-
Closing the Loop on LIB Waste: A Comparison of the Current Challenges and Opportunities for the U.S. and Australia towards a Sustainable Energy Future
-
Combining SWOT with AHP for Analyzing the Adoption of a Circular Economy in the Apparel Industry in Brazil
-
Application Potential of Wastewater Fertigated Short Rotation Coppice Systems in a Selected Region (Aligarh, UP, India)
Journal Description
Recycling
Recycling
is an international, peer-reviewed, open access journal on the recycling and reuse of material resources, including circular economy published bimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), FSTA, Inspec, AGRIS, and other databases.
- Journal Rank: CiteScore - Q2 (Management, Monitoring, Policy and Law)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.7 days after submission; acceptance to publication is undertaken in 3.7 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
4.3 (2022);
5-Year Impact Factor:
4.4 (2022)
Latest Articles
Exploring the Plastic Collection and Recycling Trends in Sri Lanka
Recycling 2023, 8(6), 94; https://doi.org/10.3390/recycling8060094 - 26 Nov 2023
Abstract
This study examined plastic waste management in Sri Lanka, concentrating on the contributing factors to plastic waste generation and collection. Data were gathered through a questionnaire survey from registered plastic recycling and management centres. The analysis revealed a positive correlation between tourist arrivals
[...] Read more.
This study examined plastic waste management in Sri Lanka, concentrating on the contributing factors to plastic waste generation and collection. Data were gathered through a questionnaire survey from registered plastic recycling and management centres. The analysis revealed a positive correlation between tourist arrivals and plastic waste generation, indicating increased plastic waste production due to tourism spanning from 2014 to 2022. However, plastic waste collection negatively correlated with precipitation levels, suggesting heavy rainfall hampers collection efforts. This study found HDPE, PVC, LDPE, and PP to be the most collected and recycled plastic types, whereas PS and PET recycling were less prevalent. The results demonstrate the need for enhanced recycling infrastructure and highlight the necessity for government participation in plastic waste management initiatives. This study recommends increasing waste collection and recycling during the tourist season. In addition to enhancing public and private awareness, there should be additional investment in recycling facilities. The findings offer crucial insights into plastic waste management in Sri Lanka, emphasizing the importance of collaborative efforts and comprehensive strategies to tackle plastic pollution.
Full article
(This article belongs to the Special Issue Advances in the Recycling, Processing and Use of Plastic Waste II)
►
Show Figures
Open AccessArticle
Recycled Surgical Mask Waste as a Resource Material in Sustainable Geopolymer Bricks
by
, , , , , , and
Recycling 2023, 8(6), 93; https://doi.org/10.3390/recycling8060093 - 19 Nov 2023
Abstract
With the advent of the COVID-19 pandemic, the global consumption of single-use surgical masks has risen immensely, and it is expected to grow in the coming years. Simultaneously, the disposal of surgical masks in the environment has caused plastic pollution, and therefore, it
[...] Read more.
With the advent of the COVID-19 pandemic, the global consumption of single-use surgical masks has risen immensely, and it is expected to grow in the coming years. Simultaneously, the disposal of surgical masks in the environment has caused plastic pollution, and therefore, it is exigent to find innovative ways to handle this problem. In this study, surgical masks were processed in a laboratory using the mechanical grinding method to obtain recycled surgical masks (RSM). The RSM was added in doses of 0%, 1%, 2%, 3%, and 4% by volume of geopolymer bricks, which were synthesized with ground granulated blast furnace slag (GGBS), rice husk ash (RHA), sand, and sodium silicate (Na2SiO3) at ambient conditions for a duration of 28 days. The developed bricks were tested for compressive strength, flexural strength, density, water absorption, efflorescence, and drying shrinkage. The results of the study reveal that compressive strength and flexural strength improved with the inclusion of RSM in the bricks. The highest values of compressive strength and flexural strength were 5.97 MPa and 1.62 MPa for bricks with 4% RSM, respectively. Further, a reduction in the self-weight of the bricks was noticed with an increase in RSM. There was no pronounced effect of RSM on the water absorption and efflorescence properties. However, the RSM played a role in reducing the drying shrinkage of the bricks. The sustainability analysis divulges the catalytic role of RSM in improving material performance, thereby proving to be a potential candidate for low-carbon material in the construction industry.
Full article
(This article belongs to the Special Issue Sustainable Materials from Waste and Renewable Sources)
►▼
Show Figures

