molecules-logo

Journal Browser

Journal Browser

Bioactive Compounds and Antioxidant Activity of Extracts from Different Natural Plants

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (31 July 2023) | Viewed by 432263

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical Engineering, Scientific consulting, UCTM–Sofia, Sofia, Bulgaria
Interests: natural products; methods of determination of bioactive compounds and antioxidant activity; different methods of extraction; phenolics and polyphenolics; macro- and micro elements; human health
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

“Health is priceless”—this is the maxim that we heard as children but whose truth we appreciate only when we do not feel well. In our everyday life, in the high-tech twenty-first century, we imperceptibly move away from the principles underlying a healthy lifestyle—active movement and a balanced diet. The power of food for the growth and development of the human organism has been known and applied in practice since ancient times. As early as in the fourth century BC, the father of modern medicine, Hippocrates said, “Let your food be your medicine and your medicine be your food”. A vast amount of historical evidence—old manuscripts, papyri, archaeological findings—proves that long before the birth of Christ, the ancient Chinese, Indians, Egyptians, Japanese, Greeks, and Romans cherished herbs, garlic, onion, honey, and honey products not only as food or spice but also as a medicine. In Hippocrates’ time, as well as during the Roman Empire, the dark years of the Middle Ages, and all the way up to now, wine has been recommended as a therapeutic means. We often forget that in addition to pleasure, food can mean health. Of course, this is only true if you know how to use, combine, and dose it.

Biologically active substances in foods are compounds which help people to maintain their vital functions, prevent multiple diseases, and ensure their effective treatment. There are different classifications of biologically active compounds depending on their origin, their chemical composition, and their structure, as well as on their biological activity, and last but not least, the effect of their influence on human health. Antioxidants and free radicals are popular terms used by both health professionals and specialists in other fields of science.

Over the past few years, an unprecedented explosion of information around the role of oxidative stress on a number of serious diseases such as cancer, diseases of the cardiovascular system, and some degenerative changes as well as diseases of the human organism associated with aging has been registered. Many diseases are associated with the action of the oxidants, which include active forms of oxygen, nitrogen, sulphur-centered radicals, and various other active radical forms. They are generated constantly in the body by means of the normal metabolism, environmental pollutants, and tension and stress that accompany our existence. Food as a source of antioxidants occupies a central role in the battle against the harmful effects of the free radicals, protecting the human body from many diseases, and confirming the dictum of Norman Kretschmer that “Food is the secret key to prevention”.

The main aims of this Special Issue on “Bioactive Compounds and Antioxidant Activity of Extracts from different Natural Plants” is to be an open forum where researchers may share their investigations and findings in this promising field and, thanks to the open access platform, increase their visibility and the chances to interact with industries and the production systems. Contributions to this issue, both in the form of original research or review articles, may cover all aspects of dietary and non-dietary bioactive compounds, nature plants and products, and different type of extractions; studies with a multidisciplinary input, offering new methodologies or insights, are particularly welcome.

Dr. Maria Atanassova
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Natural plants and products
  • Methods of determination of bioactive compounds
  • Different methods of extraction
  • Methods of determination of antioxidant activity
  • Total phenolic and total flavonoid compounds
  • Vitamins and macro- and micro elements

Published Papers (148 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 3391 KiB  
Article
A 70% Ethanol Neorhodomela munita Extract Attenuates RANKL-Induced Osteoclast Activation and H2O2-Induced Osteoblast Apoptosis In Vitro
by Seongtae Jeong, Il-Kwon Kim, Hanbyeol Moon, Hojin Kim, Byeong-Wook Song, Jung-Won Choi, Sang Woo Kim, Seahyoung Lee, Dong-Sik Chae and Soyeon Lim
Molecules 2024, 29(8), 1741; https://doi.org/10.3390/molecules29081741 - 11 Apr 2024
Viewed by 589
Abstract
The rapid aging of the population worldwide presents a significant social and economic challenge, particularly due to osteoporotic fractures, primarily resulting from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. While conventional therapies offer benefits, they also present limitations and a [...] Read more.
The rapid aging of the population worldwide presents a significant social and economic challenge, particularly due to osteoporotic fractures, primarily resulting from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. While conventional therapies offer benefits, they also present limitations and a range of adverse effects. This study explores the protective impact of Neorhodomela munita ethanol extract (EN) on osteoporosis by modulating critical pathways in osteoclastogenesis and apoptosis. Raw264.7 cells and Saos-2 cells were used for in vitro osteoclast and osteoblast models, respectively. By utilizing various in vitro methods to detect osteoclast differentiation/activation and osteoblast death, it was demonstrated that the EN’s potential to inhibit RANKL induced osteoclast formation and activation by targeting the MAPKs-NFATc1/c-Fos pathway and reducing H2O2-induced cell death through the downregulation of apoptotic signals. This study highlights the potential benefits of EN for osteoporosis and suggests that EN is a promising natural alternative to traditional treatments. Full article
Show Figures

Graphical abstract

17 pages, 2060 KiB  
Article
‘Sorrento’ and ‘Tulare’ Walnut Cultivars: Morphological Traits and Phytochemical Enhancement of Their Shell Waste
by Elvira Ferrara, Danilo Cice, Simona Piccolella, Assunta Esposito, Milena Petriccione and Severina Pacifico
Molecules 2024, 29(4), 805; https://doi.org/10.3390/molecules29040805 - 9 Feb 2024
Viewed by 735
Abstract
Walnut processing generates considerable quantities of by-products that could be reprocessed into value-added products that have food and non-food applications. In this context, the aim of this study is to characterize the ‘Sorrento’ and ‘Tulare’ walnut cultivars using the UPOV guidelines and analyze [...] Read more.
Walnut processing generates considerable quantities of by-products that could be reprocessed into value-added products that have food and non-food applications. In this context, the aim of this study is to characterize the ‘Sorrento’ and ‘Tulare’ walnut cultivars using the UPOV guidelines and analyze the chemical composition and antioxidant activity of their shells. Insight into the chemical composition of the different granulometric fractions of walnut shell, obtained by sieving, was obtained following ultrasound-assisted extraction by Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry (UHPLC-HRMS). The total phenolic, flavonoid, and tannin content and antiradical capacity, obtained by DPPH and ABTS assays, and the Fe(III) reducing power of the extracts were also evaluated. The UHPLC-HRMS analysis indicated the presence of thirty-two compounds ascribable to four major classes of specialized metabolites. Furthermore, the extraction efficiency of gallic acid, ellagic acid derivatives, as well as glansreginin A, increased with the decrease in shell matrix particle size in contrast to chlorogenic acids and flavonoid glycosides. This is the first study to highlight new knowledge on the chemical composition of walnut shells. The results obtained demonstrate the feasibility of recovering valuable bioactive components from agro-waste that may be further valorized. Full article
Show Figures

Figure 1

16 pages, 937 KiB  
Article
The Valorisation of Melissa officinalis Distillation By-Products for the Production of Polyphenol-Rich Formulations
by Eirini Stini, Dimitrios Tsimogiannis and Vassiliki Oreopoulou
Molecules 2024, 29(2), 377; https://doi.org/10.3390/molecules29020377 - 11 Jan 2024
Viewed by 995
Abstract
Lemon balm (Melissa officinalis) is an aromatic and medicinal plant, rich in bioactive ingredients and with superior antioxidant activity. The essential oil of this plant is an expensive product, so the use of the by-products of the essential oil industry is [...] Read more.
Lemon balm (Melissa officinalis) is an aromatic and medicinal plant, rich in bioactive ingredients and with superior antioxidant activity. The essential oil of this plant is an expensive product, so the use of the by-products of the essential oil industry is particularly useful. The aim of this research was to process Melissa officinalis distillation by-products to develop a series of polyphenol-rich formulations. In the present research, lemon balm was distilled in a laboratory-scale distiller, and the recovered by-product was used for further successive extractions with acetone and water, using a fixed-bed semi-batch extractor. Acetone extract exhibited relatively poor results as far as yield, phenolic composition and antiradical activity are concerned. However, the aqueous extract presented high yield in both total phenolic content (i.e., 111 mg gallic acid equivalents (GAE)/g, on a dry herb basis (dw)), and anti-radical capacity (205 mg trolox equivalents (TE)/g dw). On a dried extract basis, the results were also impressive, with total phenols reaching 322 mg GAE/g dry extract and antiradical capacity at 593 mg TE/g dry extract. The phenolic components of the extract were identified and quantified by HPLC-DAD. Rosmarinic acid was the major component and amounted to 73.5 mg/g dry extract, while the total identified compounds were quantified at 165.9 mg/g dry extract. Finally, formulations with two different wall materials (gum arabic–maltodextrin and maltodextrin) and two different drying methods (spray-drying and freeze-drying) were applied and evaluated to assess their performance, yield, efficiency and shelf-life of total phenolic content and rosmarinic acid concentration. From the present investigation, it is concluded that after one year of storage, rosmarinic acid does not decrease significantly, while total phenolic content shows a similar decrease for all powders. According to the yield and efficiency of microencapsulation, maltodextrin alone was chosen as the wall material and freeze-drying as the preferred drying method. Full article
Show Figures

Graphical abstract

14 pages, 531 KiB  
Article
Qualitative and Quantitative Comparison of Aromatic Oil Components and Antifungal Effects of Cymbopogon flexuosus Obtained with Supercritical CO2, Microwave–Ultrasonic, Steam Distillation, and Hydrodistillation Extraction Techniques
by Nidal Jaradat
Molecules 2023, 28(19), 6870; https://doi.org/10.3390/molecules28196870 - 29 Sep 2023
Viewed by 964
Abstract
Cymbopogon flexuosus is a highly valued botanical species with significant applications in the food and food supplement industries, medicine, and cosmetics. The effects of four extraction techniques, supercritical CO2, microwave–ultrasonic, steam distillation, and hydrodistillation techniques, on the yield, phytochemical constituents, and [...] Read more.
Cymbopogon flexuosus is a highly valued botanical species with significant applications in the food and food supplement industries, medicine, and cosmetics. The effects of four extraction techniques, supercritical CO2, microwave–ultrasonic, steam distillation, and hydrodistillation techniques, on the yield, phytochemical constituents, and antifungal activity against nine fungal species of Cymbopogon flexuosus aromatic oil (AO) were explored in this investigation. Gas chromatography connected with a mass spectrometry apparatus was employed for the qualitative and quantitative analyses of the investigated plant AOs. In addition, using the broth microdilution method, minimum inhibitory concentrations (MICs) were calculated for several fungi species. The supercritical CO2 method gave the highest yield of AO (11.62 ± 0.03 (w/w)) followed by the microwave–ultrasonic method (1.55 ± 0.05% (w/w)) and the steam distillation method (1.24 ± 0.04% (w/w)), while the hydrodistillation methods gave the lowest yield (1.17 ± 0.01 (w/w)). In addition, eighteen molecules were specified in the AOs obtained with the supercritical CO2, microwave–ultrasonic, steam distillation, and hydrodistillation techniques, which constituted 99.36, 98.6, 98.21, and 98.31% (v/v) of the total oils, respectively. Additionally, linalyl acetate was the trending molecule in the microwave–ultrasonic and steam distillation methods, representing 24.61 and 24.34% (v/v), respectively, while geranial was the dominant molecule in the AOs extracted with the hydrodistillation and supercritical CO2 extraction techniques (27.01 and 25.6% (v/v), respectively). The antifungal screening results revealed that the tested C. flexuosus AOs have potential antifungal effects against all the screened fungi species. The antifungal effect of the AOs extracted with the steam distillation and microwave–ultrasonic methods was remarkable compared with that of the commercial antifungal drug Fluconazole. However, the AOs extracted with these two methods have a more potent antifungal effect against Candida parapsilosis than that of Fluconazole with MICs of 3.13 ± 0.01, 3.13 ± 0.01, and 6.25 ± 0.91 µg/mL, respectively. The same effects were also observed against Trichophyton rubrum with MICs of 6.25 ± 0.91 µg/mL, respectively. The results of this investigation demonstrated that the steam distillation and microwave–ultrasonic methods are promising processes for the extraction of C. flexuosus AO with a potent antifungal effect. This may be an advantage for the utilization of C. flexuosus AO over some antifungal synthetic agents commonly utilized as medicines, preservatives, food additives, cosmetics, and nutrient supplements. Full article
Show Figures

Graphical abstract

20 pages, 546 KiB  
Article
Polyphenol Profiling by LC QTOF/ESI-MS and Biological Activity of Purple Passion Fruit Epicarp Extract
by Monika Siniawska and Aneta Wojdyło
Molecules 2023, 28(18), 6711; https://doi.org/10.3390/molecules28186711 - 20 Sep 2023
Cited by 1 | Viewed by 1430
Abstract
A polyphenolic preparation in the form of the passion fruit epicarp extract was analyzed to identify and quantify the polyphenolic compounds using LC QTOF/ESI-MS and UPLC-PDA-FL. The analyzed parameters included antidiabetic activity (α-amylase, α-glucosidase, and pancreatic lipase), inhibitory activity toward cholinesterase (AChE, BuChE), [...] Read more.
A polyphenolic preparation in the form of the passion fruit epicarp extract was analyzed to identify and quantify the polyphenolic compounds using LC QTOF/ESI-MS and UPLC-PDA-FL. The analyzed parameters included antidiabetic activity (α-amylase, α-glucosidase, and pancreatic lipase), inhibitory activity toward cholinesterase (AChE, BuChE), anti-inflammatory activity (COX-1, COX-2, 15-LOX) and antioxidant activity based on ORAC and ABTS. The polyphenolic preparation of the passion fruit epicarp extract contained 51 polyphenolic compounds representing five groups—flavones (25 compounds; 52% of total polyphenolic), flavonols (8; 16%), flavan-3-ols (6; 7%), phenolic acids (4; 3%), and anthocyanins (7; 21%), with derivatives of luteolin (13 derivatives) and apigenin (8 derivatives) as dominant compounds. The preparation was characterized by an antioxidant activity of 160.7 (ORAC) and 1004.4 mmol Trolox/100 mL (ABTS+o). The inhibitory activity toward α-amylase, α-glucosidase, and pancreatic lipase reached IC50 of 7.99, 12.80, and 0.42, respectively. The inhibition of cholinesterases (IC50) was 18.29 for AChE and 14.22 for BuChE. Anti-inflammatory activity as IC50 was 6.0 for COX-1, 0.9 for COX-2, and 4.9 for 15-LOX. Food enriched with passion fruit epicarp extract has a potentially therapeutic effect. Full article
Show Figures

