Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = cracking torque

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7898 KB  
Article
Drilling Monitoring While Drilling and Comprehensive Characterization of Lithology Parameters
by Huijie Zhai, Hui Chen, Bin Shi, Hongchao Zhao and Fei Gao
Appl. Sci. 2025, 15(20), 11134; https://doi.org/10.3390/app152011134 - 17 Oct 2025
Viewed by 241
Abstract
The monitoring technology used during drilling has become a crucial means of gathering information about the underground rock mass. However, the drilling response parameters are affected by the coupling of operating parameters and rock mass properties, which leads to the challenge of lithology [...] Read more.
The monitoring technology used during drilling has become a crucial means of gathering information about the underground rock mass. However, the drilling response parameters are affected by the coupling of operating parameters and rock mass properties, which leads to the challenge of lithology inversion based on drilling parameters in complex strata. At present, the precise quantitative response mechanism between operating parameters and drilling parameters is still not clear in the common lithology of mining, which restricts the further improvement of the accuracy of lithology identification while drilling and the optimization of drilling technology. In order to improve the measurement of drilling technology, the relationship between rock parameters and drilling parameters in the process of mining drilling is explored. This paper carried out physical and mechanical experiments; built a small drilling platform (including magnetic suction drilling, a data monitoring system, and a rock confining pressure system); carried out three different specifications, 330 r/min, 360 r/min, and 390 r/min, of the initial speed of the drilling experiment; and added 330 r/min initial-speed-drilling different-strength rock-drilling experiments. The experimental results show that rock drilling is divided into three stages: the initial stage of drilling, the crack propagation stage, and the bit retreating stage. The rotation speed has a great influence on the drilling speed, torque, weight on bit, and drilling time. According to the Pearson fitting relationship of drilling parameters, the correlation between F and PR is −0.783, indicating a strong positive correlation, and the correlation between RPM and PR is 0.827, indicating a strong negative correlation. The power function y = axb is used to fit the drilling parameters and rock parameters. The fitting effect is good, and the torque and uniaxial tensile strength R2 is as high as 0.9966. The experimental conclusion provides a theoretical basis for lithology identification in intelligent mining drilling and discusses the feasibility of a dynamic monitoring scheme for the drilling rig. Full article
Show Figures

Figure 1

28 pages, 2825 KB  
Review
Review of Non-Destructive Testing for Wind Turbine Bolts
by Hongyu Sun, Jingqi Dong, Hao Liu, Wenze Shi, Qibo Feng, Kai Yao, Songling Huang, Lisha Peng and Zhichao Cai
Sensors 2025, 25(18), 5726; https://doi.org/10.3390/s25185726 - 13 Sep 2025
Cited by 1 | Viewed by 851
Abstract
As the world increasingly gravitates towards green, environmentally friendly and low-carbon lifestyles, wind power has become one of the most technologically established renewable energy sources. However, with the continuous increase in their output power and height, wind turbine towers are subjected to higher-intensity [...] Read more.
As the world increasingly gravitates towards green, environmentally friendly and low-carbon lifestyles, wind power has become one of the most technologically established renewable energy sources. However, with the continuous increase in their output power and height, wind turbine towers are subjected to higher-intensity alternating wind loads. This makes critical components more prone to fatigue failure, potentially leading to major accidents such as tower buckling or turbine collapse. High-strength bolts play a vital role in supporting towers but are susceptible to fatigue crack initiation under long-term cyclic loading, necessitating regular inspection. Types of wind turbine bolts mainly include high-strength bolts, stainless steel bolts, anchor bolts, titanium alloy bolts, and adjustable bolts. These bolts are distributed across different parts of the turbine and perform distinct functions. Among them, high-strength bolts in the tower are particularly critical for structural support, demanding prioritized periodic inspection. Compared to destructive offline inspection methods requiring bolt disassembly, non-destructive testing (NDT) has emerged as a trend in defect detection technologies. Therefore, this review comprehensively examines various types of NDT techniques for wind turbine towers’ high-strength bolts, including disassembly inspection techniques (magnetic particle inspection, penetration inspection, intelligent torque inspection, etc.) and non-disassembly inspection techniques (ultrasonic inspection, radiographic inspection, infrared thermographic inspection, etc.). For each technique, we analyze the fundamental principles, technical characteristics, and limitations, while emphasizing the interconnections between the methodologies. Finally, we discuss potential future research directions for bolt defect NDT technologies. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

