M.; Boulon, G.; Panczer, C.; Jørgensen, C.K. Laser-induced luminescence of rare-earth elements in natural fluor-apatites. J. Lumin. 1996, 69, 343–353. [Google Scholar] [CrossRef]
- Wang, Z.; Afgan, M.S.; Gu, W.; Song, Y.; Wang, Y.; Hou, Z.; Song, W.; Li, Z. Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. TrAC Trends Anal. Chem. 2021, 143, 116385. [Google Scholar] [CrossRef]
- Hou, Z.; Jeong, S.; Deguchi, Y.; Wang, Z. Way-out for laser-induced breakdown spectroscopy. Plasma Sci. Technol. 2020, 22, 070101. [Google Scholar] [CrossRef]
- Laser-Induced Breakdown Spectroscopy, 2nd ed.; Singh, J.P.; Thakur, S.N. (Eds.) Elsevier: Amsterdam, The Netherland, 2020; p. 429. [Google Scholar]
- Fortes, F.J.; Moros, J.; Lucena, P.; Cabalín, L.M.; Laserna, J.J. Laser-Induced Breakdown Spectroscopy. Anal. Chem. 2013, 85, 640–669. [Google Scholar] [CrossRef]
- Sheta, S.; Afgan, M.S.; Hou, Z.; Yao, S.-C.; Zhang, L.; Li, Z.; Wang, Z. Coal analysis by laser-induced breakdown spectroscopy: A tutorial review. J. Anal. At. Spectrom. 2019, 34, 1047–1082. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, Z.; Li, L.; Yu, X.; Li, T.; Yao, H.; Yan, G.; Ye, Q.; Liu, Z.; Zheng, H. Fast measurement of coking properties of coal using laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2022, 191, 106406. [Google Scholar] [CrossRef]
- Fu, Y.-T.; Gu, W.-L.; Hou, Z.-Y.; Muhammed, S.A.; Li, T.-Q.; Wang, Y.; Wang, Z. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy. Front. Phys. 2020, 16, 22502. [Google Scholar] [CrossRef]
- Fu, Y.; Hou, Z.; Li, T.; Li, Z.; Wang, Z. Investigation of intrinsic origins of the signal uncertainty for laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2019, 155, 67–78. [Google Scholar] [CrossRef]
- Gu, W.; Hou, Z.; Song, W.; Li, L.; Yu, X.; Liu, J.; Song, Y.; Afgan, M.S.; Li, Z.; Liu, Z.; et al. Compensation for the variation of total number density to improve signal repeatability for laser-induced breakdown spectroscopy. Anal. Chim. Acta 2022, 1205, 339752. [Google Scholar] [CrossRef]
- Harmon, R.S.; Senesi, G.S. Laser-Induced Breakdown Spectroscopy—A geochemical tool for the 21st century. Appl. Geochem. 2021, 128, 104929. [Google Scholar] [CrossRef]
- Song, W.; Afgan, M.S.; Yun, Y.-H.; Wang, H.; Cui, J.; Gu, W.; Hou, Z.; Wang, Z. Spectral knowledge-based regression for laser-induced breakdown spectroscopy quantitative analysis. Expert Syst. Appl. 2022, 205, 117756. [Google Scholar] [CrossRef]
- Afgan, M.S.; Hou, Z.; Wang, Z. Quantitative analysis of common elements in steel using a handheld μ-LIBS instrument. J. Anal. At. Spectrom. 2017, 32, 1905–1915. [Google Scholar] [CrossRef]
- Gaft, M.; Panczer, G.; Reisfeld, R.; Uspensky, E. Laser-induced time-resolved luminescence as a tool for rare-earth element identification in minerals. Phys. Chem. Miner. 2001, 28, 347–363. [Google Scholar] [CrossRef]
- Gaft, M.; Raichlin, Y.; Pelascini, F.; Panzer, G.; Motto Ros, V. Imaging rare-earth elements in minerals by laser-induced plasma spectroscopy: Molecular emission and plasma-induced luminescence. Spectrochim. Acta Part B At. Spectrosc. 2019, 151, 12–19. [Google Scholar] [CrossRef]
- Harmon, R.S.; Lawley, C.J.M.; Watts, J.; Harraden, C.L.; Somers, A.M.; Hark, R.R. Laser-Induced Breakdown Spectroscopy—An Emerging Analytical Tool for Mineral Exploration. Minerals 2019, 9, 718. [Google Scholar] [CrossRef]
- Álvarez, J.; Velásquez, M.; Myakalwar, A.K.; Sandoval, C.; Fuentes, R.; Castillo, R.; Sbarbaro, D.; Yáñez, J. Determination of copper-based mineral species by laser induced breakdown spectroscopy and chemometric methods. J. Anal. At. Spectrom. 2019, 34, 2459–2468. [Google Scholar] [CrossRef]
- Romppanen, S.; Häkkänen, H.; Kaski, S. Singular value decomposition approach to the yttrium occurrence in mineral maps of rare earth element ores using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2017, 134, 69–74. [Google Scholar] [CrossRef]