Figure 1
Open AccessArticle
Recovery of Kish Graphite from Steelmaking Byproducts with a Multi-Stage Froth Flotation Process
Recycling 2023, 8(6), 92; https://doi.org/10.3390/recycling8060092 - 18 Nov 2023
Abstract
Steelmaking processes inevitably generate large amounts of byproducts, including slags, specks of dust, etc., and their treatment has been a critical issue for the steelmaking industry. Kish graphite is a valuable substance existing in steelmaking byproducts, and the recovery of Kish graphite has
[...] Read more.
Steelmaking processes inevitably generate large amounts of byproducts, including slags, specks of dust, etc., and their treatment has been a critical issue for the steelmaking industry. Kish graphite is a valuable substance existing in steelmaking byproducts, and the recovery of Kish graphite has attracted more attention in recent years. The purpose of this study was to use a multi-stage froth flotation process for the beneficiation of Kish graphite and to investigate the influence of flotation conditions on the mass distribution of graphite and impurities. The results showed that the dust D2 contained ~34 wt.% of graphite and thus had the highest potential for the recovery of Kish graphite. The dosages of frother (methyl isobutyl carbinol, MIBC) at 0.005 kg/t and collector (kerosene) at 1 kg/t were optimal for the flotation of Kish graphite. After three-stage froth flotation, the graphite content of the concentrate was progressively increased to 84.09 wt.%, and the entire recovery rate was 93.05%. During the multi-stage froth flotation process, most of the impurities were separated in stage I, but the Fe-containing impurities were mainly separated in stage II. Some Ca2+, Na+, and K+ were leached out, and there were barely any heavy metals in the liquid phases.
Full article
(This article belongs to the Special Issue Feature Papers in Recycling 2023)
►▼
Show Figures

Figure 1
Open AccessArticle
Exploring the 5Rs Holistic Model for Zero Food Waste in Saudi Arabian Food Service Outlets
Recycling 2023, 8(6), 91; https://doi.org/10.3390/recycling8060091 - 11 Nov 2023
Abstract
Background: The proportion of food waste in the Kingdom of Saudi Arabia, particularly in food service outlets, sends an important and urgent call for a holistic model to either prevent or at least properly manage this high level of food waste. This study
[...] Read more.
Background: The proportion of food waste in the Kingdom of Saudi Arabia, particularly in food service outlets, sends an important and urgent call for a holistic model to either prevent or at least properly manage this high level of food waste. This study draws on the European Union Waste Hierarchy Framework and the United States Environmental Protection Agency Food Recovery Framework to develop a holistic model to manage the high rate of food waste in Saudi food service outlets. Methods: This study adopted the Standards for Reporting Qualitative Research using one-to-one interviews with food service experts to explore the current and appropriate practices for food waste prevention. The in-depth interviews discussed the implementation of the 5Rs hierarchy, which includes reducing food surplus and waste at the source, redistributing food surplus to needy people, reusing food surplus/waste, recycling food waste, and recovering food waste benefits, i.e., bioenergy production. Results: The successful implementation of the 5Rs hierarchy depends on effective collaboration between the key stakeholders, i.e., policy makers, food industry administrators, non-governmental organizations, and customers. The effective management of the food supply chain is also vital to avoid food surplus and prevent waste in food service outlets. Additionally, sustainable production by staff and responsible consumption by consumers contribute effectively to the implementation of the 5Rs model, which contributes to the achievement of zero food waste and, ultimately, to sustainable development. Conclusions: This study provided a novel hierarchy model, which has five tiers, aiming to avoid food waste. The successful implementation of this model will lead to several significant positive impacts on the economy, community, and environment.
Full article
(This article belongs to the Special Issue Feature Papers in Recycling 2023)
►▼
Show Figures

Figure 1
Open AccessReview
An Overview of Management Status and Recycling Strategies for Plastic Packaging Waste in China
Recycling 2023, 8(6), 90; https://doi.org/10.3390/recycling8060090 - 11 Nov 2023
Abstract
Given their exceptional performance, plastic packaging products are widely used in daily life, and the dramatic expansion in plastic packaging waste (PPW) has exacerbated environmental problems. Many countries have enacted laws and developed recycling technologies to manage plastic packaging waste in consideration of
[...] Read more.
Given their exceptional performance, plastic packaging products are widely used in daily life, and the dramatic expansion in plastic packaging waste (PPW) has exacerbated environmental problems. Many countries have enacted laws and developed recycling technologies to manage plastic packaging waste in consideration of the nature of PPW as both garbage and a resource. As the world’s largest producer and consumer of plastics, China has also taken measures to address this issue. This paper presents the latest management regulations and recycling strategies for PPW in China. Based on an analysis of the current management status of PPW and recycling technologies and their carbon emission impacts, some management suggestions and a comprehensive full-chain recycling process were put forward. We supposed that management challenges that need to be overcome in the future can be solved through the improvement of green designs for plastic packaging, manufacturing technology updates, consumption concept changes, and the high-value utilization of PPW. This paper aims to provide valuable references for government decisions on PPW management and, furthermore, to set up an economically sensible and industrially feasible PPW solution and boost the development of PPW recycling.
Full article
(This article belongs to the Special Issue Advances in the Recycling, Processing and Use of Plastic Waste II)
►▼
Show Figures

