-
Facile Enhancement of Electrochemical Performance of Solid-State Supercapacitor via Atmospheric Plasma Treatment on PVA-Based Gel-Polymer Electrolyte -
Silica-Calcium-Alginate Hydrogels for the Co-Immobilization of Glucose Oxidase and Catalase to Reduce the Glucose in Grape Must -
Design and Characterization of an Ethosomal Gel Encapsulating Rosehip Extract -
Poly(acrylic acid-co-acrylamide)/Polyacrylamide pIPNs/Magnetite Composite Hydrogels: Synthesis and Characterization -
Alginate-Bentonite-Based Hydrogels Designed to Obtain Controlled-Release Formulations of Dodecyl Acetate
Journal Description
Gels
Gels
is an international, peer-reviewed, open access journal on physical and chemical gels. Gels is published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q1 (Polymer Science) / CiteScore - Q2 (Polymers and Plastics)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 10.9 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about the Gels.
Impact Factor:
4.432 (2021);
5-Year Impact Factor:
5.523 (2021)
Latest Articles
Hybrid Cryogels with Superabsorbent Properties as Promising Materials for Penicillin G Retention
Gels 2023, 9(6), 443; https://doi.org/10.3390/gels9060443 (registering DOI) - 26 May 2023
Abstract
This present study describes the investigation of new promising hybrid cryogels able to retain high amounts of antibiotics, specifically penicillin G, using chitosan or chitosan–biocellulose blends along with a naturally occurring clay, i.e., kaolin. In order to evaluate and optimize the stability of
[...] Read more.
This present study describes the investigation of new promising hybrid cryogels able to retain high amounts of antibiotics, specifically penicillin G, using chitosan or chitosan–biocellulose blends along with a naturally occurring clay, i.e., kaolin. In order to evaluate and optimize the stability of cryogels, three types of chitosan were used in this study, as follows: (i) commercial chitosan; (ii) chitosan prepared in the laboratory from commercial chitin; and (iii) chitosan prepared in the laboratory from shrimp shells. Biocellulose and kaolin, previously functionalized with an organosilane, were also investigated in terms of their potential to improve the stability of cryogels during prolonged submergence under water. The organophilization and incorporation of the clay into the polymer matrix were confirmed by different characterization techniques (such as FTIR, TGA, SEM), while their stability in time underwater was investigated by swelling measurements. As final proof of their superabsorbent behavior, the cryogels were tested for antibiotic adsorption in batch experiments, in which case cryogels based on chitosan extracted from shrimp shells seem to exhibit excellent adsorption properties for penicillin G.
Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Gels)
►
Show Figures
Open AccessArticle
Self-Assembling Nanoarchitectonics of Twisted Nanofibers of Fluorescent Amphiphiles as Chemo-Resistive Sensor for Methanol Detection
by
, , , , , , , , , , , , and
Gels 2023, 9(6), 442; https://doi.org/10.3390/gels9060442 (registering DOI) - 26 May 2023
Abstract
The inhalation, ingestion, and body absorption of noxious gases lead to severe tissue damage, ophthalmological issues, and neurodegenerative disorders; death may even occur when recognized too late. In particular, methanol gas present in traces can cause blindness, non-reversible organ failure, and even death.
[...] Read more.
The inhalation, ingestion, and body absorption of noxious gases lead to severe tissue damage, ophthalmological issues, and neurodegenerative disorders; death may even occur when recognized too late. In particular, methanol gas present in traces can cause blindness, non-reversible organ failure, and even death. Even though ample materials are available for the detection of methanol in other alcoholic analogs at ppm level, their scope is very limited because of the use of either toxic or expensive raw materials or tedious fabrication procedures. In this paper, we report on a simple synthesis of fluorescent amphiphiles achieved using a starting material derived from renewable resources, this material being methyl ricinoleate in good yields. The newly synthesized bio-based amphiphiles were prone to form a gel in a broad range of solvents. The morphology of the gel and the molecular-level interaction involved in the self-assembly process were thoroughly investigated. Rheological studies were carried out to probe the stability, thermal processability, and thixotropic behavior. In order to evaluate the potential application of the self-assembled gel in the field of sensors, we performed sensor measurements. Interestingly, the twisted fibers derived from the molecular assembly could be able to display a stable and selective response towards methanol. We believe that the bottom-up assembled system holds great promise in the environmental, healthcare, medicine, and biological fields.
Full article
(This article belongs to the Special Issue Advances in Oleogels and Applications)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Controlling the Self-Assembly and Material Properties of β-Sheet Peptide Hydrogels by Modulating Intermolecular Interactions
by
, , , , and
Gels 2023, 9(6), 441; https://doi.org/10.3390/gels9060441 (registering DOI) - 26 May 2023
Abstract
Self-assembling peptides are a promising biomaterial with potential applications in medical devices and drug delivery. In the right combination of conditions, self-assembling peptides can form self-supporting hydrogels. Here, we describe how balancing attractive and repulsive intermolecular forces is critical for successful hydrogel formation.