- Müller, S.; Meima, J.A.; Rammlmair, D. Detecting REE-rich areas in heterogeneous drill cores from Storkwitz using LIBS and a combination of k-means clustering and spatial raster analysis. J. Geochem. Explor. 2021, 221, 106697. [Google Scholar] [CrossRef]
- Teixeira, L.A.V.; Silva, R.G.; Avelar, A.; Majuste, D.; Ciminelli, V.S.T. Selective Extraction of Rare Earth Elements from Monazite Ores with High Iron Content. Min. Metall. Explor. 2019, 36, 235–244. [Google Scholar] [CrossRef]
- Abedin, K.M.; Haider, A.F.M.Y.; Rony, M.A.; Khan, Z.H. Identification of multiple rare earths and associated elements in raw monazite sands by laser-induced breakdown spectroscopy. Opt. Laser Technol. 2011, 43, 45–49. [Google Scholar] [CrossRef]
- Phuoc, T.X.; Wang, P.; McIntyre, D. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS). Fuel 2016, 163, 129–132. [Google Scholar] [CrossRef]
- Manard, B.T.; Wylie, E.M.; Willson, S.P. Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS). Appl. Spectrosc. 2018, 72, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Martin, R.C.; Allman, S.; Brice, D.; Wymore, A.; Andre, N. Quantification of rare earth elements using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2015, 114, 65–73. [Google Scholar] [CrossRef]
- Bhatt, C.R.; Jain, J.C.; Goueguel, C.L.; McIntyre, D.L.; Singh, J.P. Determination of Rare Earth Elements in Geological Samples Using Laser-Induced Breakdown Spectroscopy (LIBS). Appl. Spectrosc. 2017, 72, 114–121. [Google Scholar] [CrossRef]
- Bhatt, C.R.; Hartzler, D.; Jain, J.C.; McIntyre, D.L. Evaluation of analytical performance of double pulse laser-induced breakdown spectroscopy for the detection of rare earth elements. Opt. Laser Technol. 2020, 126, 106110. [Google Scholar] [CrossRef]
- Weisberg, A.; Lakis, R.E.; Simpson, M.F.; Horowitz, L.; Craparo, J. Measuring Lanthanide Concentrations in Molten Salt Using Laser-Induced Breakdown Spectroscopy (LIBS). Appl. Spectrosc. 2014, 68, 937–948. [Google Scholar] [CrossRef]
- Labutin, T.A.; Zaytsev, S.M.; Popov, A.M.; Zorov, N.B. A novel approach to sensitivity evaluation of laser-induced breakdown spectroscopy for rare earth elements determination. J. Anal. At. Spectrom. 2016, 31, 2223–2226. [Google Scholar] [CrossRef]
- Yang, X.; Hao, Z.; Shen, M.; Yi, R.; Li, J.; Yu, H.; Guo, L.; Li, X.; Zeng, X.; Lu, Y. Simultaneous determination of La, Ce, Pr, and Nd elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy. Talanta 2017, 163, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Rethfeldt, N.; Brinkmann, P.; Riebe, D.; Beitz, T.; Köllner, N.; Altenberger, U.; Löhmannsröben, H.-G. Detection of Rare Earth Elements in Minerals and Soils by Laser-Induced Breakdown Spectroscopy (LIBS) Using Interval PLS. Minerals 2021, 11, 1379. [Google Scholar] [CrossRef]
- Maity, U.K.; Manoravi, P.; Joseph, M.; Sivaraman, N. Laser-induced breakdown spectroscopy for simultaneous determination of lighter lanthanides in actinide matrix in aqueous medium. Spectrochim. Acta Part B At. Spectrosc. 2022, 190, 106393. [Google Scholar] [CrossRef]
- Lednev, V.; Pershin, S.M.; Bunkin, A.F. Laser beam profile influence on LIBS analytical capabilities: Single vs. multimode beam. J. Anal. At. Spectrom. 2010, 25, 1745–1757. [Google Scholar] [CrossRef]
- Hou, Z.; Afgan, M.S.; Sheta, S.; Liu, J.; Wang, Z. Plasma modulation using beam shaping to improve signal quality for laser induced breakdown spectroscopy. J. Anal. At. Spectrom. 2020, 35, 1671–1677. [Google Scholar] [CrossRef]
- Chemical Analysis Method of Rare Earth Concentrates, National Standards of People’s Republic of China. Available online: https://www.chinesestandard.net/PDF/English.aspx/GBT18114.2-2010 (accessed on 21 June 2022).