Graphical abstract

17 pages, 1447 KiB  
Article
Antimicrobial Properties and Assessment of the Content of Bioactive Compounds Lavandula angustifolia Mill. Cultivated in Southern Poland
by Izabela Betlej, Bogusław Andres, Tomasz Cebulak, Ireneusz Kapusta, Maciej Balawejder, Sławomir Jaworski, Agata Lange, Marta Kutwin, Elżbieta Pisulewska, Agnieszka Kidacka, Barbara Krochmal-Marczak and Piotr Borysiuk
Molecules 2023, 28(17), 6416; https://doi.org/10.3390/molecules28176416 - 3 Sep 2023
Cited by 3 | Viewed by 1260
Abstract
Lavender is a valued plant due to its cosmetic, perfumery, culinary, and health benefits. A wide range of applications is related to the composition of bioactive compounds, the quantity and quality of which is determined by various internal and external factors, i.e., variety, [...] Read more.
Lavender is a valued plant due to its cosmetic, perfumery, culinary, and health benefits. A wide range of applications is related to the composition of bioactive compounds, the quantity and quality of which is determined by various internal and external factors, i.e., variety, morphological part of the plant, and climatic and soil conditions during vegetation. In the presented work, the characterization of antimicrobial properties as well as the qualitative and quantitative assessment of bioactive compounds in the form of polyphenols in ethanol extracts from leaves and flowers of Lavandula angustifolia Mill. intended for border hedges, cultivated in the region of southern Poland, were determined. The composition of the fraction of volatile substances and antioxidant properties were also assessed. The conducted research shows that extracts from leaves and flowers significantly affected the viability of bacterial cells and the development of mold fungi. A clear decrease in the viability of bacteria and C. albicans cells was shown in the concentration of 0.32% of extracts. Leaf extracts were characterized by a much higher content of polyphenols and antioxidant properties than flower extracts. The composition of volatiles measured by GC-MS was significantly different between the extracts. Linalyl acetate and ocimene isomers mix dominated in flower extracts, whereas coumarin, γ-cadinene, and 7-methoxycoumarin were identified as dominant in leaf extracts. Full article
Show Figures

Graphical abstract

77 pages, 29500 KiB  
Article
Investigation of Chemical Constituents and Antioxidant Activity of Biologically Active Plant-Derived Natural Products
by Katarzyna Godlewska, Paweł Pacyga, Agnieszka Najda and Izabela Michalak
Molecules 2023, 28(14), 5572; https://doi.org/10.3390/molecules28145572 - 21 Jul 2023
Cited by 2 | Viewed by 4160
Abstract
The aim of this publication is to present rapid screening methods (visual/colorimetric) that will enable quick identification of the presence of biologically active compounds in aqueous solutions. For this reason, 26 plant extracts obtained by ultrasound-assisted extraction were analysed for the content of [...] Read more.
The aim of this publication is to present rapid screening methods (visual/colorimetric) that will enable quick identification of the presence of biologically active compounds in aqueous solutions. For this reason, 26 plant extracts obtained by ultrasound-assisted extraction were analysed for the content of these compounds. Higher plants, used as a raw material for extraction, are common in Europe and are easily available. The article proposes a comparison of various protocols for the identification of various compounds, e.g., phenolic compounds (phenols, tannins, anthocyanins, coumarins, flavones, flavonoids), vitamin C, quinones, quinines, resins, glycosides, sugars. Initial characterisation of the composition of plant extracts using fast and inexpensive methods allows you to avoid the use of time-consuming analyses with the use of advanced research equipment. In addition, the antioxidant activity of plant extracts using spectrophotometric methods (DPPH, ABTS, FRAP assay) and quantitative analysis of plant hormones such as abscisic acid, benzoic acid, gibberellic acid, indole acetic acid, jasmonic acid, salicylic acid, zeatin, zeatin riboside, and isipentenyl adenine was performed. The obtained results prove that the applied visual methods show different sensitivity in detecting the sought chemical compounds. Therefore, it is necessary to confirm the presence or absence of bioactive substances and their concentration using modern analytical methods. Full article
17 pages, 2607 KiB  
Article
A Comparative Evaluation of Antioxidant Activity of Extract and Essential Oil of Origanum onites L. In Vivo
by Asta Kubiliene, Edvinas Munius, Gabriele Songailaite, Indre Kokyte, Juste Baranauskaite, Arunas Liekis and Ilona Sadauskiene
Molecules 2023, 28(14), 5302; https://doi.org/10.3390/molecules28145302 - 10 Jul 2023
Cited by 2 | Viewed by 1080
Abstract
In the present study, the effects of Origanum onites L. extract and essential oil of O. onites L. on the antioxidant status of the liver and brain of mice were investigated. Due to certain disadvantages of essential oils, such as poor solubility, high [...] Read more.
In the present study, the effects of Origanum onites L. extract and essential oil of O. onites L. on the antioxidant status of the liver and brain of mice were investigated. Due to certain disadvantages of essential oils, such as poor solubility, high volatility and sensitivity to UV light and heat, formulation of liposomes with Oregano essentials (OE) was optimized and used in this study. The results demonstrated that the best composition of the lipid carriers and OE were conducted in terms of the polydispersity index (PDI), mean particle size and encapsulation efficiency (EE). For further study the LE4 formulation was used, which contained Lipoid S100 at 45 mg, Lipoid S75 at 45 mg and 90 mg of EO. The administration of O. onites L. extract to mice for 21 days significantly decreased the glutathione (GSH) level in the livers and brains of the mice as well as the malondialdehyde (MDA) concentration in the livers. In the brains of the mice, MDA level significantly increased after this extract consumption. Whereas liposomes with OE significantly decreased GSH concentration in the mouse brain and MDA concentration in the mouse liver, there was an increased (p > 0.05) GSH level in the liver and MDA concentration in the brain of mice compared with the control group. It was found that both O. onites. ethanolic extract as well as liposomes with OE of this plant material affect the antioxidant status in the livers and brains of mice. Full article
Show Figures

Figure 1

23 pages, 1083 KiB  
Article
The Effect of Mineral Fertilization on the Content of Bioactive Compounds in Hemp Seeds and Oil
by Jakub Frankowski, Anna Przybylska-Balcerek, Małgorzata Graczyk, Grażyna Niedziela, Dominika Sieracka and Kinga Stuper-Szablewska
Molecules 2023, 28(12), 4870; https://doi.org/10.3390/molecules28124870 - 20 Jun 2023
Cited by 2 | Viewed by 1171
Abstract
The popularity of hemp cultivation for industrial purposes has been steadily growing for many years. With the addition of products derived from these plants to the Novel Food Catalogue, maintained by the European Commission, a significant increase in interest in hemp food is [...] Read more.
The popularity of hemp cultivation for industrial purposes has been steadily growing for many years. With the addition of products derived from these plants to the Novel Food Catalogue, maintained by the European Commission, a significant increase in interest in hemp food is also expected. The aim of the study was to determine the characteristics of hempseed, oil, and oil cake samples produced from experimental plots grown in different conditions. The research was conducted on the Henola variety, one of the newest and most popular varieties of hemp, recently bred for grain and oil. The content of bioactive compounds in grain and oil has been subjected to detailed chemical analyses in order to determine the effect of fertilization, the method of plant cultivation, and processing conditions on their quantity. The test results and the statistical analysis carried out showed a significant impact of the tested factors on the content of some of the tested bioactive compounds. The obtained results will help in the development of an effective method of cultivation for this hemp variety in order to maximize the content of the desired bioactive compounds per unit of cultivation area. Full article
Show Figures

Figure 1

13 pages, 1645 KiB  
Article
Chemical Characterization and Cytotoxic and Antioxidant Activity Evaluation of the Ethanol Extract from the Bulbs of Pancratium maritimun Collected in Sicily
by Adele Cicio, Stefania Sut, Stefano Dall’Acqua, Maurizio Bruno, Claudio Luparello, Rosa Serio and Maria Grazia Zizzo
Molecules 2023, 28(10), 3986; https://doi.org/10.3390/molecules28103986 - 9 May 2023
Viewed by 1479
Abstract
P. maritimum L., belonging to the Amaryllidaceae family, is a species that grows on beaches and coastal sand dunes mainly on both sides of the Mediterranean Sea and Black Sea, the Middle East, and up to the Caucasus region. It has been largely [...] Read more.
P. maritimum L., belonging to the Amaryllidaceae family, is a species that grows on beaches and coastal sand dunes mainly on both sides of the Mediterranean Sea and Black Sea, the Middle East, and up to the Caucasus region. It has been largely investigated due to its several interesting biological properties. With the aim of providing new insights into the phytochemistry and pharmacology of this species, the ethanolic extract of the bulbs from a local accession, not previously studied, growing in Sicily (Italy), was investigated. This chemical analysis, performed by mono- and bi-dimensional NMR spectroscopy, as well as LC-DAD-MSn, allowed to identify several alkaloids, three of which were never detected in the genus Pancratium. Furthermore, the cytotoxicity of the preparation was assessed in differentiated human Caco-2 intestinal cells by trypan blue exclusion assay, and its antioxidant potential was evaluated using the DCFH-DA radical scavenging method. The results obtained demonstrate that P. maritimum bulbs’ extract exerts no cytotoxic effect and is able to remove free radicals at all the concentrations tested. Full article
Show Figures

Figure 1

17 pages, 2031 KiB  
Article
Antioxidant Capacity and NF-kB-Mediated Anti-Inflammatory Activity of Six Red Uruguayan Grape Pomaces
by Emiliana Fariña, Hellen Daghero, Mariela Bollati-Fogolín, Eduardo Boido, Jorge Cantero, Mauricio Moncada-Basualto, Claudio Olea-Azar, Fabio Polticelli and Margot Paulino
Molecules 2023, 28(9), 3909; https://doi.org/10.3390/molecules28093909 - 5 May 2023
Cited by 2 | Viewed by 1910
Abstract
Grape pomaces have a wide and diverse antioxidant phenolics composition. Six Uruguayan red grape pomaces were evaluated in their phenolics composition, antioxidant capacity, and anti-inflammatory properties. Not only radical scavenging methods as DPPH· and ABTS·+ were employed but also ORAC and [...] Read more.
Grape pomaces have a wide and diverse antioxidant phenolics composition. Six Uruguayan red grape pomaces were evaluated in their phenolics composition, antioxidant capacity, and anti-inflammatory properties. Not only radical scavenging methods as DPPH· and ABTS·+ were employed but also ORAC and FRAP analyses were applied to assess the antioxidant potency of the extracts. The antioxidant reactivity of all extracts against hydroxyl radicals was assessed with ESR. The phenol profile of the most bioactive extract was analyzed by HPLC-MS, and a set of 57 structures were determined. To investigate the potential anti-inflammatory activity of the extracts, Nuclear Factor kappa-B (NF-κB) modulation was evaluated in the human colon cancer reporter cell line (HT-29-NF-κB-hrGFP). Our results suggest that Tannat grapes pomaces have higher phenolic content and antioxidant capacity compared to Cabernet Franc. These extracts inhibited TNF-alpha mediated NF-κB activation and IL-8 production when added to reporter cells. A molecular docking study was carried out to rationalize the experimental results allowing us to propose the proactive interaction between the NF-κB, the grape extracts phenols, and their putative anti-inflammatory bioactivity. The present findings show that red grape pomace constitutes a sustainable source of phenolic compounds, which may be valuable for pharmaceutical, cosmetic, and food industry applications. Full article
Show Figures

Graphical abstract

15 pages, 593 KiB  
Article
Determination of Hypoglycemic, Hypolipidemic and Nephroprotective Effects of Berberis Calliobotrys in Alloxan-Induced Diabetic Rats
by Shahid Rasool, Bassam Al Meslmani and Muaaz Alajlani
Molecules 2023, 28(8), 3533; https://doi.org/10.3390/molecules28083533 - 17 Apr 2023
Cited by 1 | Viewed by 1866
Abstract
Many plants of the Berberis genus have been reported pharmacologically to possess anti-diabetic potential, and Berberis calliobotrys has been found to be an inhibitor of α-glucosidase, α-amylase and tyrosinase. Thus, this study investigated the hypoglycemic effects of Berberis calliobotrys methanol extract/fractions using in [...] Read more.
Many plants of the Berberis genus have been reported pharmacologically to possess anti-diabetic potential, and Berberis calliobotrys has been found to be an inhibitor of α-glucosidase, α-amylase and tyrosinase. Thus, this study investigated the hypoglycemic effects of Berberis calliobotrys methanol extract/fractions using in vitro and In vivo methods. Bovine serum albumin (BSA), BSA–methylglyoxal and BSA–glucose methods were used to assess anti-glycation activity in vitro, while in vivo hypoglycemic effects were determined by oral glucose tolerance test (OGTT). Moreover, the hypolipidemic and nephroprotective effects were studied and phenolics were detected using high performance liquid chromatography (HPLC). In vitro anti-glycation showed a significant reduction in glycated end-products formation at 1, 0.25 and 0.5 mg/mL. In vivo hypoglycemic effects were tested at 200, 400 and 600 mg/kg by measuring blood glucose, insulin, hemoglobin (Hb) and HbA1c. The synergistic effect of extract/fractions (600 mg/kg) with insulin exhibited a pronounced glucose reduction in alloxan diabetic rats. The oral glucose tolerance test (OGTT) demonstrated a decline in glucose concentration. Moreover, extract/fractions (600 mg/kg) exhibited an improved lipid profile, increased Hb, HbA1c levels and body weight for 30 days. Furthermore, diabetic animals significantly exhibited an upsurge in total protein, albumin and globulin levels, along with a significant improvement in urea and creatinine after extract/fractions administration for 42 days. Phytochemistry revealed alkaloids, tannins, glycosides, flavonoids, phenols, terpenoids and saponins. HPLC showed the presence of phenolics in ethyl acetate fraction that could be accountable for pharmacological actions. Therefore, it can be concluded that Berberis calliobotrys possesses strong hypoglycemic, hypolipidemic and nephroprotective effects, and could be a potential therapeutic agent for diabetes treatment. Full article
Show Figures

Figure 1

20 pages, 1523 KiB  
Article
Chemical Characterization and Several Bioactivities of Cladanthus mixtus from Morocco
by Amina El Mihyaoui, El Hadi Erbiai, Saoulajan Charfi, Eugénia Pinto, María Emilia Candela Castillo, Josefa Hernández-Ruiz, Antonio Cano, Alain Badoc, Ahmed Lamarti, Joaquim C. G. Esteves da Silva and Marino B. Arnao
Molecules 2023, 28(7), 3196; https://doi.org/10.3390/molecules28073196 - 3 Apr 2023
Cited by 1 | Viewed by 1692
Abstract
The purpose of this work was to investigate, for the first time to our knowledge, the chemical composition and bioactivity of methanolic extracts (roots, stems, leaves, and flowers) from Cladanthus mixtus (L.) Chevall. that grows wild in northern Morocco (the Tangier-Tetouan-Al Hoceima region). [...] Read more.
The purpose of this work was to investigate, for the first time to our knowledge, the chemical composition and bioactivity of methanolic extracts (roots, stems, leaves, and flowers) from Cladanthus mixtus (L.) Chevall. that grows wild in northern Morocco (the Tangier-Tetouan-Al Hoceima region). The phenolic and flavonoid contents were determined by spectrophotometer methods, and the composition of derivatized methanolic extracts from C. mixtus using N-O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) was analyzed by gas chromatography–mass spectrometry (GC-MS). The antioxidant activity was carried out by applying the 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and DPPH (2,2-diphenyl-1-picrylhydrazyl) tests. The micro-dilution technique was chosen to investigate the antimicrobial activity of methanolic extracts against two bacterial strains and three fungal species. The results showed that the values of total phenolic and flavonoid contents were found to be higher in flower extracts (30.55 ± 0.85 mg of gallic acid equivalents (GAE)/g of dried weight (DW) and 26.00 ±1.34 mg of quercetin equivalents (QE)/g DW, respectively). Other groups of chemical compounds were revealed by GC-MS, such as carbohydrates (27.25–64.87%), fatty acids (1.58–9.08%), organic acids (11.81–18.82%), and amino acids (1.26–7.10%). Root and flower methanolic extracts showed the highest antioxidant activity using ABTS (39.49 mg of Trolox equivalents (TE)/g DW) and DPPH (36.23 mg TE/g DW), respectively. A positive correlation between antioxidant activity and polyphenol and flavonoid amounts was found. Antibacterial tests showed that the best activity was presented by the leaf extract against Staphylococcus aureus (minimum inhibitory concentration (MIC) = minimum bactericidal concentration (MBC) = 20 mg/mL) and Escherichia coli (MIC of 30 mg/mL and MBC of 35 mg/mL). S. aureus was more sensitive to the extracts compared to E. coli. All extracts showed antifungal activity against Trichophyton rubrum, with the best efficacy reported by the flower and leaf extracts (MIC = 1.25 mg/mL and minimum fungicidal concentration (MFC) = 2.5 mg/mL). In general, extracts of C. mixtus appeared less effective against Candida albicans and Aspergillus fumigatus. Full article
Show Figures

