-
Cracking Diagnosis in Fiber-Reinforced Concrete with Synthetic Fibers Using Piezoelectric Transducers
-
Kenaf Fibre Reinforced Cementitious Composites
-
Characterization of Tensile Properties of Cola lepidota Fibers
-
Bond between Fibre-Reinforced Polymer Tubes and Sea Water Sea Sand Concrete: Mechanisms and Effective Parameters: Critical Overview and Discussion
-
Natural ‘Green’ Sugar-Based Treatment for Hair Styling
Journal Description
Fibers
Fibers
is an international, peer-reviewed, open access journal published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), PubAg, CAPlus / SciFinder, Inspec, and many other databases.
- Journal Rank: CiteScore - Q1 (Civil and Structural Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 25.5 days after submission; acceptance to publication is undertaken in 6.6 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Latest Articles
Impact Resistance of Rendering Mortars with Natural and Textile-Acrylic Waste Fibres
Fibers 2022, 10(5), 44; https://doi.org/10.3390/fib10050044 - 17 May 2022
Abstract
Renders should have an adequate resistance to impacts, since they must protect the substrate. The use of fibres may enhance the energy absorbed when the mortars are submitted to an impact load, which contributes to postpone the first crack, and control its propagation
[...] Read more.
Renders should have an adequate resistance to impacts, since they must protect the substrate. The use of fibres may enhance the energy absorbed when the mortars are submitted to an impact load, which contributes to postpone the first crack, and control its propagation and width. In this study, the impact strength was measured by a falling mass from different heights. The cracking pattern and the impact energy for the appearance of the first crack and until failure were evaluated. An artificial accelerated ageing test was also performed, and the impact resistance was analysed before and after ageing. In order to analyse the effects of recycled fibres, wool, coir, flax and textile-acrylic waste fibres were used as reinforcement in cement and cement-lime mortars. The results indicated that the fibres’ addition significantly improved the impact energy of the rendering mortars in comparison with the reference mortars. Concerning the crack patterns, the recycled fibres prevented the opening or the growth of the cracks, before and after ageing. This effect is mainly due to the fibre’s bridge mechanism, due to crossing the open cracks and hindering their propagation. The fibres’ type, length and volume fraction have influenced the mortars’ performance in terms of impact resistance. Textile-acrylic fibres waste presented the best performance by comparison with the natural fibres used.
Full article
(This article belongs to the Special Issue Fiber Composite Process)
►
Show Figures
Open AccessArticle
The Mechanical Response of Epoxy–Sisal Composites Considering Fiber Anisotropy: A Computational and Experimental Study
Fibers 2022, 10(5), 43; https://doi.org/10.3390/fib10050043 - 15 May 2022
Abstract
►▼
Show Figures
Natural-fiber-reinforced composites are seen as a good alternative to traditional synthetic-fiber composites. However, to successfully implement these materials in engineering applications, along with these materials demonstrating satisfactory load-bearing capacity, it is necessary to provide engineers with effective material properties, as well as calculation
[...] Read more.
Natural-fiber-reinforced composites are seen as a good alternative to traditional synthetic-fiber composites. However, to successfully implement these materials in engineering applications, along with these materials demonstrating satisfactory load-bearing capacity, it is necessary to provide engineers with effective material properties, as well as calculation methods that take into account the distinctive features of natural fibers. This study investigated the effective elastic properties and strength of materials composed of unidirectional sisal fibers within a thermosetting polymer matrix, containing 20%, 40% and 60% fiber-volume fraction. Experiments with axial and off-axis loads in conjunction with finite-element modeling were utilized to determine the effective mechanical response of the composites. Analytical and numerical models were considered, using both isotropic- and anisotropic-fiber approaches. It is shown that only by taking into account the sisal-fiber anisotropy can the experimental results of the off-axis experiments be reproduced. The influence of sisal-fiber transverse modulus on the overall mechanical response is a function of the sisal-fiber volume fraction. It has been shown that the longitudinal specific strength of sisal-fiber-reinforced composites is comparable to classical aluminum alloys or steel. Thus, this environmentally friendly composite can be considered as an alternative in some engineering applications, such as reinforcement in concrete composites.
Full article