- Goldschmidt, Z.B. Chapter 1 Atomic properties (free atom). In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 1978; pp. 1–171. [Google Scholar]
- Winge, R.K.; Fassel, V.A.; Peterson, V.J.; Floyd, M.A. Inductively Coupled Plasma—Atomic Emission Spectroscopy: An Atlas of Spectral Information; Elsevier: Amsterdam, The Netherlands, 1985; p. 584. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J.; Team, N.A. NIST Atomic Spectra Database (ver. 5.9), [Online]. Available online: https://physics.nist.gov/asd (accessed on 8 February 2022).
- Griem, H.R. Principles of Plasma Spectroscopy; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Sheta, S.; Afgan, M.S.; Jiacen, L.; Gu, W.; Hou, Z.; Wang, Z. Insights into Enhanced Repeatability of Femtosecond Laser-Induced Plasmas. ACS Omega 2020, 5, 30425–30435. [Google Scholar] [CrossRef]
- Meggers, W.F. Emission Spectra of the Rare Earth Elements*. J. Opt. Soc. Am. 1941, 31, 157–159. [Google Scholar] [CrossRef]
- Houk, R.S. Chapter 91 Elemental analysis by atomic emission and mass spectrometry with inductively coupled plasmas. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 1990; pp. 385–421. [Google Scholar]
- Cowan, R.D. The theory of rare earth eaergy levels and spectra. Nucl. Instrum. Methods 1973, 110, 173–182. [Google Scholar] [CrossRef]
- Carre, M.; de Rodriguez, O.D.; Mermet, J.-M.; Bridenne, M.; Marot, Y. Line selection and determination of trace amounts of elements in tungsten by inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom. 1991, 6, 49–55. [Google Scholar] [CrossRef]
- Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy, 2nd ed.; John Wiley & Sons, Ltd: New York, NY, USA, 2013. [Google Scholar]
- McWhirter, R.W.P. Plasma Diagnostic Techniques; Academic Press: New York, NY, USA, 1965. [Google Scholar]
- Shaikh, N.M.; Hafeez, S.; Rashid, B.; Mahmood, S.; Baig, M.A. Optical emission studies of the mercury plasma generated by the fundamental, second and third harmonics of a Nd: YAG laser. J. Phys. D Appl. Phys. 2006, 39, 4377–4385. [Google Scholar] [CrossRef]
- Cabalín, L.M.; Laserna, J.J. Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation. Spectrochim. Acta Part B At. Spectrosc. 1998, 53, 723–730. [Google Scholar] [CrossRef]
- Simeonsson, J.B.; Miziolek, A.W. Spectroscopic studies of laser-produced plasmas formed in CO and CO2 using 193, 266, 355, 532 and 1064 nm laser radiation. Appl. Phys. B 1994, 59, 1–9. [Google Scholar] [CrossRef]
- Geertsen, C.; Briand, A.; Chartier, F.; Lacour, J.-L.; Mauchien, P.; Sjöström, S.; Mermet, J.-M. Comparison between infrared and ultraviolet laser ablation at atmospheric pressure—implications for solid sampling inductively coupled plasma spectrometry. J. Anal. At. Spectrom. 1994, 9, 17–22. [Google Scholar] [CrossRef]
- Kasem, M.A.; Gonzalez, J.J.; Russo, R.E.; Harith, M.A. Effect of the wavelength on laser induced breakdown spectrometric analysis of archaeological bone. Spectrochim. Acta Part B At. Spectrosc. 2014, 101, 26–31. [Google Scholar] [CrossRef]
- Russo, R.E.; Mao, X.L.; Borisov, O.V.; Liu, H. Influence of wavelength on fractionation in laser ablation ICP-MS. J. Anal. At. Spectrom. 2000, 15, 1115–1120. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Fu, Y.; Li, Z.; Ni, W. Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy. Plasma Sci. Technol. 2015, 17, 621–624. [Google Scholar] [CrossRef]