Figure 1

10 pages, 3132 KiB  
Article
Recovery of Rose Flower Waste to Formulate Eco-Friendly Biopolymer Packaging Films
by Nadka Tz. Dintcheva and Elisabetta Morici
Molecules 2023, 28(7), 3165; https://doi.org/10.3390/molecules28073165 - 2 Apr 2023
Viewed by 1679
Abstract
Considering the circular principles of materials and investigating the possibility to use waste materials before their final disposal, in this work, dry rose flower (DRF) and rose flower waste (RFW), after oil extraction, have been considered as suitable materials for the formulation of [...] Read more.
Considering the circular principles of materials and investigating the possibility to use waste materials before their final disposal, in this work, dry rose flower (DRF) and rose flower waste (RFW), after oil extraction, have been considered as suitable materials for the formulation of biopolymer packaging films. Both DRF and RFW particles have been characterized by spectroscopy analysis, and their radical scavenger ability has been investigated. Moreover, DRF and RFW particles have been added by melt mixing to PolyLactic Acid (PLA), and formulated PLA-based films have been studied through rheology analysis, mechanical test, differential scanning calorimetry, and microscopy observations. Finally, the influence of both DRF and RFW particles on the photo-oxidation behavior of PLA has been evaluated by subjecting thin films to UVB exposure, and the progress of degradation has been monitored following the accumulations of oxygen-containing groups in time. Obtained results suggest that both DRF and RFW have a beneficial effect on the photo-oxidation behavior of PLA, and they can slow down PLA degradation upon UVB exposure. Therefore, PLA-based composite materials could be considered a good candidate for applications as packaging films. Full article
Show Figures

Graphical abstract

12 pages, 2710 KiB  
Article
Bioavailability of Bioactive Compounds from Reconstituted Grapefruit Juice as Affected by the Obtention Process
by María del Mar Camacho, Juan José Martínez-Lahuerta, Eva García-Martínez, Marta Igual and Nuria Martínez-Navarrete
Molecules 2023, 28(7), 2904; https://doi.org/10.3390/molecules28072904 - 23 Mar 2023
Cited by 1 | Viewed by 1375
Abstract
Much attention has been paid to the health benefits of including fruits and vegetables in the diet. However, for the compounds responsible for this beneficial effect to be effective at the level of the human organism, they must be available for absorption after [...] Read more.
Much attention has been paid to the health benefits of including fruits and vegetables in the diet. However, for the compounds responsible for this beneficial effect to be effective at the level of the human organism, they must be available for absorption after digestion. In this sense, in vivo studies are needed to demonstrate the bioavailability of these compounds and their physiological activity. In order to provide information in this regard, this study collects data on the levels of vitamin C (VC) and naringenin (NAG) in the blood serum of the 11 volunteer participants in this trial, before and after consuming two different grapefruit juices. The juices were prepared by rehydrating the grapefruit powder obtained by freeze-drying (FD) the fruit puree or by spray-drying (SD) the liquefied grapefruit. No significant differences (p > 0.05) neither by juice nor by participant were observed in any case. The mean relative increase of VC, NAG and the radical scavenging ability (RSA) in blood serum due to grapefruit juices intake was 12%, 28% and 26%, respectively. Just VC showed a positive and significant Pearson’s correlation with RSA. The mean bioavailability of VC was quantified as 1.529 ± 0.002 mg VC/L serum per 100 mg of VC ingested. Full article
Show Figures

Figure 1

10 pages, 597 KiB  
Article
Different Extraction Approaches for the Analysis of Melatonin from Cabernet Sauvignon and Feteasca Neagra Wines Using a Validated HPLC-FL Method
by Sandra A. V. Eremia, Camelia Albu, Gabriel L. Radu and Marian Ion
Molecules 2023, 28(6), 2768; https://doi.org/10.3390/molecules28062768 - 19 Mar 2023
Cited by 2 | Viewed by 1568
Abstract
In recent years, the wine industry has shown a considerable degree of interest in the occurrence of melatonin in wines. Sample pretreatment may be the most important step in trace analysis. Since wine is a complex matrix and melatonin is present in low [...] Read more.
In recent years, the wine industry has shown a considerable degree of interest in the occurrence of melatonin in wines. Sample pretreatment may be the most important step in trace analysis. Since wine is a complex matrix and melatonin is present in low amounts (ppb), an adequate extraction technique is required. In this study, the effect of several extraction methods, such as solid phase extraction (SPE), Quick, Easy, Cheap, Effective, Rugged, and Safe extraction (QuEChERS), and dispersive liquid–liquid micro-extraction (DLLME) was studied and the variable parameters that can arise throughout the extraction process were optimized to obtain the best results. A high-performance liquid chromatography with fluorescence detector (HPLC-FL) method was adapted and validated, including measurement uncertainty, for the analysis of melatonin in wines and to assess the efficiency of the extraction yield. After comparing the acquired results, the DLLME method was optimized. Extraction recoveries values ranging from 95 to 104% demonstrated that the approach may be successfully applied for the extraction and concentration (enrichment factor of almost eight) of melatonin in wine samples prior to HPLC-FL analysis. The first report of melatonin levels in Feteasca Neagra wines has been made. The data obtained for Cabernet Sauvignon revealed that the final levels of melatonin in the wines are dependent on the winemaking process. Full article
Show Figures

Graphical abstract

19 pages, 1207 KiB  
Article
Implication of the Polymeric Phenolic Fraction and Matrix Effect on the Antioxidant Activity, Bioaccessibility, and Bioavailability of Grape Stem Extracts
by Juan Antonio Nieto, Irene Fernández-Jalao, María de las Nieves Siles-Sánchez, Susana Santoyo and Laura Jaime
Molecules 2023, 28(6), 2461; https://doi.org/10.3390/molecules28062461 - 8 Mar 2023
Cited by 1 | Viewed by 1280
Abstract
The bioaccessibility and bioavailability of phenolics compounds of two grape stem extracts with different composition were studied. High polymeric extract (HPE) presented a higher content of total phenolics (TPC), procyanidins, hemicelluloses, proteins, and ashes, whereas low procyanidin extract (LPE) showed a higher fat, [...] Read more.
The bioaccessibility and bioavailability of phenolics compounds of two grape stem extracts with different composition were studied. High polymeric extract (HPE) presented a higher content of total phenolics (TPC), procyanidins, hemicelluloses, proteins, and ashes, whereas low procyanidin extract (LPE) showed a higher fat, soluble sugars, and individual phenolic compounds content. Corresponding to its higher total phenolics content, HPE possesses a higher antioxidant activity (TEAC value). The digestion process reduced the antioxidant activity of the HPE up to 69%, due to the decrease of TPC (75%) with a significant loss of polymeric compounds. LPE antioxidant activity was stable, and TPC decreased by only 13% during the digestion process. Moreover, a higher antioxidant phenolic compounds bioavailability was shown in LPE in contrast to HPE. This behaviour was ascribed mainly to the negative interaction of polymeric fractions and the positive interaction of lipids with phenolic compounds. Therefore, this study highlights the convenience of carrying out previous studies to identify the better extraction conditions of individual bioavailable phenolic compounds with antioxidant activity, along with those constituents that could increase their bioaccessibility and bioavailability, such as lipids, although the role played by other components, such as hemicelluloses, cannot be ruled out. Full article
Show Figures

Graphical abstract

21 pages, 1360 KiB  
Article
Quality Assessment of Burdekin Plum (Pleiogynium timoriense) during Ambient Storage
by Gengning Chen, Michael E. Netzel, Sandra Milena Olarte Mantilla, Anh Dao Thi Phan, Gabriele Netzel, Dharini Sivakumar and Yasmina Sultanbawa
Molecules 2023, 28(4), 1608; https://doi.org/10.3390/molecules28041608 - 7 Feb 2023
Cited by 1 | Viewed by 1562
Abstract
Pleiogynium timoriense, commonly known as Burdekin plum (BP), is among many Australian native plants traditionally used by Indigenous people. However, only limited information is available on the nutritional and sensory quality of BP grown in Australia as well as its changes during [...] Read more.
Pleiogynium timoriense, commonly known as Burdekin plum (BP), is among many Australian native plants traditionally used by Indigenous people. However, only limited information is available on the nutritional and sensory quality of BP grown in Australia as well as its changes during storage. Therefore, this study evaluated the quality of BP during one week of ambient storage (temperature 21 °C, humidity 69%). Proximate analysis revealed a relatively high dietary fiber content in BP (7–10 g/100 g FW). A significant reduction in fruit weight and firmness (15–30% and 60–90%, respectively) with distinguishable changes in flesh color (ΔE > 3) and an increase in total soluble solids (from 11 to 21 °Brix) could be observed during storage. The vitamin C and folate contents in BP ranged from 29 to 59 mg/100g FW and 0.3 to 5.9 μg/100g FW, respectively, after harvesting. A total phenolic content of up to 20 mg GAE/g FW and ferric reducing antioxidant power of up to 400 μmol Fe2+/g FW in BP indicate a strong antioxidant capacity. In total, 34 individual phenolic compounds were tentatively identified in BP including cyanidin 3-galactoside, ellagic acid and gallotannins as the main phenolics. Principle component analysis (PCA) of the quantified phenolics indicated that tree to tree variation had a bigger impact on the phenolic composition of BP than ambient storage. Sensory evaluation also revealed the diversity in aroma, appearance, texture, flavor and aftertaste of BP. The results of this study provide crucial information for consumers, growers and food processors. Full article
Show Figures

Figure 1

22 pages, 3040 KiB  
Article
Cytotoxic and Antioxidant Activity of Hypericum perforatum L. Extracts against Human Melanoma Cells from Different Stages of Cancer Progression, Cultured under Normoxia and Hypoxia
by Aleksandra Brankiewicz, Sara Trzos, Magdalena Mrożek, Małgorzata Opydo, Elżbieta Szostak, Michał Dziurka, Monika Tuleja, Agnieszka Łoboda and Ewa Pocheć
Molecules 2023, 28(3), 1509; https://doi.org/10.3390/molecules28031509 - 3 Feb 2023
Cited by 5 | Viewed by 2538
Abstract
Oxidative stress and the hypoxic microenvironment play a key role in the progression of human melanoma, one of the most aggressive skin cancers. The aim of our study was to evaluate the effect of Hypericum perforatum extracts of different origins (both commercially available [...] Read more.
Oxidative stress and the hypoxic microenvironment play a key role in the progression of human melanoma, one of the most aggressive skin cancers. The aim of our study was to evaluate the effect of Hypericum perforatum extracts of different origins (both commercially available (HpEx2) and laboratory-prepared from wild grown (HpEx12) and in vitro cultured (HpEx13) plants) and hyperforin salt on WM115 primary and WM266-4 lymph node metastatic human melanoma cells cultured under normoxic and hypoxic conditions. The polyphenol content, radical scavenging activity, and hyperforin concentration were determined in the extracts, while cell viability, apoptosis, ROS production, and expression of NRF2 and HO-1, important oxidative stress-related factors, were analyzed after 24 h of cell stimulation with HpExs and hyperforin salt. We found that cytotoxic, pro-apoptotic and antioxidant effects depend on the extract composition, the stage of melanoma progression, and the oxygen level. Hyperforin salt showed lower activity than H. perforatum extracts. Our study for the first time showed that the anticancer activity of H. perforatum extracts differs in normoxia and hypoxia. Importantly, the composition of extracts of various origins, including in vitro cultured, resulting in their unique properties, may be important in the selection of plants for therapeutic application. Full article
Show Figures

Graphical abstract

27 pages, 2085 KiB  
Article
Byproducts of Globe Artichoke and Cauliflower Production as a New Source of Bioactive Compounds in the Green Economy Perspective: An NMR Study
by Cinzia Ingallina, Giacomo Di Matteo, Mattia Spano, Erica Acciaro, Enio Campiglia, Luisa Mannina and Anatoly Petrovich Sobolev
Molecules 2023, 28(3), 1363; https://doi.org/10.3390/molecules28031363 - 31 Jan 2023
Cited by 6 | Viewed by 2262
Abstract
The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and [...] Read more.
The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements. Full article
Show Figures

Figure 1

16 pages, 3299 KiB  
Article
Processing Stabilization of Polyethylene with Grape Peel Extract: Effect of Extraction Technology and Composition
by Kata Takács, Emese Pregi, Erika Vági, Tibor Renkecz, Dóra Tátraaljai and Béla Pukánszky
Molecules 2023, 28(3), 1011; https://doi.org/10.3390/molecules28031011 - 19 Jan 2023
Cited by 2 | Viewed by 1440
Abstract
Dry grape peel powder was extracted by three different techniques, stirred tank reactor, Soxhlet and ultrasound extraction. The composition, physical and chemical structure and inherent stability of the extracts were characterized by various methods. The extracts and reference compounds were added to polyethylene [...] Read more.
Dry grape peel powder was extracted by three different techniques, stirred tank reactor, Soxhlet and ultrasound extraction. The composition, physical and chemical structure and inherent stability of the extracts were characterized by various methods. The extracts and reference compounds were added to polyethylene and their stabilization efficiency was determined in multiple extrusion experiments. The composition of the extracts was quite similar. Ten main compounds were identified in the extracts, which contained a considerable number of polyphenols, but only small amounts of quercetin and trans-resveratrol. The extracts proved to be more efficient processing stabilizers than trans-resveratrol and the commercial stabilizer, Irganox 1010, irrespective of the extraction technology used. In spite of their good processing stabilization effect, polymers containing the extracts had poor residual stability. The differences in processing and long-term stabilization must be related to the different structures of the polyphenols contained by the extracts and the reference compounds. The results clearly prove that the IC50 value determined by the DPPH assay is not suitable for the estimation of the efficiency of a compound as a stabilizer for polymers. Full article
Show Figures