Figure 1
Open AccessArticle
Influence of Roller Configuration on the Fiber–Matrix Distribution and Mechanical Properties of Continuously Produced, Mineral-Impregnated Carbon Fibers (MCFs)
Fibers 2022, 10(5), 42; https://doi.org/10.3390/fib10050042 - 07 May 2022
Abstract
The article at hand is envisaged to enumerate significant technological parameters for the successful impregnation of carbon fiber rovings having 50,000 (50 K) filaments, each within a fine-grained, cementitious suspension. Parameters such as the number of rollers as well as the influence of
[...] Read more.
The article at hand is envisaged to enumerate significant technological parameters for the successful impregnation of carbon fiber rovings having 50,000 (50 K) filaments, each within a fine-grained, cementitious suspension. Parameters such as the number of rollers as well as the influence of roller deflection and rotation have been investigated and discussed with regard to the quality of the related impregnation and mechanical properties resulting therefrom. Morphological analysis disclosed distinct differences in the fiber matrix distribution, which are particularly reflected in the flexural performance of the mineral-impregnated carbon fibers (MCFs) produced. Moreover, with the best fiber matrix distribution, uniaxial tensile tests on MCFs demonstrated superior tensile strengths, moduli of elasticity, and elongations at rupture.
Full article
(This article belongs to the Special Issue Mechanics of Fiber Reinforced Cementitious Composites)
►▼
Show Figures

Figure 1
Open AccessArticle
The Influence of Silica Fume on the Properties of Mortars Containing Date Palm Fibers
by
Fibers 2022, 10(5), 41; https://doi.org/10.3390/fib10050041 - 06 May 2022
Abstract
►▼
Show Figures
Natural fibers have recently been presented as a promising alternative for manufactured fibers. Date palm fibers showed interesting results when used as an inclusion in concrete and mortar. In this study, Sefri Date Palm Mesh Fibers (SDPMF) were used as an inclusion in
[...] Read more.
Natural fibers have recently been presented as a promising alternative for manufactured fibers. Date palm fibers showed interesting results when used as an inclusion in concrete and mortar. In this study, Sefri Date Palm Mesh Fibers (SDPMF) were used as an inclusion in mortars. Silica fume (SF) partially replaced the cement by 5%, 10%, 15%, and 20% by mass to improve the mechanical properties of SDPMF mortars. SDPMFs were collected from local farms. The fibers were then cleaned, dried, and cut to 50 mm, and added to mortars with 1%, 2%, and 3% by weight. Density, absorption, open porosity, workability, and compressive strength of mortars were investigated. A comparison with a previous study’s results for mortars containing Sefri Date Palm Leave Fibers (SDPLF) is presented. The results showed that the incorporation of SF as part of cement may lead to improving the properties of the mixtures containing SDPMF fibers.
Full article

Figure 1
Open AccessArticle
Nanostructural Changes Correlated to Decay Resistance of Chemically Modified Wood Fibers
Fibers 2022, 10(5), 40; https://doi.org/10.3390/fib10050040 - 28 Apr 2022
Abstract
►▼
Show Figures
Reactive chemical modifications have been shown to impart decay resistance to wood. These modifications change hydroxyl availability, water uptake, surface energy, and the nanostructure of wood. Because fungal action occurs on the micro and nano scale, further investigation into the nanostructure may lead
[...] Read more.
Reactive chemical modifications have been shown to impart decay resistance to wood. These modifications change hydroxyl availability, water uptake, surface energy, and the nanostructure of wood. Because fungal action occurs on the micro and nano scale, further investigation into the nanostructure may lead to better strategies to prevent fungal decay. The aim of this article is to introduce our findings using small angle neutron scattering (SANS) to probe the effects of chemical modifications on the nanostructure of wood fibers. Southern pine wood fiber samples were chemically modified to various weight percentage gains (WPG) using propylene oxide (PO), butylene oxide (BO), or acetic anhydride (AA). After modification, the samples were water leached for two weeks to remove any unreacted reagents, homopolymers or by-products and then the equilibrium moisture content (EMC) was determined. Laboratory soil-block-decay evaluations against the brown rot fungus Gloeophyllum trabeum were performed to determine weight loss and decay resistance of the modifications. To assist in understanding the mechanism behind fungal decay resistance, SANS was used to study samples that were fully immersed in deuterium oxide (D2O). These measurements revealed that modifying the fibers led to differences in the swollen wood nanostructure compared to unmodified wood fibers. Moreover, the modifications led to differences in the nanoscale features observed in samples that were exposed to brown rot fungal attack compared to unmodified wood fibers and solid wood blocks modified with alkylene oxides.
Full article