Figure 1
Open AccessArticle
Automated Battery Disassembly—Examination of the Product- and Process-Related Challenges for Automotive Traction Batteries
Recycling 2023, 8(6), 89; https://doi.org/10.3390/recycling8060089 - 08 Nov 2023
Abstract
As the market share of electric vehicles continues to rise, the number of battery systems that are retired after their service life in the vehicle will also increase. This large growth in battery returns will also have a noticeable impact on processes such
[...] Read more.
As the market share of electric vehicles continues to rise, the number of battery systems that are retired after their service life in the vehicle will also increase. This large growth in battery returns will also have a noticeable impact on processes such as battery disassembly. The purpose of this paper is, therefore, to examine the challenges of the battery disassembly process in relation to the required increase in the degree of automation. For this purpose, a survey of various experts along the battery value chain was conducted, and product-side hurdles, such as the wide range of variants, and process-side challenges, such as the opening of the housing cover or the removal of cables and connectors, were identified. Together with an assessment of the potential degree of automation in the context of downstream processes (reuse, repair, remanufacturing, and recycling), this results in a variety of streams for future research in the field of automated battery disassembly. The core aspect in this context is data availability consisting of product and component data as well as process-relevant parameters.
Full article
(This article belongs to the Special Issue Recycling of Spent Batteries—Trash to Treasure)
►▼
Show Figures

Figure 1
Open AccessReview
Recent Recycling Innovations to Facilitate Sustainable Packaging Materials: A Review
by
, , , , , , and
Recycling 2023, 8(6), 88; https://doi.org/10.3390/recycling8060088 - 07 Nov 2023
Abstract
►▼
Show Figures
Packaging materials play a significant role in the meat, fish, and seafood, pharmaceutical, beverages, and electronics industries. These materials protect the contents during handling and transportation from damage, contamination, and loss of quality, thus enhancing the shelf life of the products being packaged.
[...] Read more.
Packaging materials play a significant role in the meat, fish, and seafood, pharmaceutical, beverages, and electronics industries. These materials protect the contents during handling and transportation from damage, contamination, and loss of quality, thus enhancing the shelf life of the products being packaged. Several materials, like paper and cardboard, plastics, metals, and glass, have been widely used. However, the vast consumption of these materials leads to high waste generation due to increasing demands globally. This article considers some aspects of recycling waste packaging materials, the need for recycling in terms of environmental impacts, and the energy-saving and economic benefits. It also provides some highlights on the sustainability of the processes of recycling and how the government and public can influence recycling operations. The impact of the COVID-19 pandemic on packaging systems and solid waste management is also highlighted. This study also provides a short note on the possible future methods to be adopted in the recycling process of waste packaging materials.
Full article

Figure 1
Open AccessArticle
Safety Assessment of Recycled Plastics from Post-Consumer Waste with a Combination of a Miniaturized Ames Test and Chromatographic Analysis
by
, , , , , , , and
Recycling 2023, 8(6), 87; https://doi.org/10.3390/recycling8060087 - 04 Nov 2023
Abstract
European circular economy goals require the use of recycled polymers in sensitive applications such as food packaging. As plastic recyclates can contain unknown post-consumer substances, the European Food Safety Authority evaluates recycling processes using a worst-case assumption: all contaminants are DNA-reactive mutagens/carcinogens with
[...] Read more.
European circular economy goals require the use of recycled polymers in sensitive applications such as food packaging. As plastic recyclates can contain unknown post-consumer substances, the European Food Safety Authority evaluates recycling processes using a worst-case assumption: all contaminants are DNA-reactive mutagens/carcinogens with extremely low safety thresholds. The current data are insufficient to estimate whether this assumption is justified. To provide scientific evidence on the presence of DNA-reactive mutagens in recycled plastics, 119 input and output samples from plastic recycling were tested with a miniaturized Ames test. DNA-reactive mutagens were not detected in recycled polyethylene terephthalate, which is already approved for food contact. However, other types of recycled plastics (polyethylene, polypropylene and polystyrene), which are currently unauthorized for food contact, showed DNA-reactive, mutagenic effects in a total of 51 samples. The DNA-reactive substances that are responsible for the detected mutagenic activity could not be identified by comparison of the bioassay data with analytical results from a chromatographical screening. The data from the Ames test analysis of different independent batches and a comparison of input and output material indicate that the DNA-reactive contaminants are not randomly introduced through the misuse of recycled packaging by consumers, but are systematically formed during the recycling process from precursors in the input. This publication highlights the need to identify the source for this critical contaminant to enable the future use of polyethylene, polypropylene and polystyrene in sensitive applications.
Full article
(This article belongs to the Special Issue Advances in the Recycling, Processing and Use of Plastic Waste II)
►▼
Show Figures