23 pages, 4918 KB  
Article
Meso-Scale Numerical Analysis of the Torsional Size Effect of RC Beams Reinforced with CFRP Sheets Under Combined Bending and Torsion
by Dong Li, Minghai Wang, Yishuai He, Jiangxing Zhang, Liu Jin and Xiuli Du
Buildings 2025, 15(15), 2641; https://doi.org/10.3390/buildings15152641 - 26 Jul 2025
Viewed by 506
Abstract
In practical engineering, buildings are predominantly subjected to combined forces, and reinforced concrete (RC) beams serve as the primary load-bearing components of buildings. However, there is a paucity of research on the torsional effects of RC beams, particularly concerning the torsional failure mechanisms [...] Read more.
In practical engineering, buildings are predominantly subjected to combined forces, and reinforced concrete (RC) beams serve as the primary load-bearing components of buildings. However, there is a paucity of research on the torsional effects of RC beams, particularly concerning the torsional failure mechanisms of large-size beams. To address this gap, this paper establishes a meso-scale numerical analysis model for RC beams reinforced with Carbon Fiber Reinforced Polymer (CFRP) sheets under combined bending and torsion pressures. The research analyzes how the fiber ratio and torsion-bending ratio govern torsion-induced failure characteristics and size effects in CFRP-strengthened RC beams. The results indicate that an increase in the fiber ratio leads to accumulated damage distribution in the RC beam, a gradual decrease in CFRP sheet strain, and an increase in peak load and peak torque, albeit with diminishing amplitudes; as the torsion-bending ratio increases, crack distribution becomes more concentrated, the angle between cracks and the horizontal direction decreases, overall peak load decreases, peak torque increases, and CFRP sheet strain increases; and the nominal torsional capacity of CFRP-strengthened RC beams declines with increasing size, exhibiting a reduction of 24.1% to 35.6%, which distinctly demonstrates the torsional size effect under bending–torsion coupling conditions. A modified Torque Size Effect Law is formulated, characterizing in quantitative terms the dependence of the fiber ratio and the torsion-bending ratio. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 6769 KB  
Article
Assessment of Asphalt Mixtures Enhanced with Styrene–Butadiene–Styrene and Polyvinyl Chloride Through Rheological, Physical, Microscopic, and Workability Analyses
by Hawraa F. Jabbar, Miami M. Hilal and Mohammed Y. Fattah
J. Compos. Sci. 2025, 9(7), 341; https://doi.org/10.3390/jcs9070341 - 1 Jul 2025
Viewed by 1099
Abstract
This study investigates the performance improvement of asphalt binders through the incorporation of two polymers, polyvinyl chloride (PVC) and styrene–butadiene–styrene (SBS), with asphalt grade (60–70), to address the growing demand for durable and climate-resilient pavement materials, particularly in areas exposed to high temperatures [...] Read more.
This study investigates the performance improvement of asphalt binders through the incorporation of two polymers, polyvinyl chloride (PVC) and styrene–butadiene–styrene (SBS), with asphalt grade (60–70), to address the growing demand for durable and climate-resilient pavement materials, particularly in areas exposed to high temperatures like Iraq. The main objective is to improve the mechanical characteristics, thermal stability, and workability of typical asphalt mixtures to extend pavement lifespan and lessen maintenance costs. A thorough set of rheological, physical, morphological, and workability tests was performed on asphalt binders modified with varying content of PVC (3%, 5%, 7%, and 9%) and SBS (3%, 4%, and 5%). The significance of this research lies in optimizing binder formulations to enhance resistance to deformation and failure modes such as rutting and thermal cracking, which are common in extreme climates. The results indicate that PVC enhances performance grade (PG), softening point, and viscosity, although higher contents (7% and 9%) exceeded penetration grade specifications. SBS-modified binders demonstrated marked improvements in softening point, viscosity, and rutting resistance, with PG values increasing from PG64-x (unmodified) to PG82-x at 5% SBS. Fluorescence microscopy confirmed optimal polymer dispersion at 5% concentration for both SBS and PVC, ensuring compatibility with the base asphalt. Workability testing revealed that SBS-modified mixtures exhibited higher torque requirements, indicating reduced workability compared to both PVC-modified and unmodified binders. These findings offer valuable insights for the design of high-performance asphalt mixtures suitable for hot-climate applications and contribute to the development of more durable and cost-effective road infrastructure. Full article
Show Figures