Figure 1
Open AccessArticle
Impact of Thermal Stress on Abrasive Dust from a Carbon Fiber-Reinforced Concrete Composite
by
, , , , , , , , and
Fibers 2022, 10(5), 39; https://doi.org/10.3390/fib10050039 - 26 Apr 2022
Abstract
Recently, a novel corrosion-resistant construction material, Carbon Concrete Composite (C3), consisting of coated carbon fibers embedded in a concrete matrix, was introduced. However, thermal exposure during domestic fires may impact the release of organic pollutants and fibers during abrasive processing and/or
[...] Read more.
Recently, a novel corrosion-resistant construction material, Carbon Concrete Composite (C3), consisting of coated carbon fibers embedded in a concrete matrix, was introduced. However, thermal exposure during domestic fires may impact the release of organic pollutants and fibers during abrasive processing and/or demolition. Consequently, the objective of this study was to explore the emission characteristics of toxic compounds and harmful fibers during the dry-cutting after exposure to 25–600 °C (3 h, air). These parameters mimic the abrasive machining and dismantling after a domestic fire event. Mass spectrometry and chromatography served as analytical methodologies, and no organic pollutants for exposure temperatures ≥ 400 °C were found. In contrast, significant amounts of pyrolysis products from the organic fiber coating were released at lower temperatures. Studying the morphology of the released fibers by electron microscopy revealed a decrease in fiber diameter for temperatures exceeding 450 °C. At ≥550 °C, harmful fibers, according to the World Health Organization (WHO) definition, occurred (28–41 × 103 WHO fibers/m3 at 550–600 °C). This leads to the conclusion that there is a demand for restraining and protection measures, such as the use of wet cutting processes, suction devices, particle filtering masks and protective clothing, to handle thermally stressed C3.
Full article
(This article belongs to the Topic Fiber-Reinforced Cementitious Composites)
►▼
Show Figures

Figure 1
Open AccessReview
Corrosion Behavior of Fiber-Reinforced Concrete—A Review
Fibers 2022, 10(5), 38; https://doi.org/10.3390/fib10050038 - 21 Apr 2022
Abstract
Corrosion study of conventional reinforcement in concrete has been accorded wider importance in the last few decades based on the losses occurring in monitoring concrete structures. It is well known that the presence of chloride ions is one of the most significant factors
[...] Read more.
Corrosion study of conventional reinforcement in concrete has been accorded wider importance in the last few decades based on the losses occurring in monitoring concrete structures. It is well known that the presence of chloride ions is one of the most significant factors contributing to the corrosion of reinforcing steel. Practically, it is observed that in the marine environment, the activating substances such as chlorides that penetrate the steel can counteract the passivity locally when the electrolyte is highly alkaline. The concrete cover is changed chemically when chloride ionspenetrate into the material, whereupon the pore solution is neutralized. Based on numerous studies, it is evident that steel fibers and glass fibers have less impact on cracked sections in a chloride environment and can oppose chloride infiltration. Glass fibers, when exposed to repeated freeze and thaw conditions, protect the passive layer. This review article highlights the corrosion behavior of reinforced concrete involving various factors such as cracking behavior, transportation, electric conductivity, resistivity, and diffusion of chloride ions in the presence of steel and glass fibers.
Full article
(This article belongs to the Topic Fiber-Reinforced Cementitious Composites)
►▼
Show Figures

Figure 1
Open AccessReview
Fiber-Reinforced Polymer Composites in the Construction of Bridges: Opportunities, Problems and Challenges
Fibers 2022, 10(4), 37; https://doi.org/10.3390/fib10040037 - 18 Apr 2022
Abstract
In this review, we discuss the basic issues related to the use of FRP (fiber-reinforced polymer) composites in bridge construction. This modern material is presented in detail in terms of the possibility of application in engineering structures. A general historical outline of the
[...] Read more.
In this review, we discuss the basic issues related to the use of FRP (fiber-reinforced polymer) composites in bridge construction. This modern material is presented in detail in terms of the possibility of application in engineering structures. A general historical outline of the use and development of modern structural materials, such as steel and concrete, is included to introduce composites as a novel material in engineering, and the most important features and advantages of polymers as a construction material are characterized. We also compare FRP to basic structural materials, such as steel and concrete, which enables estimation of the effectiveness of using of FRP polymers as structural material in different applications. The first bridges made of FRP composites are presented and analyzed in terms of applied technological solutions. Examples of structural solutions for deck slabs, girders and other deck elements made of FRP composites are discussed. Particular attention is paid to the systems of deck slabs, especially those composed of pultruded profiles, sandwich panels and hybrid decks. The disadvantages of composites, as well as barriers and limitations in their application in engineering practice, are presented. Exemplary analyses of the costs of construction, maintenance and demolition of FRP composite bridges are presented and compared with the corresponding costs of concrete and steel bridges. The directions of development of composite bridge structures and the greatest challenges facing engineers and constructors in the coming years are discussed.
Full article
(This article belongs to the Special Issue Fiber Composite Process)
►▼
Show Figures