Figure 1
Open AccessReview
A Systematic Literature Review of Waste Identification in Automatic Separation Systems
by
, , , , , and
Recycling 2023, 8(6), 86; https://doi.org/10.3390/recycling8060086 - 02 Nov 2023
Abstract
Proper waste separation is essential for recycling. However, it can be challenging to identify waste materials accurately, especially in real-world settings. In this study, a systematic literature review (SLR) was carried out to identify the physical enablers (sensors and computing devices), datasets, and
[...] Read more.
Proper waste separation is essential for recycling. However, it can be challenging to identify waste materials accurately, especially in real-world settings. In this study, a systematic literature review (SLR) was carried out to identify the physical enablers (sensors and computing devices), datasets, and machine learning (ML) algorithms used for waste identification in indirect separation systems. This review analyzed 55 studies, following the Kitchenham guidelines. The SLR identified three levels of autonomy in waste segregation systems: full, moderate, and low. Edge computing devices are the most widely used for data processing (9 of 17 studies). Five types of sensors are used for waste identification: inductive, capacitive, image-based, sound-based, and weight-based sensors. Visible-image-based sensors are the most common in the literature. Single classification is the most popular dataset type (65%), followed by bounding box detection (22.5%). Convolutional neural networks (CNNs) are the most commonly used ML technique for waste identification (24 out of 26 articles). One of the main conclusions is that waste identification faces challenges with real-world complexity, limited data in datasets, and a lack of detailed waste categorization. Future work in waste identification should focus on deployment and testing in non-controlled environments, expanding system functionalities, and exploring sensor fusion.
Full article
(This article belongs to the Special Issue Featured Reviews in Recycling)
►▼
Show Figures

Graphical abstract
Open AccessReview
Gravity Concentration in Urban Mining Applications—A Review
Recycling 2023, 8(6), 85; https://doi.org/10.3390/recycling8060085 - 01 Nov 2023
Abstract
►▼
Show Figures
Urban mining has emerged as a concept that goes beyond conventional recycling, as it aims to tackle both the challenges of solid waste generation and management, as well as the scarcity of primary resources. Gravity concentration has gained increasing attention as a promising
[...] Read more.
Urban mining has emerged as a concept that goes beyond conventional recycling, as it aims to tackle both the challenges of solid waste generation and management, as well as the scarcity of primary resources. Gravity concentration has gained increasing attention as a promising method for addressing crucial challenges in urban mining applications. In this sense, this review provides a comprehensive and up-to-date overview of gravity concentration in urban mining processes, covering principles, techniques, current applications, recent advancements, challenges, and opportunities. Emphasis was placed on shifting from the commonly found literature focus on ore processing to solid waste processing. Three types of solid waste, namely plastics, construction and demolition waste (CDW), and waste from electrical and electronic equipment (WEEE), were chosen for a more in-depth examination due to their massive production and widespread generation. Discussions also considered the potential of gravity concentration to address the unique challenges in their processing and explored possibilities for future developments.
Full article

Figure 1
Open AccessArticle
X-ray Fluorescence Analysis of Waste Sm-Co Magnets: A Rational Approach
by
, , , and
Recycling 2023, 8(6), 84; https://doi.org/10.3390/recycling8060084 - 01 Nov 2023
Abstract
►▼
Show Figures
Determination of the chemical composition of waste Sm-Co magnets is required for their efficient recycling. The non-stereotypical composition of said magnets makes an analysis extremely challenging. X-ray fluorescence spectrometry is a promising analytical tool for this task. It offers high accuracy and simplicity
[...] Read more.
Determination of the chemical composition of waste Sm-Co magnets is required for their efficient recycling. The non-stereotypical composition of said magnets makes an analysis extremely challenging. X-ray fluorescence spectrometry is a promising analytical tool for this task. It offers high accuracy and simplicity of sample preparation as it does not require sample dissolution. However, a serious limitation of X-ray fluorescence analysis is the spectral interference of matrix elements and impurities. In this work, a two-stage technique has been developed for the determination of the main components (Sm, Co) and impurities (Fe, Cu, Zr, Hf, Ti, Ni, Mn, Cr) in samples of spent samarium–cobalt magnets using wavelength dispersive X-ray fluorescence spectrometry. In order to overcome the main limitation of the chosen method and to maximize its capabilities of qualitative and quantitative analysis, we propose an approach to the selection of analytical lines and experimental conditions, as well as a preparation method for the calibration standards. The obtained results have been shown to have a good correlation with ICP-OES. The limits of detection are in the range of 0.001–0.02 wt%, and the limits of quantification are 0.003–0.08 wt%.
Full article