Figure 1

18 pages, 2177 KiB  
Article
Olive Yield and Physicochemical Properties of Olives and Oil in Response to Nutrient Application under Rainfed Conditions
by Ermelinda Silva, Alexandre Gonçalves, Sandra Martins, Cátia Brito, Helena Ferreira, Luís M. M. Ferreira, José Moutinho-Pereira, Manuel Ângelo Rodrigues and Carlos M. Correia
Molecules 2023, 28(2), 831; https://doi.org/10.3390/molecules28020831 - 13 Jan 2023
Cited by 1 | Viewed by 1936
Abstract
The effects of mineral fertilizers on the physicochemical properties of olives and oil under rainfed conditions is scarce. In this three-year study, the results of a nitrogen (N), phosphorus (P), potassium (K) and boron (B) fertilization trial carried out in a young rainfed [...] Read more.
The effects of mineral fertilizers on the physicochemical properties of olives and oil under rainfed conditions is scarce. In this three-year study, the results of a nitrogen (N), phosphorus (P), potassium (K) and boron (B) fertilization trial carried out in a young rainfed olive grove and arranged as a nutrient omission trial are reported. The control consisted of the application of N, P, K and B (NPKB) and four other treatments corresponded to the removal of one of them (N0, P0, K0 and B0). Olive yield and several variables associated with the physicochemical properties of olives and oil were evaluated. The NPKB treatment increased olive yield compared to the treatment that did not receive N (N0). Although dependent on the climate conditions of the crop season, the NPKB treatment increased fruit weight and the pulp/pit ratio and its fruits tended to accumulate more oil than K0. However, the phenolics concentrations on fruits and oil tended to be lower. All olive oil samples were classified in the “extra virgin” category and all showed a decrease in its stability between 3 and 15 months of storage, regardless of treatment, especially in N0, P0 and B0 treatments. The results of the sensorial analysis indicate that all the oils fell into the medium fruitiness and greenly-fruity category. Only in P0 and B0 were defects detected, namely muddy sediment. Thus, this study seems to indicate the importance of N application, but also a balanced nutrient application and that further studies are needed, given the difficulty in finding clear trends in the response of measured variables to fertilizer treatments. Full article
Show Figures

Figure 1

19 pages, 2501 KiB  
Article
Optimization of Ultrasound- and Microwave-Assisted Extraction for the Determination of Phenolic Compounds in Peach Byproducts Using Experimental Design and Liquid Chromatography–Tandem Mass Spectrometry
by Thalia Tsiaka, Dimitra Z. Lantzouraki, Georgia Polychronaki, Georgios Sotiroudis, Eftichia Kritsi, Vassilia J. Sinanoglou, Despina P. Kalogianni and Panagiotis Zoumpoulakis
Molecules 2023, 28(2), 518; https://doi.org/10.3390/molecules28020518 - 5 Jan 2023
Cited by 8 | Viewed by 1655
Abstract
The conversion of plant byproducts, which are phenolic-rich substrates, to valuable co-products by implementing non-conventional extraction techniques is the need of the hour. In the current study, ultrasound- (UAE) and microwave-assisted extraction (MAE) were applied for the recovery of polyphenols from peach byproducts. [...] Read more.
The conversion of plant byproducts, which are phenolic-rich substrates, to valuable co-products by implementing non-conventional extraction techniques is the need of the hour. In the current study, ultrasound- (UAE) and microwave-assisted extraction (MAE) were applied for the recovery of polyphenols from peach byproducts. Two-level screening and Box–Behnken design were adopted to optimize extraction efficiency in terms of total phenolic content (TPC). Methanol:water 4:1% v/v was the extraction solvent. The optimal conditions of UAE were 15 min, 8 s ON-5 s OFF, and 35 mL g−1, while MAE was maximized at 20 min, 58 °C, and 16 mL g−1. Regarding the extracts’ TPC and antioxidant activity, MAE emerged as the method of choice, whilst their antiradical activity was similar in both techniques. Furthermore, a liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine chlorogenic acid and naringenin in byproducts’ extracts. 4-Chloro-4′-hydroxybenzophenone is proposed as a new internal standard in LC-MS/MS analysis in foods and byproducts. Chlorogenic acid was extracted in higher yields when UAE was used, while MAE favored the extraction of the flavonoid compound, naringenin. To conclude, non-conventional extraction could be considered as an efficient and fast alternative for the recovery of bioactive compounds from plant matrices. Full article
Show Figures

Figure 1

14 pages, 1661 KiB  
Article
Comparative Study of Novel Methods for Olive Leaf Phenolic Compound Extraction Using NADES as Solvents
by Paraskevi Siamandoura and Constantina Tzia
Molecules 2023, 28(1), 353; https://doi.org/10.3390/molecules28010353 - 1 Jan 2023
Cited by 2 | Viewed by 1879
Abstract
Natural deep eutectic solvents (NADES) composed of choline chloride with maltose (CMA), glycerol (CGL), citric (CCA) and lactic acid (CLA) combined with microwave (MAE), ultrasound (UAE), homogenate (HAE) and high hydrostatic pressure (HHPAE)-assisted extraction methods were applied to recover and compare olive leaf [...] Read more.
Natural deep eutectic solvents (NADES) composed of choline chloride with maltose (CMA), glycerol (CGL), citric (CCA) and lactic acid (CLA) combined with microwave (MAE), ultrasound (UAE), homogenate (HAE) and high hydrostatic pressure (HHPAE)-assisted extraction methods were applied to recover and compare olive leaf phenolic compounds. The resultant extracts were evaluated for their total phenol content (TPC), phenolic profile and antioxidant activity and compared with those of water and ethanol:water 70% v/v extracts. HAE was proven to be the most efficient method for the recovery of olive leaf phenolic compounds. The highest TPC (55.12 ± 1.08 mg GAE/g d.w.) was found in CCA extracts after HAE at 60 °C and 12,000 rpm, and the maximum antioxidant activity (3.32 ± 0.39 g d.w./g DPPH) was found in CGL extracts after UAE at 60 °C for 30 min. The TPCs of ethanol extracts were found to be higher than those of NADES extracts in most cases. The predominant phenolic compounds in the extracts were oleuropein, hydrohytyrosol and rutin. Full article
Show Figures

Figure 1

12 pages, 1202 KiB  
Article
Validation of HPLC Method for Analysis of Gamma-Aminobutyric and Glutamic Acids in Plant Foods and Medicinal Plants
by Daniela Pencheva, Desislava Teneva and Petko Denev
Molecules 2023, 28(1), 84; https://doi.org/10.3390/molecules28010084 - 22 Dec 2022
Cited by 8 | Viewed by 2669
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system of mammals and plays an important role in the suppression of neurons’ excitability. GABA is formed from the decarboxylation of glutamic acid (Glu), and both GABA and Glu could be [...] Read more.
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system of mammals and plays an important role in the suppression of neurons’ excitability. GABA is formed from the decarboxylation of glutamic acid (Glu), and both GABA and Glu could be considered as important biologically active food components. In the current study, we validated a HPLC method for concomitant detection of GABA and Glu in plant samples after derivatization with dansyl chloride. The validated method had high precision and a high recovery rate and was successfully used for GABA and Glu quantification in 55 plant foods (fruits, vegetables, legumes, cereals, pseudocereals, and nuts) and 19 medicinal plants. Vegetables were the most important dietary source of these amino acids, with the highest quantity of GABA found in potatoes—44.86 mg/100 g fresh weight (FW) and yellow cherry tomatoes—36.82 mg/100 g FW. The highest amount of Glu (53.58 mg/100 g FW) was found in red cherry tomatoes. Analyzed fruits were relatively poor in GABA and Glu, and European gooseberry was the richest fruit with 13.18 mg/100 g FW GABA and 10.95 mg/100 g FW Glu. Cereals, pseudocereals, nuts, and legumes contain much higher amounts of Glu than GABA. The obtained results enrich the available information on the content of gamma-aminobutyric and glutamic acids in plant foods and could be used for the development of GABA-enriched functional foods. Full article
Show Figures

Figure 1

15 pages, 1668 KiB  
Article
Anxiolytic and Antioxidant Effect of Phytoecdysteroids and Polyphenols from Chenopodium quinoa on an In Vivo Restraint Stress Model
by Yuliya S. Sidorova, Vladimir A. Shipelin, Nikita A. Petrov, Sergey N. Zorin and Vladimir K. Mazo
Molecules 2022, 27(24), 9003; https://doi.org/10.3390/molecules27249003 - 17 Dec 2022
Cited by 4 | Viewed by 1421
Abstract
The variety of stressful conditions in daily human activity requires nutritional support with safe, specialized food products containing functional food ingredients (FFIs) enriched with biologically active plant substances with proven adaptogenic properties. In this in vivo study, by evaluating a set of physiological [...] Read more.
The variety of stressful conditions in daily human activity requires nutritional support with safe, specialized food products containing functional food ingredients (FFIs) enriched with biologically active plant substances with proven adaptogenic properties. In this in vivo study, by evaluating a set of physiological parameters and biochemical markers, we investigated the effectiveness of the developed FFIs from Chenopodium quinoa grains in stress conditions induced by daily episodes of immobilization for 36 days. The results of the evaluation of the anxiety-like functions, locomotor, and search activity of rats in the “open field” and “elevated plus maze” tests demonstrated the ability of FFIs to reduce stressful behavior induced by immobilization. The improvement in the long-term memory of animals treated with FFIs was noted in the passive avoidance test. Together with the hypolipidemic effect and compensation of transaminase levels, FFIs normalized the excretion of catecholamines in the urine and reduced the levels of malondialdehyde to values of the control group. According to the results of the assessment of FFI acute oral toxicity, the LD50 value exceeded 5000 mg/kg of body weight, which categorizes the FFIs under hazard class 5—substances with low hazard. The conducted experiment demonstrated the effectiveness of nutritional support with FFIs on the selected stress model. The positive safety profile of FFIs makes them reasonable to study on other stress models and to conduct clinical testing as part of specialized food products in various categories of people exposed to chronic stress. Full article
Show Figures

Figure 1

19 pages, 1784 KiB  
Article
Bioactive Properties of Extracts from Plectranthus barbatus (Coleus forskohlii) Roots Received Using Various Extraction Methods
by Kamila Kulbat-Warycha, Joanna Oracz and Dorota Żyżelewicz
Molecules 2022, 27(24), 8986; https://doi.org/10.3390/molecules27248986 - 16 Dec 2022
Cited by 5 | Viewed by 2615
Abstract
The aim of this study was to verify various extraction methods: shaking water bath extraction (SWA), ultrasound-assisted extraction (UAE) and microwave assisted extraction (MAE), and their parameters to optimize the extraction yield as well as maximize the concentration of polyphenols in Plectranthus barbatus [...] Read more.
The aim of this study was to verify various extraction methods: shaking water bath extraction (SWA), ultrasound-assisted extraction (UAE) and microwave assisted extraction (MAE), and their parameters to optimize the extraction yield as well as maximize the concentration of polyphenols in Plectranthus barbatus extracts. Extracts were obtained from dried roots of P. barbatus in various degrees of fragmentation and analyzed for content of polyphenols, antioxidant capacity and flavonoids. Additionally, phenolic compounds in extracts were analyzed using the UHPLC–DAD–ESI–MS/MS method. The conducted research showed that roots of P. barbatus are rich in polyphenolic compounds. A total of 15 phenolic compounds, belonging to the group of phenolic acids and their derivatives, were identified. The extraction yield was similar for all extraction methods and averaged 31%. Irrespective of the extraction method, the yield was the lowest in the case of using 80% ethanol as the solvent. The extracts obtained from the finer fraction were characterized by a higher antioxidant capacity as well as a higher concentration of polyphenolic compounds including flavonoids. UAE seems to be the most effective method for extraction of polyphenols from P. barbatus roots. Regardless of the extraction method, ethanol was a better extractant than distilled water. All ethanolic extracts were characterized by a high antioxidant capacity. The 80% ethanol solution was considered the best solvent for the extraction of flavonoids, while the 40% and 60% ethanol solutions were sufficient for the effective extraction of polyphenolic compounds in general. Full article
Show Figures

Graphical abstract

21 pages, 4503 KiB  
Article
A Joint Approach of Morphological and UHPLC-HRMS Analyses to Throw Light on the Autochthonous ‘Verdole’ Chestnut for Nutraceutical Innovation of Its Waste
by Elvira Ferrara, Maria Tommasina Pecoraro, Danilo Cice, Simona Piccolella, Marialuisa Formato, Assunta Esposito, Milena Petriccione and Severina Pacifico
Molecules 2022, 27(24), 8924; https://doi.org/10.3390/molecules27248924 - 15 Dec 2022
Cited by 4 | Viewed by 1534
Abstract
Nowadays, chestnut by-products are gaining a lot of interest as a low-cost raw material, exploitable for developing added-value products. This is in line with suitable chestnut by-products’ management, aimed at reducing the environmental impact, thus improving the chestnut industry’s competitiveness and economic sustainability. [...] Read more.
Nowadays, chestnut by-products are gaining a lot of interest as a low-cost raw material, exploitable for developing added-value products. This is in line with suitable chestnut by-products’ management, aimed at reducing the environmental impact, thus improving the chestnut industry’s competitiveness and economic sustainability. In this context, with the aim of valorizing local cultivars of European chestnuts (Castanea sativa Mill.), our attention focused on the Verdole cultivar, which has been characterized by using the UPOV guidelines for its distinctness, homogeneity, and stability. After harvesting, Verdole chestnuts were properly dissected to collect the outer and inner shells, and episperm. Each chestnut part, previously crushed, shredded, and passed through diverse sieves, underwent ultrasound-assisted extraction. The extracts obtained were evaluated for their total phenolic, flavonoid, and tannin content. The antiradical capacity by DPPH and ABTS assays, and the Fe(III) reducing power, were also evaluated. Although all the samples showed dose-dependent antioxidant efficacy, plant matrix size strongly impacted on extraction efficiency. LC-HRMS-based metabolic profiling highlighted the occurrence of different polyphenol subclasses, whose quantitative ratio varied among the chestnut parts investigated. The outer shell was more chemically rich than inner shell and episperm, according to its pronounced antioxidant activity. The polyphenol diversity of Verdole by-products is a resource not intended for disposal, appliable in the nutraceutical sector, thus realizing a new scenario in processing chestnut waste. Full article
Show Figures

Figure 1

13 pages, 1225 KiB  
Article
Vasorelaxant Mechanism of Herbal Extracts from Mentha suaveolens, Conyza canadensis, Teucrium polium and Salvia verbenaca in the Aorta of Wistar Rats
by Jamila El-Akhal, Andreia P. Oliveira, Rachid Bencheikh, Patrícia Valentão, Paula B. Andrade and Manuela Morato
Molecules 2022, 27(24), 8752; https://doi.org/10.3390/molecules27248752 - 9 Dec 2022
Cited by 5 | Viewed by 1603
Abstract
Mentha suaveolens (MS), Conyza canadensis (CC), Teucrium polium (TP) and Salvia verbenaca (SV) are used in Morocco to treat hypertension. Our aim was to characterize the composition and vasoreactivity of extracts of MS, CC, TP and SV. The chemical compositions of [...] Read more.
Mentha suaveolens (MS), Conyza canadensis (CC), Teucrium polium (TP) and Salvia verbenaca (SV) are used in Morocco to treat hypertension. Our aim was to characterize the composition and vasoreactivity of extracts of MS, CC, TP and SV. The chemical compositions of aqueous extracts of MS, SV and TP, and of a hydromethanolic extract of CC, were identified by HPLC-DAD. The vasoreactive effect was tested in rings of the thoracic aorta of female Wistar rats (8–14 weeks-old) pre-contracted with 10 µM noradrenaline, in the absence or presence of L-NAME 100 µM, indomethacin 10 µM or atropine 6 µM, to inhibit nitric oxide synthase, cyclooxygenase or muscarinic receptors, respectively. L-NAME and atropine decreased the vasorelaxant effect caused by low concentrations of MS. Atropine and indomethacin decreased the vasorelaxant effect of low concentrations of SV. High concentrations of MS or SV and the effect of SV and TP were not altered by any antagonist. The activation of muscarinic receptors and NO or the cyclooxygenase pathway underlie the vasorelaxant effect of MS and SV, respectively. Neither of those mechanisms underlines the vasorelaxant effect of CC and TP. These vasorelaxant effect might support the use of herbal teas from these plants as anti-hypertensives in folk medicine. Full article
Show Figures