Figure 1
Open AccessReview
Nanofiber Polymers for Coating Titanium-Based Biomedical Implants
Fibers 2022, 10(4), 36; https://doi.org/10.3390/fib10040036 - 18 Apr 2022
Abstract
►▼
Show Figures
The excellent combination of properties has seen a steep increase in the demand for titanium (Ti)-based material as biomedical implant devices. However, some features that promote biocompatibility are found to be lacking in Ti implants. The use of polymer nanofiber (NF) coating on
[...] Read more.
The excellent combination of properties has seen a steep increase in the demand for titanium (Ti)-based material as biomedical implant devices. However, some features that promote biocompatibility are found to be lacking in Ti implants. The use of polymer nanofiber (NF) coating on the surfaces of the implants has been proven to remedy these setbacks. In particular, electrospun NFs are versatile as natural extracellular matrix mimics and as facilitators in the biocompatibility function of Ti-based implants. Therefore, various properties of Ti implants coated with polymer NFs and the correlations among these properties are explored in this review. Synthetic polymers are favorable in tissue engineering applications because they are biocompatible and have low toxicity and degradation rates. Several approved synthetic polymers and polymer hybrids have been electrospun onto Ti implant surfaces to successfully improve the biomedical applicability of the implants with regard to their physical (including diameter and porosity), chemical (including corrosion resistance), mechanical (including elastic modulus, strength and ductility) and biological properties (including tissue integration, antimicrobial and cytotoxicity).
Full article

Figure 1
Open AccessReview
A Review on the Utilization of Date Palm Fibers as Inclusion in Concrete and Mortar
by
Fibers 2022, 10(4), 35; https://doi.org/10.3390/fib10040035 - 16 Apr 2022
Abstract
►▼
Show Figures
Currently, natural fibers attract the attention of researchers and builders in the construction industry as they are eco-friendly, cost-effective, lightweight, and renewable resources. The inclusion of natural fibers in the concrete and mortar will contribute to solving the environmental problems associated with dumping
[...] Read more.
Currently, natural fibers attract the attention of researchers and builders in the construction industry as they are eco-friendly, cost-effective, lightweight, and renewable resources. The inclusion of natural fibers in the concrete and mortar will contribute to solving the environmental problems associated with dumping or burning them and improve the properties and durability of concrete and mortar. Similar to other natural fibers, Date Palm Fibers (DPF) have been receiving more attention as construction materials. This paper presents a review on the properties of DPF and its effects on the physical, mechanical, and thermal properties of concrete and mortar as well as the processing of DPF and mix design. DPFs can be used in concrete and mortar to improve their properties. However, some of the properties could be reduced. Even though the conducted studies and investigations are promising, it is still not enough to introduce DPF concrete and mortar to the construction industry’s applications.
Full article

Figure 1
Open AccessArticle
Shear and Flexural Behavior of Flat Slabs Casted with Polyolefin Fiber-Reinforced Concrete
Fibers 2022, 10(4), 34; https://doi.org/10.3390/fib10040034 - 12 Apr 2022
Abstract
►▼
Show Figures
This paper presents the influence of polyolefin fiber on the flexural and shear attitude on the flat slabs. Three slab sets (80 cm × 80 cm) were tested, each with a thickness of 10 cm. In the first set (S1), the effect of
[...] Read more.
This paper presents the influence of polyolefin fiber on the flexural and shear attitude on the flat slabs. Three slab sets (80 cm × 80 cm) were tested, each with a thickness of 10 cm. In the first set (S1), the effect of fiber content on the flexural behavior of the flat slab was considered. Therefore, four slab specimens were cast, one of which was considered as a control specimen with no fiber content, while the other three included fibers at 0.5, 1, and 1.5 percent of the total concrete volume. The second series of experiments studied the flexural behavior of flat slabs (S2) with an opening of 15 cm × 15 cm. The first specimen contained nil polyolefin, while the second included 1% polyolefin. In the third set (S3), consideration was taken for 0 and 1% of Polyolefin to realize the shear behavior of the flat slab. The increase in polyolefin fiber content from 0 to 1.5% (for slab set 1) will decrease the deflection from 4.5 mm to 2.3 mm, with an average of 3.58 mm, which is close to the deflection of a 1% polyolefin fiber specimen. Three dimensional models for the tested slabs were simulated numerically via ABAQUS software program. The ratio of the maximum deflection between the experimental and the numerical outcomes were varied with a range of 1.01 to 1.28, with an average of 1.14.
Full article