Graphical abstract
Open AccessSystematic Review
Alleviation of Selected Environmental Waste through Biodegradation by Black Soldier Fly (Hermetia illucens) Larvae: A Meta-Analysis
Recycling 2023, 8(6), 83; https://doi.org/10.3390/recycling8060083 - 24 Oct 2023
Abstract
►▼
Show Figures
Alleviation of environmental waste is a significant challenge, contributing to greenhouse gas emissions and wasting valuable resources. To address this issue sustainably, valorization techniques are being explored to convert environmental waste into valuable bio-based products. Additionally, the use of black soldier fly (
[...] Read more.
Alleviation of environmental waste is a significant challenge, contributing to greenhouse gas emissions and wasting valuable resources. To address this issue sustainably, valorization techniques are being explored to convert environmental waste into valuable bio-based products. Additionally, the use of black soldier fly (Hermetia Illucens) larvae has emerged as a potential solution to degrade environmental waste and produce biomass. This study aimed to quantify the waste reduction index (WRI) of environmental waste through biodegradation by black soldier fly (BSF) larvae. A meta-analysis method was employed, involving a comprehensive search in the Scopus database for analysis. A total of 45 articles were analyzed and the results indicate that kitchen waste and fruit and vegetable wastes have a positive effect on WRI and other variables. The WRI of kitchen waste and fruit and vegetable wastes is 4.77 ± 2.98 g/day and 2.72 ± 2.14 g/day, respectively. Fecal waste results in a lower WRI than those of other waste categories, i.e., 2.22 ± 1.29 g/day. Overall, the BSF larvae effectively reduce organic environmental wastes and convert them into their body mass, which is rich in protein. This study contributes to a deeper understanding of the potential of BSF in waste management, offering insights into sustainable waste reduction strategies.
Full article

Figure 1
Open AccessArticle
Investigation of the Fiber Length and the Mechanical Properties of Waste Recycled from Continuous Glass Fiber-Reinforced Polypropylene
Recycling 2023, 8(6), 82; https://doi.org/10.3390/recycling8060082 - 24 Oct 2023
Abstract
►▼
Show Figures
This paper explores the mechanical recycling of continuous fiber-reinforced thermoplastics (CFRTPs) waste into injection molded products, focusing on the influence of recycling parameters on fiber length and mechanical properties. CFRTPs are gaining attention for their promising attributes, including weight-specific mechanical properties, short cycle
[...] Read more.
This paper explores the mechanical recycling of continuous fiber-reinforced thermoplastics (CFRTPs) waste into injection molded products, focusing on the influence of recycling parameters on fiber length and mechanical properties. CFRTPs are gaining attention for their promising attributes, including weight-specific mechanical properties, short cycle times, storability, and recyclability, making them suitable for diverse applications. However, as CFRTP production rates rise, recycling strategies become crucial for sustainability. This study investigates the processability of CFRTP waste, defines size reduction conditions, and evaluates the impact of various compounding parameters such as temperature, screw speed, and fiber volume content during extrusion. The research findings indicate that higher screw speeds lead to fiber length reduction, whereas elevated temperatures result in longer fibers. Increased fiber volume intensifies interactions, resulting in shorter lengths. Additionally, the study examines the influence of injection molding parameters such as back pressure, screw speed, and initial fiber length on the resulting fiber length and mechanical properties of injection molded specimens, emphasizing the need for precise parameter control to optimize performance in recycled CFRTPs. Key findings are that increasing the initial fiber length from 260 μm to 455 μm results in an average fiber length after injection molding of 225 μm and 341 μm, respectively. This implies that longer initial fibers are more prone to breakage. Regarding the mechanical properties, increasing back pressure from 20 bar to 60 bar results in a reduction in Young’s modulus of approximately 40 MPa. Higher screw speed also reduces modulus by approximately 70 MPa due to intensified fiber–screw interactions. However, back pressure and screw speed have neutral effects on the tensile strength and the elongation at break.
Full article