Graphical abstract

16 pages, 1484 KiB  
Article
Resilience of Stevia rebaudiana (Bertoni) Bertoni in the Underwater Biospheres of Nemo’s Garden®: Adaptation to New Cultivation Systems
by Roberta Ascrizzi, Marinella De Leo, Laura Pistelli, Claudia Giuliani, Ylenia Pieracci, Barbara Ruffoni, Carlo Mascarello, Gelsomina Fico, Guido Flamini and Luisa Pistelli
Molecules 2022, 27(23), 8602; https://doi.org/10.3390/molecules27238602 - 6 Dec 2022
Viewed by 1277
Abstract
The Nemo’s Garden® project is an alternative production system for areas with scarce cultivable land but significant presence of water; thus, it is an interesting intervention to address the climate crisis. This work aimed to evaluate the micromorphological, biochemical, and phytochemical characteristics [...] Read more.
The Nemo’s Garden® project is an alternative production system for areas with scarce cultivable land but significant presence of water; thus, it is an interesting intervention to address the climate crisis. This work aimed to evaluate the micromorphological, biochemical, and phytochemical characteristics of Stevia rebaudiana (Bertoni) Bertoni grown underwater compared to the terrestrial specimens. The micromorphological analyses, performed on the leaves using light microscopy, fluorescence microscopy, and scanning electron microscopy, evidenced a general uniformity of the trichome morphotype and distribution pattern. The histochemical investigation indicated the simultaneous presence of terpenes and polyphenols in the trichome secreted material from the underwater samples and a prevailing polyphenolic content in the terrestrial specimens; this was also confirmed by biochemical analyses (26.6 mg GAE/g DW). The characterization of non-volatile components, performed using HPLC–MS, showed similar chemical profiles in all the samples, which were characterized by phenolic compounds and steviol glycosides. The volatile compounds, evaluated using HS-SPME coupled with GC–MS, showed sesquiterpene hydrocarbons as the main class in all the analyzed samples (80.1–93.9%). However, the control plants were characterized by a higher content of monoterpene hydrocarbons (12.1%). The underwater biosphere environment did not alter S. rebaudiana micro-morphological characters, although slight qualitative changes were evidenced for the compounds produced as a response to the growth conditions. Full article
Show Figures

Figure 1

16 pages, 2931 KiB  
Article
Exploration of Anti-HIV Phytocompounds against SARS-CoV-2 Main Protease: Structure-Based Screening, Molecular Simulation, ADME Analysis and Conceptual DFT Studies
by Mahadevamurthy Murali, Hittanahallikoppal Gajendramurthy Gowtham, Natarajamurthy Shilpa, Hemanth Kumar Naguvanahalli Krishnappa, Ana E. Ledesma, Anisha S. Jain, Ali A. Shati, Mohammad Y. Alfaifi, Serag Eldin I. Elbehairi, Raghu Ram Achar, Ekaterina Silina, Victor Stupin, Joaquín Ortega-Castro, Juan Frau, Norma Flores-Holguín, Kestur Nagaraj Amruthesh, Chandan Shivamallu, Shiva Prasad Kollur and Daniel Glossman-Mitnik
Molecules 2022, 27(23), 8288; https://doi.org/10.3390/molecules27238288 - 28 Nov 2022
Cited by 6 | Viewed by 1685
Abstract
The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications [...] Read more.
The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications are available to combat disease transmission, necessitating further research. In the present study, an in silico-based virtual screening of anti-HIV bioactive compounds from medicinal plants was carried out through molecular docking against the main protease (Mpro) (PDB: 6LU7) of SARS-CoV-2, which is a key enzyme responsible for virus replication. A total of 16 anti-HIV compounds were found to have a binding affinity greater than −8.9 kcal/mol out of 150 compounds screened. Pseudohypericin had a high affinity with the energy of −10.2 kcal/mol, demonstrating amino acid residual interactions with LEU141, GLU166, ARG188, and GLN192, followed by Hypericin (−10.1 kcal/mol). Moreover, the ADME (Absorption, Distribution, Metabolism and Excretion) analysis of Pseudohypericin and Hypericin recorded a low bioavailability (BA) score of 0.17 and violated Lipinski’s rule of drug-likeness. The docking and molecular simulations indicated that the quinone compound, Pseudohypericin, could be tested in vitro and in vivo as potent molecules against COVID-19 disease prior to clinical trials.This was also supported by the theoretical and computational studies conducted. The global and local descriptors, which are the underpinnings of Conceptual Density FunctionalTheory (CDFT) have beenpredicted through successful model chemistry, hoping that they could be of help in the comprehension of the chemical reactivity properties of the molecular systems considered in this study. Full article
Show Figures

Figure 1

13 pages, 732 KiB  
Article
Correlation Study of Biological Activity with Quercetin and Phenolics Content in Onion Extracts
by Małgorzata Olszowy-Tomczyk, Sylwia Garbaczewska and Dorota Wianowska
Molecules 2022, 27(23), 8164; https://doi.org/10.3390/molecules27238164 - 23 Nov 2022
Cited by 3 | Viewed by 1405
Abstract
In this study it was shown that the fungistatic and antioxidant activities of onion extracts are related to the type of liquid used as the extractant and the technique of its preparation. A change in the antioxidant properties of white and red onion [...] Read more.
In this study it was shown that the fungistatic and antioxidant activities of onion extracts are related to the type of liquid used as the extractant and the technique of its preparation. A change in the antioxidant properties of white and red onion extracts was demonstrated with the change of the temperature of the pressurized hot water extraction process, which can be easily related to the changes accompanying the process of thermal processing of vegetables and fruits during cooking. Owing to the experimental and mathematical approaches concerning both the main and characteristic components of onions, i.e., quercetin and phenols, respectively, with the biological activity of the extracts, it was possible to demonstrate the significant share of these compounds in the antifungal and antioxidant properties of the extracts. Considering that the research was carried out, inter alia, on onion husks, demonstrating a very high potential of biological properties of this waste material from agricultural production, the research results presented in the paper should encourage the popularization of the use of this so far underestimated raw material for the production of various functional materials. Full article
Show Figures

Figure 1

19 pages, 1915 KiB  
Article
Impact of Sample Pretreatment and Extraction Methods on the Bioactive Compounds of Sugar Beet (Beta vulgaris L.) Leaves
by Peyman Ebrahimi, Dasha Mihaylova, Christine Mayr Marangon, Luca Grigoletto and Anna Lante
Molecules 2022, 27(22), 8110; https://doi.org/10.3390/molecules27228110 - 21 Nov 2022
Cited by 8 | Viewed by 2770
Abstract
To find the most optimal green valorization process of food by-products, sugar beet (Beta vulgaris L.) leaves (SBLs) were freeze-dried and ground with/without liquid nitrogen (LN), as a simple sample pretreatment method, before ultrasound-assisted extraction (UAE) of polyphenols. First, the water activity, [...] Read more.
To find the most optimal green valorization process of food by-products, sugar beet (Beta vulgaris L.) leaves (SBLs) were freeze-dried and ground with/without liquid nitrogen (LN), as a simple sample pretreatment method, before ultrasound-assisted extraction (UAE) of polyphenols. First, the water activity, proximate composition, amino acid (AA) and fatty acid (FA) profiles, and polyphenol oxidase (PPO) activity of dried and fresh SBLs were evaluated. Then, conventional extraction (CE) and UAE of polyphenols from SBLs using water/EtOH:water 14:6 (v/v) as extracting solvents were performed to determine the individual and combined effects of the sample preparation method and UAE. In all the freeze-dried samples, the specific activity of PPO decreased significantly (p ≤ 0.05). Freeze-drying significantly increased (p ≤ 0.05) the fiber and essential FA contents of SBLs. The FA profile of SBLs revealed that they are rich sources of oleic, linoleic, and α-linolenic acids. Although freeze-drying changed the contents of most AAs insignificantly, lysine increased significantly from 7.06 ± 0.46% to 8.32 ± 0.38%. The aqueous UAE of the freeze-dried samples without LN pretreatment yielded the most optimal total phenolic content (TPC) (69.44 ± 0.15 mg gallic acid equivalent/g dry matter (mg GAE/g DM)) and excellent antioxidant activities. Thus, combining freeze-drying with the aqueous UAE method could be proposed as a sustainable strategy for extracting bioactive compounds from food by-products. Full article
Show Figures

Figure 1

18 pages, 3912 KiB  
Article
Analysis of Components and Properties of Extractives from Alnus cremastogyne Pods from Different Provenances
by Guoxi Chen, Fangya Pan, Yemei Gao, Hao Li, Xiaqing Qin, Yongze Jiang, Jinqiu Qi, Jiulong Xie and Shanshan Jia
Molecules 2022, 27(22), 7802; https://doi.org/10.3390/molecules27227802 - 12 Nov 2022
Cited by 5 | Viewed by 1456
Abstract
Chemical components with anti-oxidant, anti-inflammatory, and anti-cancer properties extracted from Alnus bark and leaves have been extensively studied. However, less attention has been paid to extractives from Alnus pods, which are mostly treated as waste. Here, extractives of Alnus cremastogyne pods from 12 provenances [...] Read more.
Chemical components with anti-oxidant, anti-inflammatory, and anti-cancer properties extracted from Alnus bark and leaves have been extensively studied. However, less attention has been paid to extractives from Alnus pods, which are mostly treated as waste. Here, extractives of Alnus cremastogyne pods from 12 provenances in Sichuan Province were studied for high value-added utilization of Alnus waste. The extractives were analyzed by Gas Chromatography-Mass Spectrometer (GC-MS), Ultraviolet-visible spectroscopy (UV-Vis spectra), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity. A total of 58, 49, and 51 chemical components were found when the organic solvents of ethanol, petroleum ether, and ethyl acetate were used to collect extractives, respectively. These chemical components including Phytol, CIS-5,8,11,14,17-eicosapentaenoic acid, Germacrene D, Lupeol, and β-sitosterol, etc., have wide applications in the fields of pharmacy and cosmetics. Moreover, it was also found that extractives in ethanol and ethyl acetate had impressive UV resistance, especially for UV-C and UV-B blocking. The results showed that the maximum block ratio towards UV-C and UV-B could reach 99%. In addition, the ethanol extract showed good anti-oxidant activity with a maximum free radical scavenging rate of 96.19%. This comprehensive and systematic study on extractives from Alnus cremastogyne pods promotes the development of high-value utilization of Alnus components. Full article
Show Figures

Figure 1

11 pages, 503 KiB  
Article
The Effect of Vibratory Grinding Time on Moisture Sorption, Particle Size Distribution, and Phenolic Bioaccessibility of Carob Powder
by Libor Červenka, Michaela Frühbauerová, Jiří Palarčík, Sali Muriqi and Helena Velichová
Molecules 2022, 27(22), 7689; https://doi.org/10.3390/molecules27227689 - 9 Nov 2022
Viewed by 1385
Abstract
Carob pod powder, an excellent source of health-promoting substances, has found its use in a wide range of food products. Grinding conditions affect the physical and chemical properties of the powder, but their influence on the bioaccessibility of phenolic compounds in carob pod [...] Read more.
Carob pod powder, an excellent source of health-promoting substances, has found its use in a wide range of food products. Grinding conditions affect the physical and chemical properties of the powder, but their influence on the bioaccessibility of phenolic compounds in carob pod powder has not yet been determined. The carob pods were ground for 30–180 s in a vibratory grinder. The median values (D50) of particle size decreased after 60 s of grinding (87.9 μm), then increased to 135.1 μm. Lightness showed a negative correlation with D50 and aw, while the values of redness and yellowness decreased with the reduction in particle size and water activity. The smaller the value of D50, the higher the equilibrium moisture content of carob powder. Phenolic acids (vanillic, ferulic, cinnamic) and flavonoids (luteolin, naringenin, apigenin) were found in all samples of carob powder. The grinding time influenced their content in carob powder, with maximum values at 180 s. Similar observations were made when assessing antioxidant capacity. The in vitro digestion process only improved the bioaccessibility of catechin content in all samples. However, the bioaccessibility of the phenolic compounds and the total phenolic and flavonoid contents decreased with the increase in grinding time. Our findings revealed that the grinding of carob pods for 180 s improved the extractability of phenolics; however, their bioaccessibility was reduced. It is sufficient to ground the carob pod for 30 s, ensuring good availability of nutraceuticals and lower energy cost for grinding. Full article
Show Figures

Figure 1

18 pages, 2421 KiB  
Article
Antioxidants of Amaranth, Quinoa and Buckwheat Wholemeals and Heat-Damage Development in Pseudocereal-Enriched Einkorn Water Biscuits
by Lorenzo Estivi, Luisa Pellegrino, Johannes A. Hogenboom, Andrea Brandolini and Alyssa Hidalgo
Molecules 2022, 27(21), 7541; https://doi.org/10.3390/molecules27217541 - 3 Nov 2022
Cited by 9 | Viewed by 1568
Abstract
A viable approach to improve the nutritional quality of cereal-based foods is their enrichment with pseudocereals. The aim of this research was to evaluate the antioxidant properties of amaranth, quinoa and buckwheat, and the heat damage of water biscuits (WB) produced from either [...] Read more.
A viable approach to improve the nutritional quality of cereal-based foods is their enrichment with pseudocereals. The aim of this research was to evaluate the antioxidant properties of amaranth, quinoa and buckwheat, and the heat damage of water biscuits (WB) produced from either wholemeal or refined flour of einkorn and enriched with 50% buckwheat, amaranth or quinoa wholemeal. Buckwheat had the highest tocols content (86.2 mg/kg), and einkorn the most carotenoids (5.6 mg/kg). Conjugated phenolics concentration was highest in buckwheat (230.2 mg/kg) and quinoa (218.6 mg/kg), while bound phenolics content was greatest in einkorn (712.5 mg/kg) and bread wheat (675.7 mg/kg). The all-wholemeal WB had greater heat damage than those containing refined flour (furosine: 251.5 vs. 235.8 mg/100 g protein; glucosylisomaltol: 1.0 vs. 0.6 mg/kg DM; hydroxymethylfurfural: 4.3 vs. 2.8 mg/kg DM; furfural: 8.6 vs. 4.8 mg/kg DM). The 100% bread wheat and einkorn wholemeal WB showed greater heat damage than the WB with pseudocereals (furfural, 9.2 vs. 5.1 mg/kg; glucosylisomaltol 1.1 vs. 0.7 mg/kg). Despite a superior lysine loss, the amino-acid profile of the pseudocereals-enriched WB remained more balanced compared to that of the wheats WB. Full article
Show Figures