Figure 1
Open AccessArticle
Preparation, Characterization, and Surface Modification of Cellulose Nanocrystal from Lignocellulosic Biomass for Immobilized Lipase
Fibers 2022, 10(4), 33; https://doi.org/10.3390/fib10040033 - 02 Apr 2022
Abstract
This study reports the synthesis of cellulose nanocrystal (CNC) from sugarcane bagasse and rice straw as the matrix for immobilized lipase enzyme. The CNC surface was modified using cetyltrimethylammonium bromide (CTAB) to improve the interaction of CNC with glutaraldehyde so that CNC can
[...] Read more.
This study reports the synthesis of cellulose nanocrystal (CNC) from sugarcane bagasse and rice straw as the matrix for immobilized lipase enzyme. The CNC surface was modified using cetyltrimethylammonium bromide (CTAB) to improve the interaction of CNC with glutaraldehyde so that CNC can immobilize lipase effectively. The results showed that after surface modification of CNC using CTAB with concentrations of 2–10 mM, the crystallinity of CNC slightly decreased. The presence of immobilized lipase on the modified CNC was confirmed visibly by the appearance of dark spots using transmission electron microscopy (TEM). The bond formed between the enzyme and CNC was approved using Fourier transform infrared spectroscopy (FTIR). FTIR results show a new amine group peak in the immobilized lipase, which is not present in the modified CNC itself. The modified CNC, both from bagasse (SB-20 A1-1) and rice straw (RS-20 B1-1), was successfully applied to the immobilized lipase enzyme with a yield of 88%. The observed free enzyme activity was 3.69 µmol/min∙mL. The degree of hydrolysis of canola oil relative to free lipase (100%) from immobilized lipase at lipase SB-20 A1-1 and lipase RS-20 A1-1 was 23% and 30%, respectively. Therefore, this study successfully immobilized lipase and applied it to the hydrolysis of triglycerides.
Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Wear Properties and Post-Moisture Absorption Mechanical Behavior of Kenaf/Banana-Fiber-Reinforced Epoxy Composites
by
, , , , , and
Fibers 2022, 10(4), 32; https://doi.org/10.3390/fib10040032 - 02 Apr 2022
Abstract
The contribution of natural lignocellulosic fibers to the reduction in wear damage in polymer resins is of interest, especially when two of these fibers can combine their respective effects. Wear properties of hybrid kenaf/banana epoxy composites have been investigated using three different total
[...] Read more.
The contribution of natural lignocellulosic fibers to the reduction in wear damage in polymer resins is of interest, especially when two of these fibers can combine their respective effects. Wear properties of hybrid kenaf/banana epoxy composites have been investigated using three different total amount of fibers, 20, 30 and 40 wt.%, at loading forces up to 30 N and to sliding distances of up to 75 m. This demonstrated that the introduction of the highest level of fibers proved the most suitable for consistency of results and containment of wear with increasing load, as was also found from the morphological evaluation of wear degradation using scanning electron microscopy (SEM). Subsequently, tensile, flexural and impact properties of as-received and post-water-saturation hybrid composites were examined. The tests revealed a limited reduction in tensile and flexural strength, not exceeding 10% of the initial values, which were very high compared to similar materials, almost reaching 140 MPa for tensile strength and exceeding 170 MPa for flexural strength. In contrast, a higher standard deviation of values was found for impact strength, although the decrease in average values was only slightly above 10%. The results suggest the availability of these hybrids for wear-resisting applications in high-moisture environments, and the even more limited water absorption conferred by banana fibers added to kenaf ones.
Full article
(This article belongs to the Special Issue Feature Papers in Fibers)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparative Evaluation of Sisal and Polypropylene Fiber Reinforced Concrete Properties
by
, , , and
Fibers 2022, 10(4), 31; https://doi.org/10.3390/fib10040031 - 24 Mar 2022
Abstract
►▼
Show Figures
This paper presents a focused comparative case study considering the influence of natural and synthetic fibers on the fresh and mechanical properties of concrete. Locally sourced 19 mm long sisal fibers from sisalana leaves and manufactured polypropylene fibers were incorporated in a normal
[...] Read more.
This paper presents a focused comparative case study considering the influence of natural and synthetic fibers on the fresh and mechanical properties of concrete. Locally sourced 19 mm long sisal fibers from sisalana leaves and manufactured polypropylene fibers were incorporated in a normal strength concrete matrix with fiber volumetric contents of 1%. After describing the measured aggregate characteristics, mix designs, and fresh concrete properties, several destructive and non-destructive tests on hardened concrete were undertaken. The former included compression tests on cylinders and flexural tests on prismatic samples, and the latter included ultrasonic pulse velocity and rebound number tests. The workability of sisal-fiber reinforced concrete was generally lower than the nominal concrete and that provided with polypropylene fibers by about 20%, largely due to the hydrophilic nature of the natural fibers. Test results showed that the presence of sisal fibers can improve the compressive strength by about 6%, and the tensile strength by about 4%, compared with the non-reinforced counterpart. This was due to the sisal fibers storing moisture that was released gradually during hydration, helping with the strength development. The concrete with polypropylene had virtually identical properties to the reference concrete. In addition to fresh and mechanical properties, environmental impacts associated with the production of fiber and concrete were also identified and discussed. Based on the assessments from this paper, overall, from the two fibers investigated, the sisal fiber showed more promising results, indicating that natural fibers can be a more sustainable alternative to plastic fibers, providing a good balance between workability and strengths.
Full article