Figure 1
Open AccessReview
Avocado Waste Biorefinery: Towards Sustainable Development
by
, , , and
Recycling 2023, 8(5), 81; https://doi.org/10.3390/recycling8050081 - 20 Oct 2023
Abstract
The increasing demand for avocado consumption has led to a vast generation of waste products. Despite the high nutritional value of avocados, the waste generated from their processing poses a significant environmental challenge. Therefore, the development of a sustainable approach to avocado waste
[...] Read more.
The increasing demand for avocado consumption has led to a vast generation of waste products. Despite the high nutritional value of avocados, the waste generated from their processing poses a significant environmental challenge. Therefore, the development of a sustainable approach to avocado waste management is a major concern. Biorefinery presents a promising approach to the valorization of avocado waste components, including the seed, peel, and pulp residues. This paper explores the potential of avocado waste biorefinery as a sustainable solution to produce bio-based products. Several approaches, including extraction, hydrolysis, fermentation, and biodegradation, to obtain valuable products such as starch, oil, fiber, and bioactive compounds for food or feed goods have been proposed. The review also highlights the approaches towards addressing challenges of energy security and climate change by utilizing avocado waste as a source to produce biofuels such as biogas, biodiesel, and bioethanol. In conclusion, the development of avocado waste biorefinery presents a promising avenue for sustainable development. This process can efficiently convert the avocado waste components into valuable bio-based products and clean energy sources, contributing to the attainment of a circular economy and a more sustainable future.
Full article
(This article belongs to the Special Issue Resource Recovery from Waste Biomass)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Precious Metal Recovery from Waste Electrical and Electronic Equipment through Oxidative Refining
Recycling 2023, 8(5), 80; https://doi.org/10.3390/recycling8050080 - 16 Oct 2023
Abstract
This study delves into the application of oxidative refining for the recovery and concentration of precious metals, namely palladium (Pd) and gold (Au), from waste electrical and electronic equipment by WEEE recycling, leveraging pyrometallurgical techniques. The primary objective is to optimize refining parameters,
[...] Read more.
This study delves into the application of oxidative refining for the recovery and concentration of precious metals, namely palladium (Pd) and gold (Au), from waste electrical and electronic equipment by WEEE recycling, leveraging pyrometallurgical techniques. The primary objective is to optimize refining parameters, encompassing variations in gas pressure, temperature, and gas composition, to maximize the extraction and purification of precious metals from recycled materials. Through an array of comprehensive characterization techniques, encompassing microstructural analysis, elemental composition assessment, and metal concentration measurement, this study scrutinizes the potential of oxidative refining. The conclusive findings underscore the remarkable potential of oxidative refining in augmenting the efficiency and effectiveness of metal recovery from waste printed circuit boards (PCBs), with a pronounced emphasis on the concentration of Pd and Au. This research not only highlights the promise of oxidative refining but also concludes that optimizing process parameters, such as a N2/O2 mixed gas pressure of 4 L/min, a process time of 40 min, and a temperature of 1400 °C, is imperative for achieving the highest efficiency in metal recovery from electronic waste, especially precious metals like Pd and Au. It further contributes to the sustainable management of electronic waste and the strategic extraction of valuable precious metals.
Full article
(This article belongs to the Special Issue Recovery of Valuable Metals and Nonmetals from E-Waste)
►▼
Show Figures

Figure 1
Open AccessArticle
Recovery of Graphite from Spent Lithium-Ion Batteries
by
, , , , , , and
Recycling 2023, 8(5), 79; https://doi.org/10.3390/recycling8050079 - 08 Oct 2023
Abstract
Critical raw materials, such as graphite and lithium metal oxides (LMOs), with a high supply risk and high economic importance are present in spent lithium-ion batteries (LIBs). The recovery and recycling of these critical raw materials from LIBs will contribute to the circular
[...] Read more.
Critical raw materials, such as graphite and lithium metal oxides (LMOs), with a high supply risk and high economic importance are present in spent lithium-ion batteries (LIBs). The recovery and recycling of these critical raw materials from LIBs will contribute to the circular economy model, reduce the environmental footprint associated with the mining of these materials, and lower their high supply risk. The main aim of this paper is to present a separation process to recover graphite from black mass (BM) from spent LIB. Simultaneously, LMO and copper (Cu) and aluminum (Al) foils were also recovered as by-products from the process. The process used a combination of simple and/or low environmental footprint technologies, such as sieving, sink-float, citric acid leaching, and milling through ultrasound and soft attrition, to allow separation of the LIB valuable components. Three graphite-rich products (with purities ranging between 74 and 88 wt.% total carbon and a combined yield of 14 wt.%) with three different sizes (<25 µm, <45 µm, and <75 µm), Cu and Al foil fragments, and an LMO-rich precipitate product are delivered. The developed process is simple, using low temperatures and weak acids, and using affordable and scalable equipment available in the market. Its advantage over other LIB recycling processes is that it can be implemented, so to speak, “in your backyard”.
Full article
(This article belongs to the Special Issue Recycling of Spent Batteries—Trash to Treasure)
►▼
Show Figures