Figure 1

13 pages, 3416 KB  
Article
Modification of a Two-Part Cancellous Locking Screw: A Pilot Study on Increasing Resistance to Axial Pullout Strength
by Chia-Hao Hsu, Nin-Chieh Hsu, Sung-Yen Lin, Cheng-Chang Lu, Yin-Chih Fu, Hsuan-Ti Huang, Chung-Hwan Chen and Pei-Hsi Chou
Bioengineering 2025, 12(5), 444; https://doi.org/10.3390/bioengineering12050444 - 23 Apr 2025
Viewed by 834
Abstract
Background/Objectives: The pullout failure of conventional locking screws (LSs, screws with a locking mechanism) may occur in patients with osteoporosis, particularly when inserted near joints or across periarticular fractures (e.g., proximal humerus). The two-part locking cancellous screw modification (TP-LCS, screws composed of two [...] Read more.
Background/Objectives: The pullout failure of conventional locking screws (LSs, screws with a locking mechanism) may occur in patients with osteoporosis, particularly when inserted near joints or across periarticular fractures (e.g., proximal humerus). The two-part locking cancellous screw modification (TP-LCS, screws composed of two parts) in metaphyseal cancellous bone is hypothesized to increase bone purchase and holding power. This study aimed to test the hypothesized advantages of TP-LCS over LSs. Methods: An MTS 370 series frame with an axial/torsional load cell was used to test driving torque and axial pullout strength, following ASTM F543-07 standards. The TP-LCS group featured a newly modified screw design made from titanium alloy (Ti6Al4V), while conventional LSs (Synthes) were used for the control group. Statistical significance was assessed for selected comparisons relevant to the research objectives, including driving torque and axial pullout strength. Results: The driving torque test showed that TP-LCS had a significantly higher maximum insertion torque (4.9 ± 0.4 N·cm) compared to LSs (4.2 ± 0.4 N·cm) (p = 0.0269), although no significant difference was found in maximum removal torque (p = 0.1046). The axial pullout test revealed that TP-LCS had significantly higher pullout strength (223.5 ± 12.2 N) compared to LSs (203.5 ± 11.5 N) (p = 0.0284). Failure during the axial pullout test often involved cracking of the test block material around the screw threads, causing the screw to pull out. Conclusions: These results support the hypothesis that TP-LCS may offer improved axial pullout resistance compared to LSs, making it a potentially beneficial modification for LSs in osteoporotic metaphyseal regions or near joints. This study provides biomechanical insights into the advantages of the modified screw design over conventional LSs. Full article
(This article belongs to the Special Issue Medical Devices and Implants, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 8121 KB  
Article
An Over-Deterministic Method for Mode III SIF Calculation Using Full-Field Experimental Displacement Fields
by Jorge Guillermo Díaz-Rodríguez, Cesar Hernando Valencia-Niño and Andrés Rodríguez-Torres
Appl. Sci. 2025, 15(6), 3404; https://doi.org/10.3390/app15063404 - 20 Mar 2025
Viewed by 850
Abstract
The paper proposes and tests an approach to determine the stress intensity factors (SIF) of cracks subjected to mode III using full-field displacements as opposed to the crack opening displacement (COD) method, which uses only two data points. The proposed scheme fits displacement [...] Read more.
The paper proposes and tests an approach to determine the stress intensity factors (SIF) of cracks subjected to mode III using full-field displacements as opposed to the crack opening displacement (COD) method, which uses only two data points. The proposed scheme fits displacement data into Williams’ series for cracks, solving the equations using the over-deterministic Least Squares Method (LSM). The method is tested in tubes with through-cracks under axial and cyclic torque loading, and both proportional and non-proportional loading. The Digital Image Correlation (DIC) technique measured the displacement fields, and an approach is presented to address the curvature error in the tube samples. The experimentally determined SIF and SIF ranges with the proposed method are compared with respective values found using COD equations showing a pronounced nonlinear variation. It is concluded that for most, both methods agree, and for the LSM, the number of expansion terms in Williams’ series seems to make no difference, exhibiting less noisy results than the COD method and effectively addresses nonlinear variations in SIF calculations across different loading conditions, ultimately enhancing the understanding of crack behavior under mode III loading. Full article
(This article belongs to the Special Issue Deformation and Fracture Behaviors of Materials)
Show Figures