[...] Read more.
Self-assembling peptides are a promising biomaterial with potential applications in medical devices and drug delivery. In the right combination of conditions, self-assembling peptides can form self-supporting hydrogels. Here, we describe how balancing attractive and repulsive intermolecular forces is critical for successful hydrogel formation. Electrostatic repulsion is tuned by altering the peptide’s net charge, and intermolecular attractions are controlled through the degree of hydrogen bonding between specific amino acid residues. We find that an overall net peptide charge of +/−2 is optimal to facilitate the assembly of self-supporting hydrogels. If the net peptide charge is too low then dense aggregates form, while a high molecular charge inhibits the formation of larger structures. At a constant charge, altering the terminal amino acids from glutamine to serine decreases the degree of hydrogen bonding within the assembling network. This tunes the viscoelastic properties of the gel, reducing the elastic modulus by two to three orders of magnitude. Finally, hydrogels could be formed from glutamine-rich, highly charged peptides by mixing the peptides in combinations with a resultant net charge of +/−2. These results illustrate how understanding and controlling self-assembly mechanisms through modulating intermolecular interactions can be exploited to derive a range of structures with tuneable properties.
Full article
(This article belongs to the Special Issue Hydrogels: Synthesis, Characterization and Applications)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Evaluation of the Safety of Neauvia Stimulate Injectable Product in Patients with Autoimmune Thyroid Diseases Based on Histopathological Examinations and Retrospective Analysis of Medical Records
by
, , , , , , , , , , , , , , , , , , and
Gels 2023, 9(6), 440; https://doi.org/10.3390/gels9060440 (registering DOI) - 26 May 2023
Abstract
The aim of this study was to test the effect of hyaluronic acid cross-linked with polyethylene glycol containing micronized portions of calcium hydroxyapatite (Neauvia Stimulate) on both local tissue and systemic consequences, which are crucial from the perspective of long-term safety, in patients
[...] Read more.
The aim of this study was to test the effect of hyaluronic acid cross-linked with polyethylene glycol containing micronized portions of calcium hydroxyapatite (Neauvia Stimulate) on both local tissue and systemic consequences, which are crucial from the perspective of long-term safety, in patients suffering from Hashimoto’s disease. This most common autoimmune disease is a frequently mentioned contraindication to the use of fillers based on hyaluronic acid as well as biostimulants based on calcium hydroxyapatite. Broad-spectrum aspects of histopathology were analyzed to identify key features of inflammatory infiltration before the procedure and 5, 21, and 150 days after the procedure. A statistically significant effect on the reduction of the intensity of the inflammatory infiltration in the tissue in relation to the state before the procedure was demonstrated, combined with a reduction in the occurrence of both antigen-recognizing (CD4) and cytotoxic (CD8) T lymphocytes. With complete statistical certainty, it was demonstrated that the treatment with Neauvia Stimulate had no effect on the levels of these antibodies. All this corresponds with the risk analysis that showed no alarming symptoms during the time of observation. The choice of hyaluronic acid fillers cross-linked with polyethylene glycol should be considered justified and safe in the case of patients suffering from Hashimoto’s disease.
Full article
(This article belongs to the Special Issue Advances in Hydrogels for Biomedical Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Synthesis and Characterisation of Hydrogels Based on Poly (N-Vinylcaprolactam) with Diethylene Glycol Diacrylate
by
, , , , , and
Gels 2023, 9(6), 439; https://doi.org/10.3390/gels9060439 - 25 May 2023
Abstract
Poly (N-vinylcaprolactam) is a polymer that is biocompatible, water-soluble, thermally sensitive, non-toxic, and nonionic. In this study, the preparation of hydrogels based on Poly (N-vinylcaprolactam) with diethylene glycol diacrylate is presented. The N-Vinylcaprolactam-based hydrogels are synthesised by using a photopolymerisation technique using diethylene
[...] Read more.
Poly (N-vinylcaprolactam) is a polymer that is biocompatible, water-soluble, thermally sensitive, non-toxic, and nonionic. In this study, the preparation of hydrogels based on Poly (N-vinylcaprolactam) with diethylene glycol diacrylate is presented. The N-Vinylcaprolactam-based hydrogels are synthesised by using a photopolymerisation technique using diethylene glycol diacrylate as a crosslinking agent, and Diphenyl (2, 4, 6-trimethylbenzoyl) phosphine oxide as a photoinitiator. The structure of the polymers is investigated via Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy. The polymers are further characterised using differential scanning calorimetry and swelling analysis. This study is conducted to determine the characteristics of P (N-vinylcaprolactam) with diethylene glycol diacrylate, including the addition of Vinylacetate or N-Vinylpyrrolidone, and to examine the effects on the phase transition. Although various methods of free-radical polymerisation have synthesised the homopolymer, this is the first study to report the synthesis of Poly (N-vinylcaprolactam) with diethylene glycol diacrylate by using free-radical photopolymerisation, using Diphenyl (2, 4, 6-trimethylbenzoyl) phosphine oxide to initiate the reaction. FTIR analysis shows that the NVCL-based copolymers are successfully polymerised through UV photopolymerisation. DSC analysis indicates that increasing the concentration of crosslinker results in a decrease in the glass transition temperature. Swelling analysis displays that the lower the concentration of crosslinker present in the hydrogel, the quicker the hydrogels reach their maximum swelling ratio.