Graphical abstract
Open AccessReview
Closing the Loop on LIB Waste: A Comparison of the Current Challenges and Opportunities for the U.S. and Australia towards a Sustainable Energy Future
by
, , , , , and
Recycling 2023, 8(5), 78; https://doi.org/10.3390/recycling8050078 - 07 Oct 2023
Abstract
Many countries have started their transition to a net-zero economy. Lithium-ion batteries (LIBs) play an ever-increasing role towards this transition as a rechargeable energy storage medium. Initially, LIBs were developed for consumer electronics and portable devices but have seen dramatic growth in their
[...] Read more.
Many countries have started their transition to a net-zero economy. Lithium-ion batteries (LIBs) play an ever-increasing role towards this transition as a rechargeable energy storage medium. Initially, LIBs were developed for consumer electronics and portable devices but have seen dramatic growth in their use in electric vehicles (EVs) and via the gradual uptake in battery energy storage systems (BESSs) over the last decade. As such, critical metals (Li, Co, Ni, and Mn) and chemicals (polymers, electrolytes, Cu, Al, PVDF, LiPF6, LiBF4, and graphite) needed for LIBs are currently in great demand and are susceptible to global supply shortages. Dramatic increases in raw material prices, coupled with predicted exponential growth in global demand (e.g., United States graphite demand from 2022 7000 t to ~145,000 t), means that LIBs will not be sustainable if only sourced from raw materials. LIBs degrade over time. When their performance can no longer meet the requirement of their intended application (e.g., EVs in the 8–12 year range), opportunities exist to extract and recover battery materials for re-use in new batteries or to supply other industrial chemical sectors. This paper compares the challenges, barriers, opportunities, and successes of the United States of America and Australia as they transition to renewable energy storage and develop a battery supply chain to support a circular economy around LIBs.
Full article
(This article belongs to the Special Issue Recycling of Spent Batteries—Trash to Treasure)
►▼
Show Figures

Figure 1
Open AccessArticle
Experimental Study on the Thermal Conductivity of Three Natural Insulators for Industrial Fishing Applications
by
, , , , , and
Recycling 2023, 8(5), 77; https://doi.org/10.3390/recycling8050077 - 06 Oct 2023
Cited by 1
Abstract
Ecological materials have been implemented in different industrial sectors due to their good performance as thermal insulators and the fact that they are 100% natural, recyclable, and biodegradable, contributing to environmental sustainability. The main objective of this article is to compare the thermal
[...] Read more.
Ecological materials have been implemented in different industrial sectors due to their good performance as thermal insulators and the fact that they are 100% natural, recyclable, and biodegradable, contributing to environmental sustainability. The main objective of this article is to compare the thermal conductivity coefficients of three natural insulators with that of expanded polystyrene (a non-biodegradable material). Expanded polystyrene is one of the materials which is most often used to maintain cold temperatures in containers built for this purpose in the fishing industry; it is used for this purpose because of its properties, including a light weight and a high thermal insulation capacity and resistance. Almost all insulators have the ecological disadvantage of being environmentally unfriendly materials because they are made up of oil particles, which are not recyclable and are harmful to ecosystems. The natural insulator materials were evaluated and subjected to a drying process to reduce the humidity coefficient; then, the containers were built with an adequate insulation thickness of 25 mm. Three filling tests were carried out (at 100, 70, and 50%) to evaluate the thermal conductivity, using the Mann–Whitney U statistical analysis process to determine insulator differences. The results show that the expanded polystyrene had the lowest thermal conductivity of 0.032 W/m K, followed by the rice husk, which had a value of 0.036 W/m K. Finally, a comparative study of conservation costs was carried out in the different containers built with the natural insulators; the lowest value found was for the expanded polystyrene (COP 159.57 around USD 0.040). This allowed to conclude that rice husk is the material that comes closest to the insulating characteristics of expanded polystyrene.
Full article
(This article belongs to the Special Issue Sustainable Materials from Waste and Renewable Sources)
►▼
Show Figures