- Cui, H.; Tang, Y.; Ma, S.; Ma, Y.; Zhang, D.; Hu, Z.; Wang, Z.; Guo, L. Influence of laser wavelength on self-absorption effect in laser-induced breakdown spectroscopy. Optik 2020, 204, 164144. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, Z.; Liu, J.; Ni, W.; Li, Z. Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy. Opt. Express 2014, 22, 12909–12914. [Google Scholar] [CrossRef]
Sample | Studied REEs | Laser Wavelength | Reference |
---|---|---|---|
Monazite sand | Ce, La, Nd, Pr, Y, Yb, Gd, Dy, Er, Sm, Eu | 1064 nm | [27] |
Coal ash | Ce, Eu, Ho (holmium), La, Lu (lutetium), Pr, Pm, Sm, Tb (terbium), Yb | 1064 nm | [28] |
Uranium ore | Eu, Nd, Yb | 1064 nm (HH) | [29] |
Graphite matrix | Y, Eu, Gd, La, Pr, Nd, Sm | 532 nm | [30] |
Geological samples | Ce, La, Nd, Y, Pr, Sm, Eu, Gd, Dy | 1064 nm | [31] |
Laboratory samples | Eu, Gd, Pr, Y | 1064 nm (DP) | [32] |
Molten salt | Er, Pr | 1064 nm | [33] |
Certified samples | Y, La | 532 nm | [34] |
Aqueous solution | La, Ce, Pr, Nd | 532 nm | [35] |
Mineral and soil | Ce, La, Nd, Y | 1064 nm | [36] |
Minerals | Ce, La, Nd, Gd, Nb, Pr, Sm, Ta, Y | 1064 nm | [25] |
Aqueous solution | La, Ce, Pr, Nd, Sm | 1064 nm | [37] |
Cerium (Ce) (%) | Lanthanum (La) (%) | Neodymium (Nd) (%) | Praseodymium (Pr) (%) | Samarium (Sm) (%) | Yttrium (Y) (%) |
---|---|---|---|---|---|
23.41 | 11.22 | 10.05 | 2.48 | 1.35 | 0.39 |
Element/Ionic State | Emission Lines * |
---|---|
Ce (II) | 365.585, 380.152, 394.215, 394.275, 395.254, 399.924, 399.382, 404.076, 407.348, 413.765, 428.994 |
La (II) | 375.908, 379.083, 379.478, 384.902, 387.164, 388.637, 391.605, 392.154, 392.922, 394.91, 398.852, 399.575, 403.169, 407.735,408.672, 412.323, 419.655, 423.838 |
Nd (II) | 378.425, 385.166, 386.341, 390.021, 394.151, 395.115, 401.225, 406.108, 410.945, 415.608, 417.732, 430.357 |
Pr (II) | 398.968, 406.281, 410.072, 416.416, 417.939, 420.672 |
Sm (II) | 356.827, 359.26, 363.429, 373.912 |
Y (II) | 360.073, 361.104, 363.312, 371.029, 378.869 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afgan, M.S.; Hou, Z.; Song, W.; Liu, J.; Song, Y.; Gu, W.; Wang, Z. On the Spectral Identification and Wavelength Dependence of Rare-Earth Ore Emission by Laser-Induced Breakdown Spectroscopy. Chemosensors 2022, 10, 350. https://doi.org/10.3390/chemosensors10090350
Afgan MS, Hou Z, Song W, Liu J, Song Y, Gu W, Wang Z. On the Spectral Identification and Wavelength Dependence of Rare-Earth Ore Emission by Laser-Induced Breakdown Spectroscopy. Chemosensors. 2022; 10(9):350. https://doi.org/10.3390/chemosensors10090350
Chicago/Turabian StyleAfgan, Muhammad Sher, Zongyu Hou, Weiran Song, Jiachen Liu, Yuzhou Song, Weilun Gu, and Zhe Wang. 2022. "On the Spectral Identification and Wavelength Dependence of Rare-Earth Ore Emission by Laser-Induced Breakdown Spectroscopy" Chemosensors 10, no. 9: 350. https://doi.org/10.3390/chemosensors10090350
APA StyleAfgan, M. S., Hou, Z., Song, W., Liu, J., Song, Y., Gu, W., & Wang, Z. (2022). On the Spectral Identification and Wavelength Dependence of Rare-Earth Ore Emission by Laser-Induced Breakdown Spectroscopy. Chemosensors, 10(9), 350. https://doi.org/10.3390/chemosensors10090350