Full article
(This article belongs to the Special Issue Smart Hydrogels: From Rational Design to Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Anisotropic Bi-Layer Hydrogel Actuator with pH-Responsive Color-Changing and Photothermal-Responsive Shape-Changing Bi-Functional Synergy
by
, , , , , , , , , and
Gels 2023, 9(6), 438; https://doi.org/10.3390/gels9060438 - 25 May 2023
Abstract
Stimuli-responsive color-changing and shape-changing hydrogels are promising intelligent materials for visual detections and bio-inspired actuations, respectively. However, it is still an early stage to integrate the color-changing performance and shape-changing performance together to provide bi-functional synergistic biomimetic devices, which are difficult to design
[...] Read more.
Stimuli-responsive color-changing and shape-changing hydrogels are promising intelligent materials for visual detections and bio-inspired actuations, respectively. However, it is still an early stage to integrate the color-changing performance and shape-changing performance together to provide bi-functional synergistic biomimetic devices, which are difficult to design but will greatly expand further applications of intelligent hydrogels. Herein, we present an anisotropic bi-layer hydrogel by combining a pH-responsive rhodamine-B (RhB)-functionalized fluorescent hydrogel layer and a photothermal-responsive shape-changing melanin-added poly (N-isopropylacrylamide) (PNIPAM) hydrogel layer with fluorescent color-changing and shape-changing bi-functional synergy. This bi-layer hydrogel can obtain fast and complex actuations under irradiation with 808 nm near-infrared (NIR) light due to both the melanin-composited PNIPAM hydrogel with high efficiency of photothermal conversion and the anisotropic structure of this bi-hydrogel. Furthermore, the RhB-functionalized fluorescent hydrogel layer can provide rapid pH-responsive fluorescent color change, which can be integrated with NIR-responsive shape change to achieve bi-functional synergy. As a result, this bi-layer hydrogel can be designed using various biomimetic devices, which can show the actuating process in the dark for real-time tracking and even mimetic starfish to synchronously change both the color and shape. This work provides a new bi-layer hydrogel biomimetic actuator with color-changing and shape-changing bi-functional synergy, which will inspire new strategies for other intelligent composite materials and high-level biomimetic devices.
Full article
(This article belongs to the Special Issue Bio-Inspired Polymeric Gels and Their Applications)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Nanomaterial-Doped Xerogels for Biosensing Measurements of Xanthine in Clinical and Industrial Applications
Gels 2023, 9(6), 437; https://doi.org/10.3390/gels9060437 - 25 May 2023
Abstract
First-generation amperometric xanthine (XAN) biosensors, assembled via layer-by-layer methodology and featuring xerogels doped with gold nanoparticles (Au-NPs), were the focus of this study and involved both fundamental exploration of the materials as well as demonstrated usage of the biosensor in both clinical (disease
[...] Read more.
First-generation amperometric xanthine (XAN) biosensors, assembled via layer-by-layer methodology and featuring xerogels doped with gold nanoparticles (Au-NPs), were the focus of this study and involved both fundamental exploration of the materials as well as demonstrated usage of the biosensor in both clinical (disease diagnosis) and industrial (meat freshness) applications. Voltammetry and amperometry were used to characterize and optimize the functional layers of the biosensor design including a xerogel with and without embedded xanthine oxidase enzyme (XOx) and an outer, semi-permeable blended polyurethane (PU) layer. Specifically, the porosity/hydrophobicity of xerogels formed from silane precursors and different compositions of PU were examined for their impact on the XAN biosensing mechanism. Doping the xerogel layer with different alkanethiol protected Au-NPs was demonstrated as an effective means for enhancing biosensor performance including improved sensitivity, linear range, and response time, as well as stabilizing XAN sensitivity and discrimination against common interferent species (selectivity) over time—all attributes matching or exceeding most other reported XAN sensors. Part of the study focuses on deconvoluting the amperometric signal generated by the biosensor and determining the contribution from all of the possible electroactive species involved in natural purine metabolism (e.g., uric acid, hypoxanthine) as an important part of designing XAN sensors (schemes amenable to miniaturization, portability, or low production cost). Effective XAN sensors remain relevant as potential tools for both early diagnosis of diseases as well as for industrial food monitoring.