Figure 1

19 pages, 5758 KB  
Article
Fault Diagnosis Method for Main Pump Motor Shielding Sleeve Based on Attention Mechanism and Multi-Source Data Fusion
by Nengqing Liu, Xuewei Xiang, Hui Li, Zhi Chen and Peng Jiang
Sensors 2025, 25(6), 1775; https://doi.org/10.3390/s25061775 - 13 Mar 2025
Cited by 1 | Viewed by 759
Abstract
The operating environment of the shielding sleeve of the main pump motor is complex and changeable, and it is affected by various stresses; so, it is prone to bulging, cracking, and wear failure. The space where it is located is narrow, making it [...] Read more.
The operating environment of the shielding sleeve of the main pump motor is complex and changeable, and it is affected by various stresses; so, it is prone to bulging, cracking, and wear failure. The space where it is located is narrow, making it difficult to install additional sensors for condition monitoring. The existing methods have difficulty in taking into account the advantages of multiple aspects, such as the in-depth extraction of multi-scale data features, multi-source data fusion, and attention mechanisms, thus failing to achieve fault diagnosis for the failure of the shielding sleeve. Therefore, this paper proposes a fault diagnosis method for the shielding sleeve based on the attention mechanism and multi-source data fusion. The proposed method is suitable for scenarios where the fault characteristics of single data sources are not obvious and multi-scale and multi-source data need to be fused collaboratively. This method takes the measurable data (torque, rotational speed, voltage, and current) of the main pump motor operation as input signals. First, a multi-scale convolutional neural network based on the attention mechanism (AM-MSCNN) is established to extract rich multi-scale features of the data, and the spatial and channel attention mechanisms are used to fuse the multi-scale features. Then, on the basis of the AM-MSCNN, a convolutional neural network structure based on the attention mechanism for multi-scale and multi-source data fusion (AM-MSMDF-CNN) is proposed to further fuse the primary fusion features of different channels of torque, rotational speed, voltage, and current. Finally, the BP algorithm and the cross-entropy loss function are used to conduct fault diagnosis and classification on the fused features to complete the fault diagnosis of the shielding sleeve failure. To verify the effectiveness of the proposed method, experimental verification was carried out using datasets generated by finite element simulation and a small-scale equivalent prototype. By comparing it to methods such as the one-dimensional convolutional neural network (1D-CNN), Bagging Ensemble Learning, Random Forest, and Support Vector Machine (SVM), it was found that for the simulation data and experimental data, the accuracy of the AM-MSMDF-CNN is 5–10% and 10–15% higher than that of the other methods, demonstrating the superiority of the method proposed in this paper. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

22 pages, 3628 KB  
Article
Effect of Polydextrose on the Cooking and Gelatinization Properties and Microstructure of Chinese Early Indica Rice
by Mengya Wang, Chang Liu, Xiaohong Luo, Jianzhang Wu and Xingjun Li
Gels 2025, 11(3), 171; https://doi.org/10.3390/gels11030171 - 26 Feb 2025
Cited by 3 | Viewed by 1180
Abstract
To reduce the hard texture of cooked early indica rice, two types of polydextrose (ST with 1% moisture content (MC) and XG with 4.7% MC) were added at 0%, 3%, 5%, 7%, and 10%, respectively, to the cooking milled rice polished from the [...] Read more.
To reduce the hard texture of cooked early indica rice, two types of polydextrose (ST with 1% moisture content (MC) and XG with 4.7% MC) were added at 0%, 3%, 5%, 7%, and 10%, respectively, to the cooking milled rice polished from the paddies of the 2.5-year-stored IP46 variety and the newly harvested Sharuan Nian (SRN) variety. Compared with early indica rice without polydextrose, the cooking time was significantly reduced and gruel solids loss was increased with the increase in polydextrose addition. Generalized linear model (GLM) analysis shows that both polydextrose equally reduced the hardness, adhesive force, adhesiveness, cohesiveness, gumminess, and chewiness of the cooked early indica rice, and maintained the resilience. They also significantly reduced the rapid viscosity analysis (RVA) parameters like the peak viscosity, trough viscosity, breakdown viscosity, final viscosity, and setback viscosity of early indica rice, and significantly increased the peak time and pasting temperature. Both polydextrose significantly increased the gelatinization temperature of rice flour measured by a differential scanning calorimeter (DSC)and reduced the gelatinization enthalpy and aging. Compared with the sample without polydextrose, the addition of two types of polydextrose significantly increased the dough development time of rice flour measured by a Mixolab, but reduced the maximum gelatinization torque, starch breakdown and setback torque, and heating rate. XG had a higher capability in decreasing the rice cooking time and the aging of retrograded rice flour paste, and in increasing the score of the appearance structure and taste in cooked rice than ST; ST was better in decreasing the gelatinization enthalpy of rice flour paste and the setback torque of rice dough than XG, maybe due to the polymer molecular weight. Microstructure analysis showed that adding polydextrose promoted the entry of water molecules into the surface of the rice kernel and the dissolution of starch, and the honeycomb structure was gradually destroyed, resulting in larger pores. The cross-section of the cooked rice kernel formed cracks due to the entry of water, the cracks in the IP46 variety were larger and shallower than those in the SRN variety, and there were more filamentous aggregates in the IP46 variety. Polydextrose addition aggravated the swelling of starch granules, made the internal structure loose and produced an obvious depression in the central area of the cross-section, forming soft and evenly swollen rice kernels. These results suggest that polydextrose addition can significantly improve the hard texture of cooked early indica rice and shorten the cooking time. Full article
(This article belongs to the Special Issue Modification of Gels in Creating New Food Products)
Show Figures