Graphical abstract
Open AccessArticle
Evaluation of the Physical and Mechanical Properties of Short Entada mannii-Glass Fiber Hybrid Composites
by
, , , , and
Fibers 2022, 10(3), 30; https://doi.org/10.3390/fib10030030 - 20 Mar 2022
Abstract
This study investigates the physical and mechanical properties of short Entada mannii- glass fiber polypropylene hybrid composites. The polymeric hybrid composite was produced by combining different ratios of Entada mannii fiber (EMF)/glass fiber (GF) using the compression molding technique. The tensile properties,
[...] Read more.
This study investigates the physical and mechanical properties of short Entada mannii- glass fiber polypropylene hybrid composites. The polymeric hybrid composite was produced by combining different ratios of Entada mannii fiber (EMF)/glass fiber (GF) using the compression molding technique. The tensile properties, compressive strength, impact strength and hardness were evaluated while the fracture surface morphology was examined using the scanning electron microscope (SEM). It further evaluates the moisture absorption and percentage void content of the developed composites. The experimental results show that tensile, compressive, impact and hardness properties of all the hybrid composites were significantly improved as compared with single reinforced composites. Specifically, hybrid composites (EMF/GF5) revealed an overall tensile strength of 41%, hardness of 51% and compressive strength of 47% relative to single reinforced composites, which can be ascribed to enhanced fiber–matrix bonding. The chemical treatment enhanced the EMF fiber surface and promoted good adhesion with the polypropylene (PP) matrix. Moisture absorption properties revealed that the addition of EMF/GF reduces the amount of moisture intake of the hybrid composites attributed to good cementing of the fiber–matrix interface. Morphological analysis revealed that single reinforced composites (EMF1 and GF2) were characterized by fiber pullout and deposition of voids in the composite as compared with the hybrid composites.
Full article
(This article belongs to the Special Issue Sustainable High Performance Fiber-Reinforced Cementitious Composites (HPFRCCs) and Fiber-Reinforced Polymers (FRPs))
►▼
Show Figures

Graphical abstract
Open AccessArticle
Influence of Draw Ratio and Take-Up Velocity on Properties of Ultrafiltration Hollow Fiber Membranes from Polyethersulfone
by
, , , , , and
Fibers 2022, 10(3), 29; https://doi.org/10.3390/fib10030029 - 17 Mar 2022
Abstract
This study aimed to reveal the influence of the draw ratio and take-up speed on the pore size distribution and morphology of the hollow fiber ultrafiltration membrane selective layer. To this end, spinnerets with ring ducts of 1.8 and 1.3 mm were employed,
[...] Read more.
This study aimed to reveal the influence of the draw ratio and take-up speed on the pore size distribution and morphology of the hollow fiber ultrafiltration membrane selective layer. To this end, spinnerets with ring ducts of 1.8 and 1.3 mm were employed, whereas the external diameter of the obtained fiber was kept equal. Atomic force microscopy and scanning electron microscopy were employed to study the morphology of the selective layer. Liquid–liquid displacement porosimetry was used to determine the limiting pore size distribution. The produced polyethersulfone ultrafiltration membranes had a robust, sponge-like porous structure, permeance 1000 L/(m2·h·bar), smooth selective layer, and mean pore size 25 nm. It was found that limiting pore sizes are affected more by the change in the take-up speed, whereas the surface pore sizes, roughness, and morphology are controlled by the draw ratio. It was shown that excessive draw causes the selective layer stretching and crop-up of the porous sublayer. Consequently, the diameters of the spinneret ring duct and the bore needle should match the hollow fiber outer and lumen diameters, respectively.
Full article
(This article belongs to the Special Issue Hollow Fiber Membranes: Sustainable Fabrication Techniques and Application)
►▼
Show Figures