Full article
(This article belongs to the Special Issue Synthetic, Natural and Hybrid Gels Intended for Various Applications)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Chitosan Hydrogel-Delivered ABE8e Corrects PAX9 Mutant in Dental Pulp Stem Cells
Gels 2023, 9(6), 436; https://doi.org/10.3390/gels9060436 - 25 May 2023
Abstract
Hypodontia (dental agenesis) is a genetic disorder, and it has been identified that the mutation C175T in PAX9 could lead to hypodontia. Cas9 nickase (nCas9)-mediated homology-directed repair (HDR) and base editing were used for the correction of this mutated point. This study aimed
[...] Read more.
Hypodontia (dental agenesis) is a genetic disorder, and it has been identified that the mutation C175T in PAX9 could lead to hypodontia. Cas9 nickase (nCas9)-mediated homology-directed repair (HDR) and base editing were used for the correction of this mutated point. This study aimed to investigate the effect of HDR and the base editor ABE8e in editing PAX9 mutant. It was found that the chitosan hydrogel was efficient in delivering naked DNA into dental pulp stem cells (DPSCs). To explore the influence of the C175T mutation in PAX9 on the proliferation of DPSCs, hydrogel was employed to deliver PAX9 mutant vector into DPSCs, finding that the PAX9-containing C175T mutation failed to promote the proliferation of DPSCs. Firstly, DPSCs stably carrying PAX9 mutant were constructed. Either an HDR or ABE8e system was delivered into the above-mentioned stable DPSCs, and then the correction efficiency using Sanger sequencing and Western blotting was determined. Meanwhile, the ABE8e presented significantly higher efficiency in correcting C175T compared with HDR. Furthermore, the corrected PAX9 presented enhanced viability and differentiation capacity for osteogenic and neurogenic lineages; the corrected PAX9 even possessed extremely enhanced transcriptional activation ability. In summary, this study has powerful implications for studies into base editors, chitosan hydrogel, and DPSCs in treating hypodontia.
Full article
(This article belongs to the Special Issue Drug-Loaded Hydrogel Biomaterials)
►▼
Show Figures

Figure 1
Open AccessArticle
Fractal Analysis of Four Xerogels Based on TEGylated Phenothiazine and Chitosan
Gels 2023, 9(6), 435; https://doi.org/10.3390/gels9060435 - 25 May 2023
Abstract
The present article describes novel massive materials (in the solid phase) based on TEGylated phenothiazine and chitosan that possess great capability to recover mercury ions from constituent aqueous solutions. These were produced by chitosan hydrogelation accompanied by formyl subsidiary item of TEGylated phenothiazine,
[...] Read more.
The present article describes novel massive materials (in the solid phase) based on TEGylated phenothiazine and chitosan that possess great capability to recover mercury ions from constituent aqueous solutions. These were produced by chitosan hydrogelation accompanied by formyl subsidiary item of TEGylated phenothiazine, attended by lyophilization. The delineation and structure description of the obtained material or supramolecular assembly were realized by FTIR (Fourier transform infrared) spectroscopy, X-ray diffraction, and POM (Polarized Light Optical Microscopy). The morphology of their texture was kept under observation by SEM (Scanning Electron Microscopy). The obtained SEM images were evaluated by fractal analysis. The fractal parameters of interest were calculated, including the fractal dimension and lacunarity.
Full article
(This article belongs to the Special Issue Gels: Synthesis, Characterization and Applications in High Performance Chemistry (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessArticle
A Novel MBAS-RF Approach to Predict Mechanical Properties of Geopolymer-Based Compositions
Gels 2023, 9(6), 434; https://doi.org/10.3390/gels9060434 - 24 May 2023
Abstract
►▼
Show Figures
Using gels to replace a certain amount of cement in concrete is conducive to the green concrete industry, while testing the compressive strength (CS) of geopolymer concrete requires a substantial amount of substantial effort and expense. To solve the above issue, a hybrid
[...] Read more.
Using gels to replace a certain amount of cement in concrete is conducive to the green concrete industry, while testing the compressive strength (CS) of geopolymer concrete requires a substantial amount of substantial effort and expense. To solve the above issue, a hybrid machine learning model of a modified beetle antennae search (MBAS) algorithm and random forest (RF) algorithm was developed in this study to model the CS of geopolymer concrete, in which MBAS was employed to adjust the hyperparameters of the RF model. The performance of the MBAS was verified by the relationship between 10-fold cross-validation (10-fold CV) and root mean square error (RMSE) value, and the prediction performance of the MBAS and RF hybrid machine learning model was verified by evaluating the correlation coefficient (R) and RMSE values and comparing with other models. The results show that the MBAS can effectively tune the performance of the RF model; the hybrid machine learning model had high R values (training set R = 0.9162 and test set R = 0.9071) and low RMSE values (training set RMSE = 7.111 and test set RMSE = 7.4345) at the same time, which indicated that the prediction accuracy was high; NaOH molarity was confirmed as the most important parameter regarding the CS of geopolymer concrete, with the importance score of 3.7848, and grade 4/10 mm was confirmed as the least important parameter, with the importance score of 0.5667.