Figure 1
Open AccessArticle
Building a Deposit–Refund System (DRS) for Closed-Loop Recycling of Water Bottles in the United Arab Emirates
by
and
Recycling 2023, 8(5), 76; https://doi.org/10.3390/recycling8050076 - 03 Oct 2023
Abstract
►▼
Show Figures
Water bottles are widely used in the Gulf countries. One estimate indicates that the water bottle usage in the United Arab Emirates (UAE) may reach up to 250 L of water per person annually. Generally, the water bottles are made of polyethylene terephthalate
[...] Read more.
Water bottles are widely used in the Gulf countries. One estimate indicates that the water bottle usage in the United Arab Emirates (UAE) may reach up to 250 L of water per person annually. Generally, the water bottles are made of polyethylene terephthalate (PET), a recyclable material. Because of the non-availability of a powerful incentive system, these recyclable water bottles are often disposed of in landfills. This paper proposes a feasibility study of building a Deposit–Refund System (DRS) to encourage the closed-loop recycling of 0.5 L PET water bottles in the UAE waste disposal system. Water bottles are collected by a reverse vending machine (RVM) and recycled to produce PET bottles, and the proposed system will reward consumers with 0.04 United Arab Emirates Dirham (AED) per deposited water bottle. Additionally, this study calculates the cost of 100% virgin polyethylene terephthalate (vPET) and 60% recycled polyethylene terephthalate (rPET) bottles based on the UAE population, data obtained from local water bottle companies, and existing research. Adopting this DRS will cut down on waste, protect the environment, improve the manufacturing process of water bottles, and boost the local economy.
Full article

Figure 1
Open AccessArticle
Application Potential of Wastewater Fertigated Short Rotation Coppice Systems in a Selected Region (Aligarh, UP, India)
by
, , , , , , and
Recycling 2023, 8(5), 75; https://doi.org/10.3390/recycling8050075 - 29 Sep 2023
Abstract
In many Indian regions, increased wastewater is both a threat to public health and the environment, but it also presents an opportunity as a source of water and nutrients. With less than one-third of India’s wastewater treated and an alarming water scarcity situation,
[...] Read more.
In many Indian regions, increased wastewater is both a threat to public health and the environment, but it also presents an opportunity as a source of water and nutrients. With less than one-third of India’s wastewater treated and an alarming water scarcity situation, efficient wastewater treatment and reuse schemes are needed to face impending water and fertiliser shortages. This study explores the application potential of wastewater fertigated Short Rotation Coppice systems (wfSRC) as a cost-efficient and promising solution for treating and reusing wastewater in a specific region (400 km2, 184 settlements) of Aligarh (UP), India. Based on real data from a local wfSRC pilot site using bamboo, willow, and poplar, we analysed the system’s treatment performance, nutrient recovery, carbon sequestration potential, land requirements, biomass production potential, and cost–benefit, under various scenarios. The results show that the pilot wfSRC system is efficiently treating 250 m3/day of domestic wastewater on 6864 m2 of land, and serving 2500 people. The land requirements for wfSRC systems vary depending on local conditions (e.g., climate, soil type, wastewater composition) and user demands (e.g., water reuse efficiency, type, and amount of biomass). The calculated areas ranged from 2.75 to 25.7 m2/PE, which equates to a required land area in the whole study region of between 108 and 1006 ha in 2036. This would produce up to 100 DM t/ha/year of valuable biomass. Early local stakeholder involvement and the monitoring of pollutants are recommended as priorities during the planning process for the large-scale implementation of wfSRC systems in India.
Full article
(This article belongs to the Special Issue Reuse of Wastewater: Recovery of Water, Nutrients, and Energy II)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
AppliedChem, ChemEngineering, Energies, Membranes, Processes, Recycling, Separations, Water
Capacitive Deionization Technology for Water Treatment
Topic Editors: Shenxu Bao, Xin ZhangDeadline: 30 September 2024

Conferences
Special Issues
Special Issue in
Recycling
Featured Reviews in Recycling
Guest Editors: Silvia Serranti, Akira OtsukiDeadline: 31 December 2023
Special Issue in
Recycling
The Use of Recycled Materials to Promote Pavement Sustainability Performance II
Guest Editors: Ana Cristina Freire, José NevesDeadline: 29 February 2024
Special Issue in
Recycling
Sustainable Management in Eco-Materials, Industrial Residues and Construction and Demolition Waste
Guest Editor: Lucía Fernández-CarrascoDeadline: 15 April 2024
Special Issue in
Recycling
Resource Recovery from Waste Biomass
Guest Editor: Salustiano Mato De La IglesiaDeadline: 1 May 2024