Figure 1

20 pages, 9598 KB  
Article
Study on Torsional Shear Deformation Characteristics of Segment Joints Under the Torque Induced by Tunnel Boring Machine Construction
by Jie Chen, Weijie Chen, Chaohui Deng, Runjian Deng, Mingqing Xiao and Dong Su
Appl. Sci. 2025, 15(3), 1104; https://doi.org/10.3390/app15031104 - 22 Jan 2025
Cited by 2 | Viewed by 1299
Abstract
During the excavation process of a Tunnel Boring Machine (TBM), the cutterhead exerts significant torque on the tunnel structure, which potentially causes torsional shear deformation at segment ring joints. Thus, examining the characteristics of torsional shear deformation and the shear-bearing performance of segment [...] Read more.
During the excavation process of a Tunnel Boring Machine (TBM), the cutterhead exerts significant torque on the tunnel structure, which potentially causes torsional shear deformation at segment ring joints. Thus, examining the characteristics of torsional shear deformation and the shear-bearing performance of segment joints under construction torque is crucial for the design and safety of segment structures and the construction of TBM tunnels. To achieve this, a refined finite element model of the segment joints was developed to study their torsional shear resistance under varying axial forces and with or without mortise and tenon. Furthermore, the failure modes of bolts and the damage characteristics of segment concrete during torsional shear deformation are analyzed. The results show that the load-bearing process of torsional shear deformation in segment joints consists of three stages: development of the friction at the segment interface (Stage I), development of the bolt force (Stage II), and development of the mortise and tenon force (Stage III). It is noteworthy that axial force is the primary factor in enhancing the torsional shear resistance of the segmental joints. Moreover, as the torsional shear deformation increases, the contact and compression occur between the bolts and the segment bolt holes as well as between the mortise and tenon, leading to the yielding of the bolts and the failure of the concrete at the joints. Consequently, the segment concrete around the mortise and tenon and the bolt hole is prone to cracking and crushing. To prevent shear failure of the bolts, it is recommended that the rotational angle of segment be maintained at less than 0.045°. Full article
(This article belongs to the Special Issue Advances in Tunnel and Underground Engineering)
Show Figures