Full article

Graphical abstract
Open AccessReview
State-of-the-Art Insights and Potential Applications of Cellulose-Based Hydrogels in Food Packaging: Advances towards Sustainable Trends
Gels 2023, 9(6), 433; https://doi.org/10.3390/gels9060433 - 24 May 2023
Abstract
Leveraging sustainable packaging resources in the circular economy framework has gained significant attention in recent years as a means of minimizing waste and mitigating the negative environmental impact of packaging materials. In line with this progression, bio-based hydrogels are being explored for their
[...] Read more.
Leveraging sustainable packaging resources in the circular economy framework has gained significant attention in recent years as a means of minimizing waste and mitigating the negative environmental impact of packaging materials. In line with this progression, bio-based hydrogels are being explored for their potential application in a variety of fields including food packaging. Hydrogels are three-dimensional, hydrophilic networks composed of a variety of polymeric materials linked by chemical (covalent bonds) or physical (non-covalent interactions) cross-linking. The unique hydrophilic nature of hydrogels provides a promising solution for food packaging systems, specifically in regulating moisture levels and serving as carriers for bioactive substances, which can greatly affect the shelf life of food products. In essence, the synthesis of cellulose-based hydrogels (CBHs) from cellulose and its derivatives has resulted in hydrogels with several appealing features such as flexibility, water absorption, swelling capacity, biocompatibility, biodegradability, stimuli sensitivity, and cost-effectiveness. Therefore, this review provides an overview of the most recent trends and applications of CBHs in the food packaging sector including CBH sources, processing methods, and crosslinking methods for developing hydrogels through physical, chemical, and polymerization. Finally, the recent advancements in CBHs, which are being utilized as hydrogel films, coatings, and indicators for food packaging applications, are discussed in detail. These developments have great potential in creating sustainable packaging systems.
Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (2nd Edition))
►▼
Show Figures

Graphical abstract
Open AccessReview
Hydrogelation from Self-Assembled and Scaled-Down Chitin Nanofibers by the Modification of Highly Polar Substituents
Gels 2023, 9(6), 432; https://doi.org/10.3390/gels9060432 (registering DOI) - 23 May 2023
Abstract
Chitin nanofibers (ChNFs) with a bundle structure were fabricated via regenerative self-assembly at the nanoscale from a chitin ion gel with an ionic liquid using methanol. Furthermore, the bundles were disentangled by partial deacetylation under alkaline conditions, followed by cationization and electrostatic repulsion
[...] Read more.
Chitin nanofibers (ChNFs) with a bundle structure were fabricated via regenerative self-assembly at the nanoscale from a chitin ion gel with an ionic liquid using methanol. Furthermore, the bundles were disentangled by partial deacetylation under alkaline conditions, followed by cationization and electrostatic repulsion in aqueous acetic acid to obtain thinner nanofibers called scaled-down ChNFs. This review presents a method for hydrogelation from self-assembled and scaled-down ChNFs by modifying the highly polar substituents on ChNFs. The modification was carried out by the reaction of amino groups on ChNFs, which were generated by partial deacetylation, with reactive substituent candidates such as poly(2-oxazoline)s with electrophilic living propagating ends and mono- and oligosaccharides with hemiacetallic reducing ends. The substituents contributed to the formation of network structures from ChNFs in highly polar dispersed media, such as water, to produce hydrogels. Moreover, after the modification of the maltooligosaccharide primers on ChNFs, glucan phosphorylase-catalyzed enzymatic polymerization was performed from the primer chain ends to elongate the amylosic graft chains on ChNFs. The amylosic graft chains formed double helices between ChNFs, which acted as physical crosslinking points to construct network structures, giving rise to hydrogels.
Full article
(This article belongs to the Special Issue Polysaccharide: Gelation Arts)
►▼
Show Figures

Figure 1
Open AccessReview
Application of Silk-Fibroin-Based Hydrogels in Tissue Engineering
Gels 2023, 9(5), 431; https://doi.org/10.3390/gels9050431 - 22 May 2023
Abstract
Silk fibroin (SF) is an excellent protein-based biomaterial produced by the degumming and purification of silk from cocoons of the Bombyx mori through alkali or enzymatic treatments. SF exhibits excellent biological properties, such as mechanical properties, biocompatibility, biodegradability, bioabsorbability, low immunogenicity, and tunability,
[...] Read more.
Silk fibroin (SF) is an excellent protein-based biomaterial produced by the degumming and purification of silk from cocoons of the Bombyx mori through alkali or enzymatic treatments. SF exhibits excellent biological properties, such as mechanical properties, biocompatibility, biodegradability, bioabsorbability, low immunogenicity, and tunability, making it a versatile material widely applied in biological fields, particularly in tissue engineering. In tissue engineering, SF is often fabricated into hydrogel form, with the advantages of added materials. SF hydrogels have mostly been studied for their use in tissue regeneration by enhancing cell activity at the tissue defect site or counteracting tissue-damage-related factors. This review focuses on SF hydrogels, firstly summarizing the fabrication and properties of SF and SF hydrogels and then detailing the regenerative effects of SF hydrogels as scaffolds in cartilage, bone, skin, cornea, teeth, and eardrum in recent years.
Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels)
►▼
Show Figures

Graphical abstract
Open AccessReview
A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering
Gels 2023, 9(5), 430; https://doi.org/10.3390/gels9050430 - 22 May 2023
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick
[...] Read more.
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Full article
(This article belongs to the Special Issue Alginate-Based Gels: Preparation, Characterization and Application)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Mechanical and Physical Properties of an Experimental Chemically and Green-Nano Improved Dental Alginate after Proven Antimicrobial Potentials
by
and
Gels 2023, 9(5), 429; https://doi.org/10.3390/gels9050429 - 21 May 2023
Abstract
Objectives: Impression materials could be a source of cross-contamination due to the presence of microorganisms from blood and saliva inside the oral cavity. Nevertheless, routinely performed post-setting disinfection could compromise the dimensional accuracy and other mechanical properties of alginates. Thus, this study aimed
[...] Read more.
Objectives: Impression materials could be a source of cross-contamination due to the presence of microorganisms from blood and saliva inside the oral cavity. Nevertheless, routinely performed post-setting disinfection could compromise the dimensional accuracy and other mechanical properties of alginates. Thus, this study aimed to evaluate detail reproduction, dimensional accuracy, tear strength, and elastic recovery of new experimentally prepared self-disinfecting dental alginates. Methods: Two antimicrobial-modified dental alginate groups were prepared by mixing alginate powder with 0.2% silver nitrate (AgNO3 group) and a 0.2% chlorohexidine solution (CHX group) instead of pure water. Moreover, a third modified group was examined by the extraction of Boswellia sacra (BS) oleoresin using water. The extract was used to reduce silver nitrate to form silver nanoparticles (AgNPs), and the mixture was used as well in dental alginate preparation (BS + AgNP group). Dimensional accuracy and detail reproduction were examined as per the ISO 1563 standard guidelines. Specimens were prepared using a metallic mold engraved with three parallel vertical lines 20, 50, and 75 µm wide. Detail reproduction was evaluated by checking the reproducibility of the 50 µm line using a light microscope. Dimensional accuracy was assessed by measuring the change in length between defined reference points. Elastic recovery was measured according to ISO 1563:1990, in which specimens were gradually loaded and then the load was released to allow for recovery from the deformation. Tear strength was evaluated using a material testing machine until failure at a crosshead speed of 500 mm/min. Results: The recorded dimensional changes between all tested groups were insignificantly different and within the reported acceptable values (between 0.037–0.067 mm). For tear strength, there were statistically significant differences between all tested groups. Groups modified with CHX (1.17 ± 0.26 N/mm) and BS + AgNPs (1.11 ± 0.24 N/mm) showed higher tear strength values compared to the control (0.86 ± 0.23 N/mm) but were insignificant from AgNO3 (0.94 ± 0.17 N/mm). All tested groups showed elastic recovery values that met both the ISO standard and ADA specifications for elastic impression materials and tear strength values within the acceptable documented ranges. Discussion: The CHX, silver nitrate, and green-synthesized silver nanoparticles could be promising, inexpensive alternatives for the preparation of a self-disinfecting alginate impression material without affecting its performance. Green synthesis of metal nanoparticles could be a very safe, efficient, and nontoxic method, with the advantage of having a synergistic effect between metal ions and active chemical constituents of plant extracts.
Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels)
►▼
Show Figures

Figure 1
Open AccessArticle
Polyurethane Shape Memory Polymer/pH-Responsive Hydrogel Hybrid for Bi-Function Synergistic Actuations
by
, , , , , , , , and
Gels 2023, 9(5), 428; https://doi.org/10.3390/gels9050428 - 21 May 2023
Abstract
Stimuli-responsive actuating hydrogels response to the external stimulus with complex deformation behaviors based on the programmable anisotropic structure design are one of the most important smart soft materials, which have great potential applications in artificial muscles, smart values, and mini-robots. However, the anisotropic
[...] Read more.