Figure 1

16 pages, 1011 KiB  
Article
Combination of Spray-Chilling and Spray-Drying Techniques to Protect Carotenoid-Rich Extracts from Pumpkin (Cucurbita moschata) Byproducts, Aiming at the Production of a Powdered Natural Food Dye
by Priscilla Magalhães de Lima, Gustavo César Dacanal, Lorena Silva Pinho, Samuel Henrique Gomes de Sá, Marcelo Thomazini and Carmen Sílvia Favaro-Trindade
Molecules 2022, 27(21), 7530; https://doi.org/10.3390/molecules27217530 - 3 Nov 2022
Cited by 7 | Viewed by 1678
Abstract
Reducing waste, using byproducts, and natural food additives are important sustainability trends. In this context, the aim of this study was to produce and evaluate a natural food dye, extracted from pumpkin byproducts, powdered and protected by spray-chilling (SC) and a combination of [...] Read more.
Reducing waste, using byproducts, and natural food additives are important sustainability trends. In this context, the aim of this study was to produce and evaluate a natural food dye, extracted from pumpkin byproducts, powdered and protected by spray-chilling (SC) and a combination of spray-drying and spray-chilling techniques (SDC). The extract was obtained using ethanol as solvent; vegetable fat and gum Arabic were used as carriers. Formulations were prepared with the following core:carrier ratios: SC 20 (20:80), SC 30 (30:70), SC 40 (40:60), SDC 5 (5:95), SDC 10 (10:90), and SDC 15 (15:85). The physicochemical properties of the formed microparticles were characterised, and their storage stability was evaluated over 90 days. The microparticles exhibited colour variation and size increase over time. SDC particles exhibited the highest encapsulation efficiency (95.2–100.8%) and retention of carotenoids in the storage period (60.8–89.7%). Considering the carotenoid content and its stability, the optimal formulation for each process was selected for further analysis. All of the processes and formulations produced spherical particles that were heterogeneous in size. SDC particles exhibited the highest oxidative stability index and the highest carotenoid release in the intestinal phase (32.6%). The use of combined microencapsulation technologies should be considered promising to protect carotenoid compounds. Full article
Show Figures

Figure 1

19 pages, 2308 KiB  
Article
Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization
by Carolina Andrade, Rosa Perestrelo and José S. Câmara
Molecules 2022, 27(21), 7504; https://doi.org/10.3390/molecules27217504 - 3 Nov 2022
Cited by 23 | Viewed by 4141
Abstract
Coffee is one of the world’s most popular beverages, and its consumption generates copious amounts of waste. The most relevant by-product of the coffee industry is the spent coffee grounds, with 6 million tons being produced worldwide per year. Although generally treated as [...] Read more.
Coffee is one of the world’s most popular beverages, and its consumption generates copious amounts of waste. The most relevant by-product of the coffee industry is the spent coffee grounds, with 6 million tons being produced worldwide per year. Although generally treated as waste, spent coffee grounds are a rich source of several bioactive compounds with applications in diverse industrial fields. The present work aimed at the analysis of spent coffee grounds from different geographical origins (Guatemala, Colombia, Brazil, Timor, and Ethiopia) for the identification of bioactive compounds with industrial interest. For this purpose, the identification and quantification of the bioactive compounds responsible for the antioxidant activity attributed to the spent coffee grounds were attempted using miniaturized solid-phase extraction (µ-SPEed), combined with ultrahigh-performance liquid chromatography with photodiode array detection (UHPLC-PDA). After validation of the µ-SPEed/UHPLC-PDA method, this allowed us to conclude that caffeine and 5-caffeoylquinic acid (5-CQA) are the most abundant bioactive compounds in all samples studied. The total phenolic content (TPC) and antioxidant activity are highest in Brazilian samples. The results obtained show that spent coffee grounds are a rich source of bioactive compounds, supporting its bioprospection based on the circular economy concept closing the loop of the coffee value chain, toward the valorization of coffee by-products. Full article
Show Figures

Figure 1

12 pages, 1595 KiB  
Article
Chemical Composition and Biological Activities of Prangos ferulacea Essential Oils
by Natale Badalamenti, Viviana Maresca, Michela Di Napoli, Maurizio Bruno, Adriana Basile and Anna Zanfardino
Molecules 2022, 27(21), 7430; https://doi.org/10.3390/molecules27217430 - 1 Nov 2022
Cited by 10 | Viewed by 1840
Abstract
Prangos ferulacea (L.) Lindl, which belongs to the Apiaceae family, is a species that mainly grows in the eastern Mediterranean region and in western Asia. It has been largely used in traditional medicine in several countries and it has been shown to possess [...] Read more.
Prangos ferulacea (L.) Lindl, which belongs to the Apiaceae family, is a species that mainly grows in the eastern Mediterranean region and in western Asia. It has been largely used in traditional medicine in several countries and it has been shown to possess several interesting biological properties. With the aim to provide new insights into the phytochemistry and pharmacology of this species, the essential oils of flowers and leaves from a local accession that grows in Sicily (Italy) and has not yet been previously studied were investigated. The chemical composition of both oils, obtained by hydrodistillation from the leaves and flowers, was evaluated by GC-MS. This analysis allowed us to identify a new chemotype, characterized by a large amount of (Z)-β-ocimene. Furthermore, these essential oils have been tested for their possible antimicrobial and antioxidant activity. P. ferulacea essential oils exhibit moderate antimicrobial activity; in particular, the flower essential oil is harmful at low and wide spectrum concentrations. They also exhibit good antioxidant activity in vitro and in particular, it has been shown that the essential oils of the flowers and leaves of P. ferulacea caused a decrease in ROS and an increase in the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) in OZ-stimulated PMNs. Therefore, these essential oils could be considered as promising candidates for pharmaceutical and nutraceutical preparations. Full article
Show Figures

Figure 1

18 pages, 1702 KiB  
Article
Effect of Grinding Process Parameters and Storage Time on Extraction of Antioxidants from Ginger and Nutmeg
by Szymon Poliński, Patrycja Topka, Małgorzata Tańska, Sylwia Kowalska, Sylwester Czaplicki and Aleksandra Szydłowska-Czerniak
Molecules 2022, 27(21), 7395; https://doi.org/10.3390/molecules27217395 - 31 Oct 2022
Cited by 4 | Viewed by 2189
Abstract
The aim of this study was to optimize the grinding process parameters (mesh size of grinder sieve (X1), the peripheral velocity of the grinding wheels (X2)), and the storage time (X3) of ground ginger rhizome and nutmeg [...] Read more.
The aim of this study was to optimize the grinding process parameters (mesh size of grinder sieve (X1), the peripheral velocity of the grinding wheels (X2)), and the storage time (X3) of ground ginger rhizome and nutmeg to obtain ethanol and ethanol-water extracts with improved antioxidant properties. The optimal conditions were estimated using response surface methodology (RSM) based on a three-variable Box–Behnken design (BBD) in order to maximize the antioxidant capacity (AC) determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, and the total phenolic content (TPC) was determined by the Folin–Ciocalteu (F–C) method in spice extracts. Additionally, the phenolic acid profiles in extracts from optimized conditions were analyzed using ultra-performance liquid chromatography (UPLC). It was found that the optimal preparation conditions for antioxidant extraction were dependent on the spice source and solvent type. The best antioxidant properties in nutmeg extracts were achieved for X1 = 1.0 mm, X2 = 40–41 Hz and X3 = 7 days, whereas the optimized parameters for ginger extracts were more varied (1.0–2.0 mm, 43–50 Hz and 1–9 days, respectively). The ginger extracts contained 1.5–1.8 times more phenolic acids, and vanillic, ferulic, gallic, and p-OH-benzoic acids were dominant. In contrast, the nutmeg extracts were rich in protocatechuic, vanillic, and ferulic acids. Full article
Show Figures

Graphical abstract

12 pages, 1192 KiB  
Article
Variation of the Antioxidative Defense in Elaeis guineensis Jacq. Facing Bud Rot Disease in the Coastal Area of Ecuador
by Raluca A. Mihai, Galo M. Canchignia Guacollantes, Sebastián A. Villacrés Mesias, Larisa I. Florescu and Rodica D. Catana
Molecules 2022, 27(21), 7314; https://doi.org/10.3390/molecules27217314 - 27 Oct 2022
Cited by 1 | Viewed by 1211
Abstract
Elaeis guineensis Jacq. has gained a reputation in the food industry as an incredible crop capable of supplying the world’s largest edible oil production. In Ecuador, an important oil palm-producing country, this crop is affected in a high percentage by the bud rot [...] Read more.
Elaeis guineensis Jacq. has gained a reputation in the food industry as an incredible crop capable of supplying the world’s largest edible oil production. In Ecuador, an important oil palm-producing country, this crop is affected in a high percentage by the bud rot disease, which is responsible for palm death. The main objective of the investigation was dedicated to understanding the palm defense mechanism facing bud rot disease, translated in the induction of reactive oxygen species, activation of defensive machinery comprising enzymatic and non-enzymatic antioxidative components, secondary metabolites, carotenoids accumulation in the palm during all stages of disease infection. For this, a survey was conducted in different oil palm plantations in the Esmeraldas province, one of the most representative for its highest incidence of bud rot disease. The survey completed DPPH, FRAP, ABTS, and other spectrophotometric analyses to underline the biochemical, biological, and physiological palm response front of bud rot incidence. The palm defense strategy in each disease stage could be represented by the phenolic compound’s involvement, an increment of antioxidant activity, and the high enzymatic activity of phenylalanine ammonia-lyase (PAL). The results of the investigation made understandable the palm defense strategy front of this disease, respectively, the antioxidative defense and the palm secondary compounds involved. Full article
Show Figures

Figure 1

15 pages, 2917 KiB  
Article
The Antibacterial and Larvicidal Potential of Bis-(2-Ethylhexyl) Phthalate from Lactiplantibacillus plantarum
by Muhammad Rizwan Javed, Mahwish Salman, Anam Tariq, Abdul Tawab, Muhammad Kashif Zahoor, Shazia Naheed, Misbah Shahid, Anam Ijaz and Hazrat Ali
Molecules 2022, 27(21), 7220; https://doi.org/10.3390/molecules27217220 - 25 Oct 2022
Cited by 9 | Viewed by 2284
Abstract
Lactic acid bacteria produce a variety of antibacterial and larvicidal metabolites, which could be used to cure diseases caused by pathogenic bacteria and to efficiently overcome issues regarding insecticide resistance. In the current study, the antibacterial and larvicidal potential of Bis-(2-ethylhexyl) phthalate isolated [...] Read more.
Lactic acid bacteria produce a variety of antibacterial and larvicidal metabolites, which could be used to cure diseases caused by pathogenic bacteria and to efficiently overcome issues regarding insecticide resistance. In the current study, the antibacterial and larvicidal potential of Bis-(2-ethylhexyl) phthalate isolated from Lactiplantibacillus plantarum BCH-1 has been evaluated. Bioactive compounds were extracted by ethyl acetate and were fractionated by gradient column chromatography from crude extract. Based on FT-IR analysis followed by GC-MS and ESI-MS/MS, the active compound was identified to be Bis-(2-ethylhexyl) phthalate. Antibacterial potential was evaluated by disk diffusion against E. coli (12.33 ± 0.56 mm inhibition zone) and S. aureus (5.66 ± 1.00 mm inhibition zone). Larvicidal potency was performed against Culex quinquefasciatus Say larvae, where Bis-(2-ethylhexyl) phthalate showed 100% mortality at 250 ppm after 72 h with LC50 of 67.03 ppm. Furthermore, after 72 h the acetylcholinesterase inhibition was observed as 29.00, 40.33, 53.00, 64.00, and 75.33 (%) at 50, 100, 150, 200, and 250 ppm, respectively. In comet assay, mean comet tail length (14.18 ± 0.28 μm), tail DNA percent damage (18.23 ± 0.06%), tail movement (14.68 ± 0.56 µm), comet length (20.62 ± 0.64 µm), head length (23.75 ± 0.27 µm), and head DNA percentage (39.19 ± 0.92%) were observed at 250 ppm as compared to the control. The current study for the first time describes the promising antibacterial and larvicidal potential of Bis-(2-ethylhexyl) phthalate from Lactiplantibacillus plantarum that would have potential pharmaceutical applications. Full article
Show Figures

Graphical abstract

14 pages, 1491 KiB  
Article
Pharmacodynamic Interactions between Puerarin and Metformin in Type-2 Diabetic Rats
by Zhen Li, Shengguang Wang, Xinyu Wang, Peng Gao, Shiming Zhang, Yingning Mo, Dongsheng Zhao and Long Dai
Molecules 2022, 27(21), 7197; https://doi.org/10.3390/molecules27217197 - 24 Oct 2022
Cited by 1 | Viewed by 2069
Abstract
Herb–drug interactions are vital in effectively managing type-2-diabetes complications. Puerarin is a natural isoflavonoid in the Pueraria genus, and its pharmacological activities, including antidiabetic activity, are well established. The similar modes of action of puerarin and metformin in diabetic models suggest their positive [...] Read more.
Herb–drug interactions are vital in effectively managing type-2-diabetes complications. Puerarin is a natural isoflavonoid in the Pueraria genus, and its pharmacological activities, including antidiabetic activity, are well established. The similar modes of action of puerarin and metformin in diabetic models suggest their positive pharmacodynamic interactions. This study investigated this in streptozotocin/nicotinamide-induced type-2 diabetic rats. Puerarin at doses of 80 mg/kg, 120 mg/kg and 160 mg/kg improved the activity of metformin in reversing hyperglycaemia, dysregulated lipid profiles, dysfunction of the liver, kidney, and pancreas, and inflammation. The treatment with either puerarin (high dose, 160 mg/kg intraperitoneally) or metformin (100 mg/kg intraperitoneally) did not bring the dysregulated biomarkers to normal levels in 4 weeks. By contrast, the combination of puerarin (160 mg/kg) and metformin (100 mg/kg) did. This study is the first to report scientific evidence for the positive pharmacodynamic interactions between puerarin and metformin. Full article
Show Figures