Figure 1
Open AccessArticle
Influence of Carbon Fiber-Reinforced Ropes Applied as External Diagonal Reinforcement on the Shear Deformation of RC Joints
Fibers 2022, 10(3), 28; https://doi.org/10.3390/fib10030028 - 10 Mar 2022
Abstract
►▼
Show Figures
The use of the innovative material of Carbon Fiber-Reinforced (C-FRP) ropes as external near surface mounted reinforcement for the strengthening of reinforced concrete beam-column joints is studied. The ropes are diagonally applied forming external X-type reinforcements on both sides of the joint body.
[...] Read more.
The use of the innovative material of Carbon Fiber-Reinforced (C-FRP) ropes as external near surface mounted reinforcement for the strengthening of reinforced concrete beam-column joints is studied. The ropes are diagonally applied forming external X-type reinforcements on both sides of the joint body. The efficiency of the technique is mainly based on the assumption that the confinement of the joint body due to the applied X-shaped ropes and the contribution of the ropes as shear reinforcement are efficient enough to reduce the shear deformations observed in the joint core during the seismic excitation. Thereof the experimental measurements of the shear deformations of nine full scale beam-column joints tested in cyclic deformations are elaborated and presented herein. The specimens are sorted in two groups. Specimens of group A have been designed in the way that damage is mainly expected in the beam. On the other hand, in order to investigate the efficacy of the use of the ropes for substandard joints the group B specimens have been designed in the way that cracks and some damages are expected to develop in the joint body. Systematic and extended comparative presentations for specimens with and without ropes proved in all the examined cases that the externally mounted C-FRP ropes kept the joint body intact and substantially reduced the shear deformations especially in high drifts. Moreover, the influence of the externally mounted X-shaped C-FRP ropes on the seismic behaviour of these specimens is also examined in terms of the developing principal tensile stresses inside the joint body. From the comparisons of the principal stresses developing in specimens with and without X-form C-FRP ropes it became quite obvious that the ropes kept the joint body intact and allowed the development of higher values of principal stresses comparing with the stresses developing in specimens without ropes.
Full article

Figure 1
Open AccessReview
A Review of Fibre Reinforced Polymer Structures
Fibers 2022, 10(3), 27; https://doi.org/10.3390/fib10030027 - 08 Mar 2022
Cited by 2
Abstract
►▼
Show Figures
This paper reviews Fibre Reinforced Polymer (FRP) composites in Civil Engineering applications. Three FRP types are used in Structural Engineering: FRP profiles for new construction, FRP rebars and FRP strengthening systems. Basic materials (fibres and resins), manufacturing processes and material properties are discussed.
[...] Read more.
This paper reviews Fibre Reinforced Polymer (FRP) composites in Civil Engineering applications. Three FRP types are used in Structural Engineering: FRP profiles for new construction, FRP rebars and FRP strengthening systems. Basic materials (fibres and resins), manufacturing processes and material properties are discussed. The focus of the paper is on all-FRP new-build structures and their joints. All-FRP structures use pultruded FRP profiles. Their connections and joints use bolting, bonding or a combination of both. For plate-to-pate connections, effects of geometry, fibre direction, type and rate of loading, bolt torque and bolt hole clearance, and washers on failure modes and strength are reviewed. FRP beam-columns joints are also reviewed. The joints are divided into five categories: web cleated, web and flange cleated, high strength, plate bolted and box profile joints. The effect of both static and cyclic loading on joints is studied. The joints’ failure modes are also discussed.
Full article