Stimuli-responsive actuating hydrogels response to the external stimulus with complex deformation behaviors based on the programmable anisotropic structure design are one of the most important smart soft materials, which have great potential applications in artificial muscles, smart values, and mini-robots. However, the anisotropic structure of one actuating hydrogel can only be programmed one time, which can only provide single actuating performance, and subsequently, has severely limited their further applications. Herein, we have explored a novel SMP/hydrogel hybrid actuator through combining polyurethane shape memory polymer (PU SMP) layer and pH-responsive polyacrylic-acid (PAA) hydrogel layer by a napkin with UV-adhesive. Owing to both the super-hydrophilicity and super-lipophilicity of the cellulose-fiber based napkin, the SMP and the hydrogel can be bonded firmly by the UV-adhesive in the napkin. More importantly, this bilayer hybrid 2D sheet can be programmed by designing a different temporary shape in heat water which can be fixed easily in cool water to achieve various fixed shapes. This hybrid with a fixed temporary shape can achieve complex actuating performance based on the bi-functional synergy of temperature-triggered SMP and pH-responsive hydrogel. The relatively high modulus PU SMP achieved high to 87.19% and 88.92% shape-fixing ratio, respectively, correspond to bending and folding shapes. The hybrid actuator can actuate with the 25.71 °/min actuating speed. Most importantly, one SMP/hydrogel bi-layer hybrid sheet was repeatedly programmed at least nine times in our research to fix various temporary 1D, 2D and 3D shapes, including bending, folding and spiraling shapes. As a result, only one SMP/hydrogel hybrid can provide various complex stimuli-responsive actuations, including the reversable bending-straightening, spiraling-unspiraling. A few of the intelligent devices have been designed to simulate the movement of the natural organisms, such as bio-mimetic “paw”, “pangolin” and “octopus”. This work has developed a new SMP/hydrogel hybrid with excellent multi-repeatable (≥9 times) programmability for high-level complex actuations, including the 1D to 2D bending and the 2D to 3D spiraling actuations, which also provides a new strategy to design other new soft intelligent materials and systems.
Full article
(This article belongs to the Special Issue Functional Gel Materials and Applications)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Experimental Study on Enhanced Oil Recovery of PPG/ASP Heterogeneous System after Polymer Flooding
Gels 2023, 9(5), 427; https://doi.org/10.3390/gels9050427 - 19 May 2023
Abstract
Following the application of polymer flooding in Daqing Oilfield, the heterogeneity between different layers has intensified, resulting in the formation of more favorable seepage channels and cross-flow of displacement fluids. Consequently, the circulation efficiency has decreased, necessitating the exploration of methods to enhance
[...] Read more.
Following the application of polymer flooding in Daqing Oilfield, the heterogeneity between different layers has intensified, resulting in the formation of more favorable seepage channels and cross-flow of displacement fluids. Consequently, the circulation efficiency has decreased, necessitating the exploration of methods to enhance oil recovery. This paper focuses on experimental research utilizing a newly developed precrosslinked particle gel (PPG) combined with alkali surfactant polymer (ASP) to create a heterogeneous composite system. This study aims to improve the efficiency of heterogeneous system flooding after polymer flooding. The addition of PPG particles enhances the viscoelasticity of the ASP system, reduces the interfacial tension between the heterogeneous system and crude oil, and provides excellent stability. The heterogeneous system has high resistance and residual resistance coefficients during the migration process in a long core model, achieving an improvement rate of up to 90.1% under the permeability ratio of 9 between high and low permeability layers. Employing heterogeneous system flooding after polymer flooding can increase oil recovery by 14.6%. Furthermore, the oil recovery rate of low permeability layers can reach 28.6%. The experimental results confirm that the application of PPG/ASP heterogeneous flooding after polymer flooding can effectively plug high-flow seepage channels and improve oil washing efficiency. These findings hold significant implications for further reservoir development after polymer flooding.
Full article
(This article belongs to the Special Issue Polymer Gels for the Oil and Gas Industry)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Gamma Radiation-Induced Advanced 2,3-Dimethylacrylic Acid-(2-Acrylamido-2-methyl-1-propanesulfonic Acid) Superabsorbent Hydrogel: Synthesis and Characterization
by
and
Gels 2023, 9(5), 426; https://doi.org/10.3390/gels9050426 - 19 May 2023
Abstract
Gamma radiation technique for the preparation of pure hydrogels is gaining popularity worldwide. Superabsorbent hydrogels play vital roles in different fields of application. The present work mainly focuses on the preparation and characterization of 2,3-Dimethylacrylic acid-(2-Acrylamido-2-methyl-1-propane sulfonic acid) (DMAA–AMPSA) superabsorbent hydrogel by applying
[...] Read more.
Gamma radiation technique for the preparation of pure hydrogels is gaining popularity worldwide. Superabsorbent hydrogels play vital roles in different fields of application. The present work mainly focuses on the preparation and characterization of 2,3-Dimethylacrylic acid-(2-Acrylamido-2-methyl-1-propane sulfonic acid) (DMAA–AMPSA) superabsorbent hydrogel by applying gamma radiation and optimization of the proper dose. To prepare DMAA–AMPSA hydrogel, different doses ranging from 2 kGy to 30 kGy were imparted on the blend aqueous solution of the monomers. The equilibrium swelling increases with increasing radiation dose, followed by decreasing after reaching a certain level, and the highest result is found to be 26,324.9% at 10 kGy. Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy confirmed the formation of co-polymer by showing the characteristic functional groups and proton environment of the gel. X-ray Diffraction (XRD) pattern indicates the crystalline/amorphous nature of the gel. The Differential Scanning Calorimetry (DSC) and Thermogravimetry Analysis (TGA) revealed the thermal stability of the gel. The surface morphology and constitutional elements were analyzed and confirmed by Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS). Finally, it can be stated that hydrogels can be usable in metal adsorption, drug delivery, and other relevant fields.