Figure 1

13 pages, 328 KiB  
Article
Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain
by Yolanda Carmona-Jiménez, Jose M. Igartuburu, Dominico A. Guillén-Sánchez and M. Valme García-Moreno
Molecules 2022, 27(20), 6980; https://doi.org/10.3390/molecules27206980 - 17 Oct 2022
Cited by 7 | Viewed by 1639
Abstract
Grape pomace and seeds are important winemaking by-products. Their oils are rich in bioactive compounds such as fatty acids and tocopherols. We have characterized oils from both by-products from five Spanish grape varieties (Palomino Fino, Pedro Ximénez, Muscat of Alexandria, Tempranillo and Tintilla [...] Read more.
Grape pomace and seeds are important winemaking by-products. Their oils are rich in bioactive compounds such as fatty acids and tocopherols. We have characterized oils from both by-products from five Spanish grape varieties (Palomino Fino, Pedro Ximénez, Muscat of Alexandria, Tempranillo and Tintilla de Rota). A high content of UFAs was found in all the analyzed samples. Grape pomace oils generally had the same oleic acid (PUFAω-6) content as seed oils, and lower PUFA contents; they also had a markedly higher linolenic acid (PUFAω-3) content, improving the PUFAω-6/PUFAω-3 ratio. All the oil studied show good indicators of nutritional quality: low values of the atherogenicity (0.112–0.157 for pomace, 0.097–0.112 for seed) and thrombogenicity indices (0.30–0.35 for pomace, 0.28–0.31 for seed) and high values of the relationship between hypo- and hypercholesterolemic fatty acids (6.93–9.45 for pomace, 9.11–10.54 for seed). Three tocopherols were determined: α-, γ- and δ-tocopherol. Pomace oils have higher relative contents of α- and δ-tocopherol, whereas seed oils have higher relative contents of γ-tocopherol. A significantly higher content of total tocopherols has been found in pomace oil; it is higher in the oils from red varieties of pomace (628.2 and 706.6 mg/kg by-product), and in the oils from pomace containing stems (1686.4 mg/kg by-product). All the oils obtained can be considered as a source of vitamin E, and their consumption is beneficial for health. Full article
14 pages, 2769 KiB  
Article
Chemical Composition, Antifungal and Anti-Biofilm Activities of Volatile Fractions of Convolvulus althaeoides L. Roots from Tunisia
by Soukaina Hrichi, Raja Chaâbane-Banaoues, Filippo Alibrando, Ammar B. Altemimi, Oussama Babba, Yassine Oulad El Majdoub, Habib Nasri, Luigi Mondello, Hamouda Babba, Zine Mighri and Francesco Cacciola
Molecules 2022, 27(20), 6834; https://doi.org/10.3390/molecules27206834 - 12 Oct 2022
Cited by 7 | Viewed by 1721
Abstract
The antifungal drugs currently available and mostly used for the treatment of candidiasis exhibit the phenomena of toxicity and increasing resistance. In this context, plant materials might represent promising sources of antifungal agents. The aim of this study is to evaluate for the [...] Read more.
The antifungal drugs currently available and mostly used for the treatment of candidiasis exhibit the phenomena of toxicity and increasing resistance. In this context, plant materials might represent promising sources of antifungal agents. The aim of this study is to evaluate for the first time the chemical content of the volatile fractions (VFs) along with the antifungal and anti-biofilm of Convolvulus althaeoides L. roots. The chemical composition was determined by gas chromatography coupled to a flame ionization detector and mass spectrometry. In total, 73 and 86 chemical compounds were detected in the n-hexane (VF1) and chloroform (VF2) fractions, respectively. Analysis revealed the presence of four main compounds: n-hexadecenoic acid (29.77%), 4-vinyl guaiacol (12.2%), bis(2-ethylhexyl)-adipate (9.69%) and eicosane (3.98%) in the VF extracted by hexane (VF1). n-hexadecenoic acid (34.04%), benzyl alcohol (7.86%) and linoleic acid (7.30%) were the main compounds found in the VF extracted with chloroform (VF2). The antifungal minimum inhibitory concentrations (MICs) of the obtained fractions against Candida albicans, Candida glabrata and Candida tropicalis were determined by the micro-dilution technique and values against Candida spp. ranged from 0.87 to 3.5 mg/mL. The biofilm inhibitory concentrations (IBF) and sustained inhibition (BSI) assays on C. albicans, C. glabrata and C. tropicalis were also investigated. The VFs inhibited biofilm formation up to 0.87 mg/mL for C. albicans, up to 1.75 mg/mL against C. glabrata and up to 0.87 mg/mL against C. tropicalis. The obtained results highlighted the synergistic mechanism of the detected molecules in the prevention of candidosic biofilm formation. Full article
Show Figures

Figure 1

17 pages, 2417 KiB  
Article
“Smart Extraction Chain” with Green Solvents: Extraction of Bioactive Compounds from Picea abies Bark Waste for Pharmaceutical, Nutraceutical and Cosmetic Uses
by Stefania Sut, Erica Maccari, Gokhan Zengin, Irene Ferrarese, Francesca Loschi, Marta Faggian, Bertoni Paolo, Nicola De Zordi and Stefano Dall’Acqua
Molecules 2022, 27(19), 6719; https://doi.org/10.3390/molecules27196719 - 9 Oct 2022
Cited by 3 | Viewed by 2094
Abstract
Secondary metabolites from the sawmill waste Picea abies bark were extracted using an innovative two-step extraction that includes a first step with supercritical CO2 (SCO2) and a second step using green solvents, namely ethanol, water, and water ethanol mixture. Maceration [...] Read more.
Secondary metabolites from the sawmill waste Picea abies bark were extracted using an innovative two-step extraction that includes a first step with supercritical CO2 (SCO2) and a second step using green solvents, namely ethanol, water, and water ethanol mixture. Maceration (M), ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) techniques were applied in the second step. A total of nineteen extract were obtained and yield were compared. Bark extracts were characterized by LC-DAD-MSn and classes of compounds were quantified as abietane derivatives, piceasides, flavonoids, and phenolics to compare different extractions. Obtained extracts were studied by in vitro assay to evaluate potential pharmaceutical, nutraceutical and cosmetic uses assessing the antioxidant activity as well as the inhibitory activity on target enzymes. Results show that the “smart extraction chain” is advantageous in term of yield of extraction and phytoconstituent concentration. SCO2 extract, presenting a unique composition with a large amount of abietane derivatives, exerted the best activity for amylase inhibition compared to the other extracts. Full article
Show Figures

Figure 1

14 pages, 2031 KiB  
Article
Simulated Gastric and Intestinal Fluid Electrolyte Solutions as an Environment for the Adsorption of Apple Polyphenols onto β-Glucan
by Lidija Jakobek, Ivica Strelec, Daniela Kenjerić, Lidija Šoher, Ivana Tomac and Petra Matić
Molecules 2022, 27(19), 6683; https://doi.org/10.3390/molecules27196683 - 8 Oct 2022
Cited by 3 | Viewed by 2396
Abstract
Interactions with dietary fibers in the gastrointestinal tract might affect the potential bioactivities of phenolic compounds. In this study, the interactions between apple phenolic compounds and β-glucan (a dietary fiber) were studied by studying the adsorption process in simulated gastric and intestinal fluid [...] Read more.
Interactions with dietary fibers in the gastrointestinal tract might affect the potential bioactivities of phenolic compounds. In this study, the interactions between apple phenolic compounds and β-glucan (a dietary fiber) were studied by studying the adsorption process in simulated gastric and intestinal fluid electrolyte solutions. Phenolic compounds were extracted from apples, adsorbed onto β-glucan (2 h, 37 °C, in gastric or intestinal fluid electrolyte solutions), and determined using high performance liquid chromatography. Phenolic compounds (flavan-3-ols, flavonols, phenolic acids, and dihydrochalcone) were stable in the gastric fluid (pH 3). In the intestinal fluid (pH 7), flavan-3-ols were not found and chlorogenic acid isomerized. Polyphenols from the apple peel (up to 182 and 897 mg g−1) and flesh (up to 28 and 7 mg g−1) were adsorbed onto β-glucan in the gastric and intestinal fluids, respectively. The adsorption was affected by the initial concentration of the polyphenols and β-glucan and by the environment (either gastric or intestinal fluid electrolyte solution). By increasing the initial polyphenol amount, the quantity of adsorbed polyphenols increased. Increasing the amount of β-glucan decreased the amount adsorbed. The results can be helpful in explaining the fate of phenolic compounds in the gastrointestinal tract. Full article
Show Figures

Figure 1

13 pages, 2172 KiB  
Article
On the Thermodynamic Thermal Properties of Quercetin and Similar Pharmaceuticals
by Costas Tsioptsias and Ioannis Tsivintzelis
Molecules 2022, 27(19), 6630; https://doi.org/10.3390/molecules27196630 - 6 Oct 2022
Cited by 13 | Viewed by 1675
Abstract
The thermodynamic properties of pharmaceuticals are of major importance since they are involved in drug design, processing, optimization and modelling. In this study, a long-standing confusion regarding the thermodynamic properties of flavonoids and similar pharmaceuticals is recognized and clarified. As a case study, [...] Read more.
The thermodynamic properties of pharmaceuticals are of major importance since they are involved in drug design, processing, optimization and modelling. In this study, a long-standing confusion regarding the thermodynamic properties of flavonoids and similar pharmaceuticals is recognized and clarified. As a case study, the thermal behavior of quercetin is examined with various techniques. It is shown that quercetin does not exhibit glass transition nor a melting point, but on the contrary, it does exhibit various thermochemical transitions (structural relaxation occurring simultaneously with decomposition). Inevitably, the physical meaning of the reported experimental values of the thermodynamic properties, such as the heat of fusion and heat capacity, are questioned. The discussion for this behavior is focused on the weakening of the chemical bonds. The interpretations along with the literature data suggest that the thermochemical transition might be exhibited by various flavonoids and other similar pharmaceuticals, and is related to the difficulty in the prediction/modelling of their melting point. Full article
Show Figures

Figure 1

22 pages, 3232 KiB  
Article
QSPR Modeling and Experimental Determination of the Antioxidant Activity of Some Polycyclic Compounds in the Radical-Chain Oxidation Reaction of Organic Substrates
by Veronika Khairullina, Yuliya Martynova, Irina Safarova, Gulnaz Sharipova, Anatoly Gerchikov, Regina Limantseva and Rimma Savchenko
Molecules 2022, 27(19), 6511; https://doi.org/10.3390/molecules27196511 - 2 Oct 2022
Cited by 1 | Viewed by 1741
Abstract
The present work addresses the quantitative structure–antioxidant activity relationship in a series of 148 sulfur-containing alkylphenols, natural phenols, chromane, betulonic and betulinic acids, and 20-hydroxyecdysone using GUSAR2019 software. Statistically significant valid models were constructed to predict the parameter logk7, where k [...] Read more.
The present work addresses the quantitative structure–antioxidant activity relationship in a series of 148 sulfur-containing alkylphenols, natural phenols, chromane, betulonic and betulinic acids, and 20-hydroxyecdysone using GUSAR2019 software. Statistically significant valid models were constructed to predict the parameter logk7, where k7 is the rate constant for the oxidation chain termination by the antioxidant molecule. These results can be used to search for new potentially effective antioxidants in virtual libraries and databases and adequately predict logk7 for test samples. A combination of MNA- and QNA-descriptors with three whole molecule descriptors (topological length, topological volume, and lipophilicity) was used to develop six statistically significant valid consensus QSPR models, which have a satisfactory accuracy in predicting logk7 for training and test set structures: R2TR > 0.6; Q2TR > 0.5; R2TS > 0.5. Our theoretical prediction of logk7 for antioxidants AO1 and AO2, based on consensus models agrees well with the experimental value of the measure in this paper. Thus, the descriptor calculation algorithms implemented in the GUSAR2019 software allowed us to model the kinetic parameters of the reactions underlying the liquid-phase oxidation of organic hydrocarbons. Full article
Show Figures

Figure 1

16 pages, 1381 KiB  
Article
Antioxidant Activity and Kinetic Characterization of Chlorella vulgaris Growth under Flask-Level Photoheterotrophic Growth Conditions
by Jesús Alberto Coronado-Reyes, Evelyn Acosta-Ramírez, Miranda Valeria Martínez-Olguín and Juan Carlos González-Hernández
Molecules 2022, 27(19), 6346; https://doi.org/10.3390/molecules27196346 - 26 Sep 2022
Cited by 3 | Viewed by 1418
Abstract
C. vulgaris is a unicellular microalgae, whose growth depends on the conditions in which it is found, synthesizing primary and secondary metabolites in different proportions. Therefore, we analyzed and established conditions in which it was possible to increase the yields of metabolites obtained [...] Read more.
C. vulgaris is a unicellular microalgae, whose growth depends on the conditions in which it is found, synthesizing primary and secondary metabolites in different proportions. Therefore, we analyzed and established conditions in which it was possible to increase the yields of metabolites obtained at the flask level, which could then be scaled to the photobioreactor level. As a methodology, a screening design was applied, which evaluated three factors: type of substrate (sodium acetate or glycerol); substrate concentration; and exposure-time to red light (photoperiod: 16:8 and 8:16 light/darkness). The response variables were: cell division; biomass; substrate consumption; and antioxidant activity in intracellular metabolites (ABTS•+ and DPPH•). As a result, the sodium acetate condition of 0.001 g/L, in a photoperiod of 16 h of light, presented a doubling time (Td = 4.84 h) and a higher rate of division (σ = 0.20 h−1), having a final biomass concentration of 2.075 g/L. In addition, a higher concentration of metabolites with antioxidant activity was found in the sodium acetate (0.629 Trolox equivalents mg/L ABTS•+ and 0.630 Trolox equivalents mg/L DPPH•). For the glycerol, after the same photoperiod (16 h of light and 8 h of darkness), the doubling time (Td) was 4.63 h, with a maximum division rate of σ = 0.18 h−1 and with a biomass concentration at the end of the kinetics of 1.4 g/L. Sodium acetate under long photoperiods, therefore, is ideal for the growth of C. vulgaris, which can then be scaled to the photobioreactor level. Full article
Show Figures

Graphical abstract

14 pages, 2116 KiB  
Article
Thermochemical Transition in Low Molecular Weight Substances: The Example of the Silybin Flavonoid
by Costas Tsioptsias, Christina Spartali, Sotirios I. Marras, Xanthi Ntampou, Ioannis Tsivintzelis and Costas Panayiotou
Molecules 2022, 27(19), 6345; https://doi.org/10.3390/molecules27196345 - 26 Sep 2022
Cited by 5 | Viewed by 1391
Abstract
Silybin is a complex organic molecule with high bioactivity, extracted from the plant Silybum. As a pharmaceutical substance, silybin’s bioactivity has drawn considerable attention, while its other properties, e.g., thermodynamic properties and thermal stability, have been less studied. Silybin has been reported to [...] Read more.
Silybin is a complex organic molecule with high bioactivity, extracted from the plant Silybum. As a pharmaceutical substance, silybin’s bioactivity has drawn considerable attention, while its other properties, e.g., thermodynamic properties and thermal stability, have been less studied. Silybin has been reported to exhibit a melting point, and values for its heat of fusion have been provided. In this work, differential scanning calorimetry, thermogravimetry including derivative thermogravimetry, infrared spectroscopy, and microscopy were used to provide evidence that silybin exhibits a thermochemical transition, i.e., softening occurring simultaneously with decomposition. Data from the available literature in combination with critical discussion of the results in a general framework suggest that thermochemical transition is a broad effect exhibited by various forms of matter (small molecules, macromolecules, natural, synthetic, organic, inorganic). The increased formation of hydrogen bonding contributes to this behavior through a dual influence: (a) inhibition of melting and (b) facilitation of decomposition due to weakening of chemical bonds. Full article
Show Figures

