- Article
Effect of TiO2 and SiO2 Nanoparticles on Traction, Wear, and High-Shear Viscosity of PAG Lubricants Under Elastohydrodynamic (EHL) Conditions for Refrigeration Systems
- Mohd Zaki Sharif,
- Mohd Syafiq Abd Aziz and
- Anwar Ilmar Ramadhan
- + 4 authors
This study tests TiO2 and SiO2 nanolubricants in PAG oil using a Mini Traction Machine and an Ultra Shear Viscometer. The loads were 20 N and 40 N. The entrainment speeds ranged from 2.5 to 500 mm/s. The slide-to-roll ratio (SRR) ranged from 25 to 150%. The nanoparticle concentrations were 0.01, 0.03, and 0.05%. The ball size was 19.05 mm, and the disc was 46 mm. All tests were run at 40 °C. Only the 0.05% concentration lowered traction compared with PAG at a fixed SRR. TiO2 at 0.05% showed the largest drop, up to 4.89% at 20 N and 2.99% at 40 N. However, lower concentrations increased traction. All the nanolubricants reduced wear. TiO2 at 0.03% gave the lowest wear, with a reduction of about 35 µm at 40 N. Nanolubricant samples stayed between 40.2 and 40.5 °C, while PAG reached about 41.0 °C. TiO2 produced slightly lower temperatures than SiO2. Ultra-shear tests from 40 to 100 °C showed shear thinning. In most conditions, TiO2 at 0.05% kept the highest viscosity at 40 and 60 °C, up to 12% above PAG. SiO2 showed smaller changes. TiO2 delivered better friction, wear, temperature, and viscosity performance. Overall, both nanolubricants at 0.03% are suitable when wear reduction and thermal stability are prioritised over traction reduction, such as in refrigeration applications, while the 0.05% suits high-load or high-shear use.
9 February 2026