Figure 1

9 pages, 6452 KB  
Article
Influence of Continuous Rotation and Optimal Torque Reverse Kinematics on the Cyclic Fatigue Strength of Endodontic NiTi Clockwise Cutting Rotary Instruments
by Jorge N. R. Martins, Emmanuel J. N. L. Silva, Duarte Marques and Marco A. Versiani
Dent. J. 2024, 12(10), 317; https://doi.org/10.3390/dj12100317 - 30 Sep 2024
Cited by 1 | Viewed by 1891
Abstract
Objectives: The objective of the present study was to evaluate the cyclic fatigue strength of clockwise cutting rotary endodontic instruments when subjected to two different kinematics: continuous clockwise rotation and clockwise reciprocation movement under optimum torque reverse (OTR) motion. Methods: New ProTaper Next [...] Read more.
Objectives: The objective of the present study was to evaluate the cyclic fatigue strength of clockwise cutting rotary endodontic instruments when subjected to two different kinematics: continuous clockwise rotation and clockwise reciprocation movement under optimum torque reverse (OTR) motion. Methods: New ProTaper Next X1 (n = 20) and X2 (n = 20) instruments were randomly divided into two subgroups (n = 10) based on kinematics (continuous rotation or OTR). The specimens were tested using a custom-made device with a non-tapered stainless-steel artificial canal measuring 19 mm in length, featuring a 6 mm radius and an 86-degree curvature. All instruments were tested with a lubricant at room temperature until a fracture occurred. The time to fracture and the length of the separated fragment were recorded. Subsequently, the fractured instruments were inspected under a scanning electron microscope for signs of cyclic fatigue failure, plastic deformation, and/or crack propagation. The subgroup comparisons for time to fracture and instrument length were performed using the independent samples t-test, with the level of statistical significance set at 0.05. Results: When using OTR movement, the ProTaper Next X1 increased the time to fracture from 52.9 to 125.8 s (p < 0.001), while the ProTaper Next X2 increased from 45.4 to 66.0 s (p < 0.001). No subgroup exhibited plastic deformations, but both showed dimpling marks indicative of cyclic fatigue as the primary mode of failure. Additionally, OTR movement resulted in more metal alloy microcracks. Conclusions: The use of OTR motion extended the lifespan of the tested instruments and resulted in a higher number of metal microcracks. This suggests that OTR motion helped to distribute the mechanical stress more evenly across the instrument, thereby relieving localized tension. As a result, it delayed the formation of a single catastrophic crack, enhancing the overall performance of the instruments during the experimental procedures. Full article
(This article belongs to the Special Issue Endodontics and Restorative Sciences: 2nd Edition)
Show Figures

Figure 1

21 pages, 11855 KB  
Article
Experimental Investigation on Pure Torsion Behavior of Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
by Haoyang Bai, Jiafei Jiang, Weichen Xue and Xiang Hu
Buildings 2024, 14(9), 2617; https://doi.org/10.3390/buildings14092617 - 23 Aug 2024
Viewed by 1748
Abstract
The failure mechanism of torsional concrete beams with fiber-reinforced polymer (FRP) bars is essential for developing the design method. However, limited experimental research has been conducted on the torsion behavior of concrete beams with FRP bars. Therefore, the pure torsion test of four [...] Read more.
The failure mechanism of torsional concrete beams with fiber-reinforced polymer (FRP) bars is essential for developing the design method. However, limited experimental research has been conducted on the torsion behavior of concrete beams with FRP bars. Therefore, the pure torsion test of four large-scale FRP-RC beams (2800 mm × 400 mm × 200 mm) was conducted to investigate the influence of the stirrup ratio (0, 0.49%, and 0.98%) and longitudinal reinforcement ratio (3.01%, 4.25%) on torsion behavior. The test results indicated that three typical failure patterns, including concrete cracking failure, stirrup rupturing failure, and concrete crushing failure, were observed in specimens without stirrups (stirrup ratio 0), partially over-reinforced specimens (stirrup ratio 0.49%), and over-reinforced specimens (stirrup ratio 0.98%), respectively. The tangent angle of spiral cracks at the midpoint of the long side of the cross-section was approximately 45° initially for all specimens. The torque–twist angle curves exhibited a linear and bilinear behavior for specimens without stirrups and specimens with stirrups, respectively. As the stirrup ratio increased from 0 to 0.98%, torsion capacity increased from 24.9 kN∙m to 27.8 kN∙m, increased by 12%, ultimate twist angle increased from 0.0018 rad/m to 0.0403 rad/m. As the longitudinal reinforcement ratio increased from 3.01% to 4.25%, the torsion capacity increased from 27.8 kN∙m to 28.3 kN∙m, and the ultimate twist angle decreased from 0.0403 rad/m to 0.0244 rad/m. Based on test results, the stirrup strain limit of 5200 με and spiral crack angle of 45° was suggested for torsion capacity calculation. In addition, based on the database of torsion tests, the performance of torsion capacity provisions was assessed. Full article
(This article belongs to the Special Issue The Latest Research on Building Materials and Structures)
Show Figures