Full article
(This article belongs to the Special Issue Advances in Responsive Hydrogels)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing
by
, , , , , , , , , and
Gels 2023, 9(5), 425; https://doi.org/10.3390/gels9050425 - 19 May 2023
Abstract
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials
[...] Read more.
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide’s polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.
Full article
(This article belongs to the Special Issue Hydrogels for 3D Printing)
►▼
Show Figures

Figure 1
Open AccessReview
Coinage Metals Doped ZnO Obtained by Sol-Gel Method—A Brief Review
Gels 2023, 9(5), 424; https://doi.org/10.3390/gels9050424 - 18 May 2023
Abstract
ZnO is one of the most studied oxides due to its nontoxic nature and remarkable properties. It has antibacterial and UV-protection properties, high thermal conductivity, and high refractive index. Various ways have been used to synthesize and fabricate coinage metals doped ZnO, but
[...] Read more.
ZnO is one of the most studied oxides due to its nontoxic nature and remarkable properties. It has antibacterial and UV-protection properties, high thermal conductivity, and high refractive index. Various ways have been used to synthesize and fabricate coinage metals doped ZnO, but the sol-gel technique has received a lot of interest because of its safety, low cost, and facile deposition equipment. Coinage metals are represented by the three nonradioactive elements of group 11 of the periodic table: gold, silver, and copper. This paper, which was motivated by the lack of reviews on the topic, provides a summary of the synthesis of Cu, Ag, and Au-doped ZnO nanostructures with an emphasis on the sol-gel process and identifies the numerous factors that affect the morphological, structural, optical, electrical, and magnetic properties of the produced materials. This is accomplished by tabulating and discussing a summary of a number of parameters and applications that were published in the existing literature over the previous five years (2017–2022). The main applications being pursued involve biomaterials, photocatalysts, energy storage materials, and microelectronics. This review ought to serve as a helpful reference point for researchers looking into the many physicochemical characteristics of coinage metals doped ZnO, as well as how these characteristics vary according to the conditions under which experiments are conducted.
Full article
(This article belongs to the Special Issue Current and Future Trends in Supramolecular Gels)
►▼
Show Figures

Graphical abstract
Journal Menu
► ▼ Journal Menu-
- Gels Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Coatings, Colloids and Interfaces, Gels, Molecules, Polymers
Insight into Liquid/Fluid Interfaces
Topic Editors: Eduardo Guzmán, Armando MaestroDeadline: 31 July 2023
Topic in
Gels, J. Compos. Sci., Molecules, Polymers
Recent Advances in Hydrogels
Topic Editors: Aline F. Miller, Florian J. StadlerDeadline: 30 September 2023
Topic in
Applied Sciences, Gels, Materials, Molecules, Nanomaterials
Modelling and Characterization of Soft and Supersoft Materials
Topic Editors: Aleksander Czekanski, Cuiying JianDeadline: 20 November 2023
Topic in
Applied Sciences, Energies, Gases, Gels, Nanomaterials, Processes
Multi-Phase Flow and Unconventional Oil/Gas Development
Topic Editors: Binfei Li, Wei Liu, Shibao YuanDeadline: 31 March 2024
Conferences
Special Issues
Special Issue in
Gels
Hydrogel-Based Bioinks for Neural Biofabrication
Guest Editor: Roberto Portillo-LaraDeadline: 31 May 2023
Special Issue in
Gels
Hydrogels as Controlled Drug Delivery Systems
Guest Editors: Kamil Elkhoury, Flávia Sousa, Elmira Arab-TehranyDeadline: 10 June 2023
Special Issue in
Gels
Bioceramics, Bioglasses and Gels for Tissue Engineering
Guest Editors: Arish Dasan, Ashokraja Chandrasekar, Nupur KohliDeadline: 30 June 2023
Special Issue in
Gels
Hydrogels with Appropriate/Tunable Properties for Biomedical Applications
Guest Editors: Yazhong Bu, Yanyu Yang, Feifei SunDeadline: 10 July 2023
Topical Collections
Topical Collection in
Gels
Recent Advances and Future Perspectives in Stimuli-Responsive Gels
Collection Editors: Dirk Kuckling, Sandra Van Vlierberghe
Topical Collection in
Gels
Recent Advances and Future Perspectives in Organogels and Organogelators Research
Collection Editor: Jean-Michel Guenet
Topical Collection in
Gels
Hydrogel in Tissue Engineering and Regenerative Medicine
Collection Editor: Esmaiel Jabbari