Figure 1
Open AccessFeature PaperArticle
Effectiveness of Hybrid Fibers on the Fracture and Shear Behavior of Prestressed Concrete Beams
Fibers 2022, 10(3), 26; https://doi.org/10.3390/fib10030026 - 08 Mar 2022
Abstract
This study investigates the effectiveness of hybrid fibers (steel and macro-synthetic) on the shear behavior of prestressed concrete beams. The hybrid fiber combination was selected to avoid workability issues at high volume dosages and ensure effective crack arresting over the crack opening range.
[...] Read more.
This study investigates the effectiveness of hybrid fibers (steel and macro-synthetic) on the shear behavior of prestressed concrete beams. The hybrid fiber combination was selected to avoid workability issues at high volume dosages and ensure effective crack arresting over the crack opening range. Fracture studies included testing notched concrete prisms to identify the role of hybrid fibers in the crack bridging mechanism. Seven hybrid fiber reinforced prestressed concrete (HFRPC) beams were tested at a low shear span (a) to depth (d) ratio of 2.4. The effects of hybrid fibers on load–deflection behavior and strain in the strand are reported. Similarly, the crack opening, crack slip and crack angle variation regarding applied shear were investigated using the digital image correlation (DIC) technique. Test results of HFRPC beams showed considerable improvements in peak load and the post-peak response with a higher hybrid fiber dosage. The crack opening and crack slip measurement across the major shear crack revealed continuous dilatant behavior. The kinematic response of critical shear crack reflects the sustained dilation response up to the ultimate load, which depends on the critical shear crack angle of the tested beams. As the fiber dosage increases, the shear crack slip and width are reduced, indicating the roles of hybrid fibers in improving ductility and the change in failure mode from brittle shear tension to relatively ductile shear tension.
Full article
(This article belongs to the Special Issue Fibers in Concrete Construction: Material Behavior, Design and Strengthening)
►▼
Show Figures

Figure 1
Open AccessArticle
Acoustic Characterization and Modeling of Silicone-Bonded Cocoa Crop Waste Using a Model Based on the Gaussian Support Vector Machine
by
, , , and
Fibers 2022, 10(3), 25; https://doi.org/10.3390/fib10030025 - 06 Mar 2022
Cited by 1
Abstract
The sustainable management of waste from agricultural crops represents an urgent challenge. One possible solution considers waste as possible secondary raw materials for specific uses. Among these, the use of agricultural waste as a product for the assembly of panels for the sound
[...] Read more.
The sustainable management of waste from agricultural crops represents an urgent challenge. One possible solution considers waste as possible secondary raw materials for specific uses. Among these, the use of agricultural waste as a product for the assembly of panels for the sound absorption of living environments represents a particularly suitable solution. In this study, the acoustic properties of the cocoa pod husk were evaluated, using silicone as a binder. Different proportions of materials and thicknesses were evaluated. A Support Vector Machine (SVM)-based model with a Gaussian kernel was then used to predict the acoustic performance of composite materials. The results obtained suggest the adoption of this material for the acoustic correction of living environments and this methodology for the prediction of the acoustic behavior of materials.
Full article
(This article belongs to the Special Issue Natural Fiber Competitiveness and Sustainability)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Coatings, Fibers, Materials, Nanomaterials, Polymers
Nanofibers and Thin Coatings with Special Physicochemical Properties
Topic Editors: Tomasz Tański, Pawel Jarka, Marcin BilewiczDeadline: 15 December 2022
Topic in
Automation, Fibers, Metrology, Photonics, Sensors
Advance and Applications of Fiber Optic Measurement
Topic Editors: Flavio Esposito, Stefania Campopiano, Agostino IadiciccoDeadline: 31 March 2023
Topic in
Polymers, Applied Sciences, Fibers, Polysaccharides, Macromol
Cellulose and Cellulose Derivatives
Topic Editors: Jungmok You, Jeonghun KimDeadline: 31 July 2023

Conferences
Special Issues
Special Issue in
Fibers
Carbon Fibers from Sustainable Precursors
Guest Editor: Radu Dorin AndreiDeadline: 31 May 2022
Special Issue in
Fibers
Fiber Reinforced Inorganic-Based Composite Systems for Structural Applications
Guest Editors: Valeria Corinaldesi, Jacopo DonniniDeadline: 30 June 2022
Special Issue in
Fibers
Application of Chitosan in the Textile Field
Guest Editors: Marina Zoccola, Parag BhavsarDeadline: 10 July 2022
Special Issue in
Fibers
Fibers in Concrete Construction: Material Behavior, Design and Strengthening
Guest Editor: Akanshu SharmaDeadline: 31 July 2022