Figure 1

20 pages, 9290 KB  
Article
Kinetostatics of a Snake Robot with Redundant Degrees of Freedom
by Dong-Jie Zhao, Han-Lin Sun, Zhao-Cai Du, Yan-Bin Yao and Jing-Shan Zhao
Machines 2024, 12(8), 526; https://doi.org/10.3390/machines12080526 - 1 Aug 2024
Cited by 1 | Viewed by 1655
Abstract
This paper proposes a kinetostatic approach for analyzing the joint torques of a redundant snake robot. The method is suitable for weightless space environments. With the high degree of freedom and flexible cable actuation, the redundant snake robot is well-suited for utilization in [...] Read more.
This paper proposes a kinetostatic approach for analyzing the joint torques of a redundant snake robot. The method is suitable for weightless space environments. With the high degree of freedom and flexible cable actuation, the redundant snake robot is well-suited for utilization in space-weightless environments. This method reduces computational cost by using the multiplication of matrices and vectors instead of inverse matrices. Taking advantage of the velocity screw (twist) and force screw (wrench), this strategy provides an idea for redundant serial robots to achieve the calculation of joint torques. This methodology is straightforward for programming and has good computational efficiency. The instantaneous work performed by the actuation is expressed with the force screw. According to the principle of virtual work, the kinetostatic equation of the robot can be obtained and the torque required for each joint can be determined. Meanwhile, to solve the inertia force generated by joint acceleration, D’Alembert’s principle is adopted to transform the dynamic problem into a static problem. Through kinetostatic analysis of a redundant snake robot, this paper shows the approach of establishing the kinetostatic model to calculate the torque in screw form. At the same time, the actuation distribution of the redundant snake robot is also cracked effectively for practical purposes. Due to the difficulty of achieving weightless space environments, this paper validates the method by using ADAMS simulation without gravity in the simulation. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

27 pages, 13432 KB  
Article
Prediction of Plastic Shrinkage Cracking of Supplementary Cementitious Material-Modified Shotcrete Using Rheological and Mechanical Indicators
by Kyong-Ku Yun, Valerii Panov and Seungyeon Han
Materials 2023, 16(24), 7645; https://doi.org/10.3390/ma16247645 - 14 Dec 2023
Cited by 3 | Viewed by 1730
Abstract
Plastic shrinkage cracking is a complex and multifaceted process that occurs in the period between placement and the final setting. During this period, the mixture is viscoplastic in nature and therefore possesses rheological properties. The investigation of the relationship between rheological behavior and [...] Read more.
Plastic shrinkage cracking is a complex and multifaceted process that occurs in the period between placement and the final setting. During this period, the mixture is viscoplastic in nature and therefore possesses rheological properties. The investigation of the relationship between rheological behavior and its propensity to undergo cracking during the plastic phase presents an intriguing subject of study. However, many factors influence plastic cracking, and the corresponding interaction of its effects is complex in nature. This study aimed to evaluate the impact of rheological and physicomechanical properties on the occurrence of plastic cracking in high-performance shotcrete containing various supplementary cementitious materials. To achieve this, plastic cracking was evaluated employing the ASTM C 1579 standard and a smart crack viewer FCV-30, and the rheological parameters were controlled using an ICAR rheometer. In addition, a study was conducted to assess the strength development and fresh properties. Further, a relationship was established via statistical evaluation, and the best predicting models were selected. According to the study results, it can be concluded that high-yield stress and low plastic viscosity for colloidal silica mixtures are indicators of plastic cracking resistance owing to improved fresh microstructure and accelerated hydration reaction. However, earlier strength development and the presence of a water-reducing admixture allowed mixtures containing silica fume to achieve crack reduction. A higher indicator of yield stress is an indicator of the capillary pressure development of these mixtures. In addition, a series containing ultrafine fly ash (having high flow resistance and torque viscosity) exhibited a risk of early capillary pressure build-up and a decrease in strength characteristics, which could be stabilized with the addition of colloidal silica. Consequently, the mixture containing both silica fume and colloidal silica exhibited the best performance. Thus, the results indicated that rheological characteristics, compressive strength, and water-reducer content can be used to control the plastic shrinkage cracking of shotcrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

24 pages, 2918 KB  
Article
Optimization of Drilling Parameters in Drilling of MWCNT-Reinforced GFRP Nanocomposites Using Fuzzy AHP-Weighted Taguchi-Based MCDM Methods
by Yusuf Fedai
Processes 2023, 11(10), 2872; https://doi.org/10.3390/pr11102872 - 29 Sep 2023
Cited by 16 | Viewed by 2218
Abstract
Many problems such as delamination, cracking, fiber tearing, ovality, and surface roughness are encountered in the drilling of glass-fiber-reinforced composite (GFRP) materials. In this study, the percentage of multi-walled carbon nano tube (MWCNT), cutting tool type, feed rate, and cutting speed were selected [...] Read more.
Many problems such as delamination, cracking, fiber tearing, ovality, and surface roughness are encountered in the drilling of glass-fiber-reinforced composite (GFRP) materials. In this study, the percentage of multi-walled carbon nano tube (MWCNT), cutting tool type, feed rate, and cutting speed were selected as control factors during the drilling of MWCNT-reinforced GFRP nanocomposites. The quality characteristics of the drilling process were determined as surface roughness, delamination, torque, and thrust force. The experiments were carried out in accordance with the Taguchi L27 orthogonal array. The lowest values obtained because of the experiments were Ra = 4.95 µm, Dm = 1.099, T = 14.78 N, and F = 44.24 N, respectively. However, since each of these outputs were obtained from different experimental trials, different multi-criteria decision-making (MCDM) methods were used to optimize all outputs at the same time. First, the criteria were weighted using the fuzzy AHP method, and then the outputs were optimized using multi-criteria decision-making methods (i.e., GRA, WASPAS and VIKOR). Very close optimal ranking was obtained in all three methods. The best results were obtained for Ra = 4.86 µm, Dm = 1.13, T = 55.57 N, and F = 48.00 N. In the next step, the performance values obtained from each MCDM method were re-optimized using the Taguchi S/N ratio method. By comparing between these models, a single optimal condition for drilling is proposed. Accordingly, A2B3C1D1 (Ra = 4.86 µm, Dm = 1.10, T = 17.47 N and F = 48.33 N) for FAHP-GRA and FAHP-WASPAS and A2B3C2D2 (Ra = 5.02 µm, Dm = 1.09, T = 37.19 N and F = 45.01 N) for FAHP-VIKOR were determined as the best performing experiments. Finally, validation tests were conducted to compare the performance of the experiments. As a result, the FAHP-GRA and FAHP-WASPAS optimization with Taguchi S/N gave an unweighted improvement of 82.9% and a weighted improvement of 10.04% compared to the results of the experiment with MCDM. Compared to the results of the experiments with MCDM, S/N FAHP-VIKOR provided an unweighted improvement of 52.75% and a weighted improvement of 8.19%. According to the results obtained, for this study, FAHP-GRA and FAHP-WASPAS are more effective optimization methods than FAHP-VIKOR. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

15 pages, 45677 KB  
Article
Mathematical Modeling and Experimental Study of Cutting Force for Cutting Hard and Brittle Materials in Fixed Abrasive Trepanning Drill
by Ruijiang Yu, Shujuan Li, Zhengkang Zou and Lie Liang
Micromachines 2023, 14(6), 1270; https://doi.org/10.3390/mi14061270 - 19 Jun 2023
Cited by 2 | Viewed by 2480
Abstract
Hard and brittle materials have excellent physical and mechanical performance, which are widely applied in the fields of microelectronics and optoelectronics. However, deep-hole machining of hard and brittle materials is very difficult and inefficient due to the high hardness and brittleness of these [...] Read more.
Hard and brittle materials have excellent physical and mechanical performance, which are widely applied in the fields of microelectronics and optoelectronics. However, deep-hole machining of hard and brittle materials is very difficult and inefficient due to the high hardness and brittleness of these materials. To improve the quality and efficiency of deep-hole machining of hard and brittle materials, according to the brittle crack fracture removal mechanism of hard and brittle materials and the cutting model of the trepanning cutter, an analytical cutting force prediction model of hard and brittle materials processed using a trepanning cutter is established. This experimental study of K9 optical glass machining shows that as the feeding rate increase, the cutting force increase, and as the spindle speed increase, the cutting force decrease. By comparing and verifying the theoretical and experimental values, the average errors of axial force and torque are 5.0% and 6.7%, respectively, and the maximum error is 14.9%. This paper analyzes the reasons for the errors. The results indicate that the cutting force theoretical model can be used to predict the axial force and torque of machining hard and brittle materials under the same conditions, which provides a theory for optimizing machining process parameters. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

Back to TopTop