Figure 1

19 pages, 2810 KiB  
Article
Silver Nanoparticles Formulation of Flower Head’s Polyphenols of Cynara scolymus L.: A Promising Candidate against Prostate (PC-3) Cancer Cell Line through Apoptosis Activation
by Amgad I. M. Khedr, Marwa S. Goda, Abdelaziz F. S. Farrag, Ali M. Nasr, Shady A. Swidan, Mohamed S. Nafie, Maged S. Abdel-Kader, Jihan M. Badr and Reda F. A. Abdelhameed
Molecules 2022, 27(19), 6304; https://doi.org/10.3390/molecules27196304 - 24 Sep 2022
Cited by 7 | Viewed by 2193
Abstract
Cynara scolymus L. (Family: Compositae) or artichoke is a nutritious edible plant widely used for its hepatoprotective effect. Crude extracts of flower, bract, and stem were prepared and evaluated for their in vitro antioxidant activity and phenolic content. The flower crude extract exhibited [...] Read more.
Cynara scolymus L. (Family: Compositae) or artichoke is a nutritious edible plant widely used for its hepatoprotective effect. Crude extracts of flower, bract, and stem were prepared and evaluated for their in vitro antioxidant activity and phenolic content. The flower crude extract exhibited the highest phenolic content (74.29 mg GAE/gm) as well as the best in vitro antioxidant activity using total antioxidant capacity (TAC), ferric reducing antioxidant power (FEAP), and 1,1-diphenyl-2-picrylhyazyl (DPPH) scavenging assays compared with ascorbic acid. Phenolic fractions of the crude extracts of different parts were separated and identified using high-performance liquid chromatography HPLC-DAD analysis. The silver nanoparticles of these phenolic fractions were established and tested for their cytotoxicity and apoptotic activity. Results showed that silver nanoparticles of a polyphenolic fraction of flower extract (Nano-TP/Flowers) exhibited potent cytotoxicity against prostate (PC-3) and lung (A549) cancer cell lines with IC50 values of 0.85 μg/mL and 0.94 μg/mL, respectively, compared with doxorubicin as a standard. For apoptosis-induction, Nano-TP/Flowers exhibited apoptosis in PC-3 with a higher ratio than in A549 cells. It induced total prostate apoptotic cell death by 227-fold change while it induced apoptosis in A549 cells by 15.6-fold change. Nano-TP/Flowers upregulated both pro-apoptotic markers and downregulated the antiapoptotic genes using RT-PCR. Hence, this extract may serve as a promising source for anti-prostate cancer candidates. Full article
Show Figures

Figure 1

18 pages, 3926 KiB  
Article
Bioactive Potential: A Pharmacognostic Definition through the Screening of Four Hypericum Species from the Canary Islands
by Rodney Lacret, Adrián Puerta, Sebastian Granica, Aday González-Bakker, Danela Hevia, Yiling Teng, Candelaria C. Sánchez-Mateo, Pedro Luis Pérez de Paz and José M. Padrón
Molecules 2022, 27(18), 6101; https://doi.org/10.3390/molecules27186101 - 18 Sep 2022
Cited by 3 | Viewed by 3260
Abstract
In this work, we propose a general methodology to assess the bioactive potential (BP) of extracts in the quest of vegetable-based drugs. To exemplify the method, we studied the anticancer potential (AP) of four endemic species of genus Hypericum (Hypericum canariense L, [...] Read more.
In this work, we propose a general methodology to assess the bioactive potential (BP) of extracts in the quest of vegetable-based drugs. To exemplify the method, we studied the anticancer potential (AP) of four endemic species of genus Hypericum (Hypericum canariense L, Hypericum glandulosum Aiton, Hypericum grandifolium Choisy and Hypericum reflexum L.f) from the Canary Islands. Microextracts were obtained from the aerial parts of these species and were tested against six human tumor cell lines, A549 (non-small-cell lung), HBL-100 (breast), HeLa (cervix), SW1573 (non-small-cell lung), T-47D (breast) and WiDr (colon). The methanol–water microextracts were evaluated further for cell migration, autophagy and cell death. The most promising bioactive polar microextracts were analyzed by UHPLC–DAD–MS. The extraction yield, the bioactivity evaluation and the chemical profiling by LC–MS suggested that H. grandifolium was the species with the highest AP. Label-free live-cell imaging studies on HeLa cells exposed to the methanol–water microextract of H. grandifolium enabled observing cell death and several apoptotic hallmarks. Overall, this study allows us to select Hypericum grandifolium Choisy as a source of new chemical entities with a potential interest for cancer treatment. Full article
Show Figures

Graphical abstract

13 pages, 957 KiB  
Article
Comparative Quantification of the Phenolic Compounds, Piperine Content, and Total Polyphenols along with the Antioxidant Activities in the Piper trichostachyon and P. nigrum
by Jameel Mohammed Al-Khayri, Vinayak Upadhya, Sandeep Ramachandra Pai, Poornananda Madhava Naik, Muneera Qassim Al-Mssallem and Fatima Mohammed Alessa
Molecules 2022, 27(18), 5965; https://doi.org/10.3390/molecules27185965 - 13 Sep 2022
Cited by 7 | Viewed by 1918
Abstract
India is the largest producer in the world of black pepper and it is the center of origin for Piper. The present study gives a comparative account of the chemical composition of the Piper nigrum and its wild putative parent the P. [...] Read more.
India is the largest producer in the world of black pepper and it is the center of origin for Piper. The present study gives a comparative account of the chemical composition of the Piper nigrum and its wild putative parent the P. trichostachyon. Microextractions were performed and the quantification of six phenolic compounds (namely epicatechin, gallic acid, catechol, chlorogenic acid, caffeic acid, and catechin), piperine from leaves, petioles, and the fruits of both the species, were accomplished using the RP-UFLC system. The polyphenols (phenolic, flavonoid) and their antioxidant activities were also estimated. Among the six phenolic compounds studied, only three were detected and quantified. The polyphenol content correlating to the antioxidant activities was higher in the P. trichostachyon, whereas the piperine content was 108 times greater in the P. nigrum fruits. The Piper trichostachyon comparatively showed a higher content of polyphenols. The microextractions reduced the solvent consumption, the quantity of the plant material, and the amount of time used for the extraction. The first report on the TPC, TF, and the antioxidant activity of the P. trichostachyon has been described, and it also forms a scientific basis for its use in traditional medicine. The petioles of both species are good sources of phenolic compounds. A quantitative chemical analysis is a useful index in the identification and comparison of the species. Full article
Show Figures

Figure 1

21 pages, 1097 KiB  
Article
Phytochemical Characterization, Anti-Oxidant, Anti-Enzymatic and Cytotoxic Effects of Artemisia verlotiorum Lamotte Extracts: A New Source of Bioactive Agents
by Shanoo Suroowan, Eulogio Jose Llorent-Martínez, Gokhan Zengin, Stefano Dall’Acqua, Stefania Sut, Kalaivani Buskaran, Sharida Fakurazi and Mohamad Fawzi Mahomoodally
Molecules 2022, 27(18), 5886; https://doi.org/10.3390/molecules27185886 - 10 Sep 2022
Cited by 7 | Viewed by 2080
Abstract
Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; [...] Read more.
Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant’s biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties. Full article
Show Figures

Figure 1

21 pages, 4156 KiB  
Article
Polylactic Acid Film Coated with Electrospun Gelatin/Chitosan Nanofibers Containing Betel Leaf Ethanolic Extract: Properties, Bioactivities, and Use for Shelf-Life Extension of Tilapia Slices
by Mohamed Tagrida, Saqib Gulzar, Krisana Nilsuwan, Thummanoon Prodpran, Bin Zhang and Soottawat Benjakul
Molecules 2022, 27(18), 5877; https://doi.org/10.3390/molecules27185877 - 10 Sep 2022
Cited by 6 | Viewed by 2154
Abstract
Gelatin/chitosan solutions incorporated with betel leaf ethanolic extract (BLEE) at varying concentrations were electrospun on polylactic acid (PLA) films. Nanofibers with different morphologies, as indicated by scanning electron microscopy (SEM), were formed after solutions of gelatin/chitosan with and without BLEE were electrospun on [...] Read more.
Gelatin/chitosan solutions incorporated with betel leaf ethanolic extract (BLEE) at varying concentrations were electrospun on polylactic acid (PLA) films. Nanofibers with different morphologies, as indicated by scanning electron microscopy (SEM), were formed after solutions of gelatin/chitosan with and without BLEE were electrospun on PLA films at a constant voltage (25 kV) and a feed rate of 0.4 mL/h. Beaded gelatin/chitosan nanofibers (GC/NF) were found, particularly when high concentrations of BLEE were encapsulated. PLA films coated with GC/NF, and with BLEE added, showed antioxidant and antibacterial activities, which were augmented by increasing BLEE concentrations. Lower water vapor permeability and enhanced mechanical properties were achieved for GC/NF-coated PLA film (p < 0.05). Microbial growth and lipid oxidation of Nile tilapia slices packaged in PLA film coated with GC/NF containing 2% BLEE were more retarded than those packaged in low-density polyethylene (LDPE) bags over refrigerated storage of 12 days. Based on microbial limits, the shelf-life was escalated to 9 days, while the control had a shelf-life of 3 days. Therefore, such a novel film/bag could be a promising active packaging for foods. Full article
Show Figures

Graphical abstract

14 pages, 21136 KiB  
Article
Extract of Acanthopanax senticosus and Its Components Interacting with Sulfide, Cysteine and Glutathione Increase Their Antioxidant Potencies and Inhibit Polysulfide-Induced Cleavage of Plasmid DNA
by Anton Misak, Marian Grman, Lenka Tomasova, Ondrej Makara, Miroslav Chovanec and Karol Ondrias
Molecules 2022, 27(17), 5735; https://doi.org/10.3390/molecules27175735 - 5 Sep 2022
Cited by 1 | Viewed by 1423
Abstract
Aqueous root extract from Acanthopanax senticosus (ASRE) has a wide range of medicinal effects. The present work was aimed at studying the influence of sulfide, cysteine and glutathione on the antioxidant properties of ASRE and some of its selected phytochemical components. Reduction of [...] Read more.
Aqueous root extract from Acanthopanax senticosus (ASRE) has a wide range of medicinal effects. The present work was aimed at studying the influence of sulfide, cysteine and glutathione on the antioxidant properties of ASRE and some of its selected phytochemical components. Reduction of the 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide (cPTIO) stable radical and plasmid DNA (pDNA) cleavage in vitro assays were used to evaluate antioxidant and DNA-damaging properties of ASRE and its individual components. We found that the interaction of ASRE and its two components, caffeic acid and chlorogenic acid (but not protocatechuic acid and eleutheroside B or E), with H2S/HS, cysteine or glutathione significantly increased the reduction of the cPTIO radical. In contrast, the potency of ASRE and its selected components was not affected by Na2S4, oxidized glutathione, cystine or methionine, indicating that the thiol group is a prerequisite for the promotion of the antioxidant effects. ASRE interacting with H2S/HS or cysteine displayed a bell-shaped effect in the pDNA cleavage assay. However, ASRE and its components inhibited pDNA cleavage induced by polysulfides. In conclusion, we suggest that cysteine, glutathione and H2S/HS increase antioxidant properties of ASRE and that changes of their concentrations and the thiol/disulfide ratio can influence the resulting biological effects of ASRE. Full article
Show Figures

Graphical abstract

17 pages, 2515 KiB  
Article
Study of Inducing Factors on Resveratrol and Antioxidant Content in Germinated Peanuts
by Chun-Hsiang Hung and Su-Der Chen
Molecules 2022, 27(17), 5700; https://doi.org/10.3390/molecules27175700 - 4 Sep 2022
Cited by 9 | Viewed by 1946
Abstract
When peanuts germinate, bioactive compounds such as resveratrol (RES), γ-aminobutyric acid (GABA), isoflavones, and polyphenol compounds are generated. Peanut kernels were germinated in the dark for two days, and stimuli including soaking liquid, rice koji, high-pressure processing (HPP), and ultrasonic treatment were tested [...] Read more.
When peanuts germinate, bioactive compounds such as resveratrol (RES), γ-aminobutyric acid (GABA), isoflavones, and polyphenol compounds are generated. Peanut kernels were germinated in the dark for two days, and stimuli including soaking liquid, rice koji, high-pressure processing (HPP), and ultrasonic treatment were tested for their ability to activate the defense mechanisms of peanut kernels, thus increasing their bioactive compound content. The results of this study indicate that no RES was detected in ungerminated peanuts, and only 5.58 μg/g of GABA was present, while unstimulated germinated peanuts contained 4.03 µg/g of RES and 258.83 μg/g of GABA. The RES content of the germinated peanuts increased to 13.64 μg/g after soaking in 0.2% phenylalanine solution, whereas a higher GABA content of 651.51 μg/g was observed after the peanuts were soaked in 0.2% glutamate. Soaking peanuts in 5% rice koji produced the highest RES and GABA contents (28.83 µg/g and 506.34 μg/g, respectively). Meanwhile, the RES and GABA contents of HPP-treated germinated peanuts (i.e., treated with HPP at 100 MPa for 10 min) increased to 7.66 μg/g and 497.09 μg/g, respectively, whereas those of ultrasonic-treated germinated peanuts (for 20 min) increased to 13.02 μg/g and 318.71 μg/g, respectively. After soaking peanuts in 0.5% rice koji, followed by HPP treatment at 100 MPa for 10 min, the RES and GABA contents of the germinated peanuts increased to 37.78 μg/g and 1196.98 μg/g, while the RES and GABA contents of the germinated peanuts treated with rice koji followed by ultrasonic treatment for 20 min increased to 46.53 μg/g and 974.52 μg/g, respectively. The flavonoid and polyphenol contents of the germinated peanuts also increased after exposure to various external stimuli, improving their DPPH free radical-scavenging ability and showing the good potential of germinated peanuts as functional products. Full article
Show Figures

Figure 1

13 pages, 973 KiB  
Article
Pressurized Liquid Extraction as a Novel Technique for the Isolation of Laurus nobilis L. Leaf Polyphenols
by Erika Dobroslavić, Ivona Elez Garofulić, Jelena Šeparović, Zoran Zorić, Sandra Pedisić and Verica Dragović-Uzelac
Molecules 2022, 27(16), 5099; https://doi.org/10.3390/molecules27165099 - 10 Aug 2022
Cited by 17 | Viewed by 2286
Abstract
Laurus nobilis L., known as laurel or bay leaf, is a Mediterranean plant which has been long known for exhibiting various health-beneficial effects that can largely be attributed to the polyphenolic content of the leaves. Pressurized liquid extraction (PLE) is a green extraction [...] Read more.
Laurus nobilis L., known as laurel or bay leaf, is a Mediterranean plant which has been long known for exhibiting various health-beneficial effects that can largely be attributed to the polyphenolic content of the leaves. Pressurized liquid extraction (PLE) is a green extraction technique that enables the efficient isolation of polyphenols from different plant materials. Hence, the aim of this research was to determine optimal conditions for PLE (solvent, temperature, number of extraction cycles and static extraction time) of laurel leaf polyphenols and to assess the polyphenolic profile of the optimal extract by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) as well as to evaluate the antioxidant activity determined by FRAP, DPPH and ORAC assays. The optimal PLE conditions were 50% ethanol, 150 °C, one extraction cycle and 5 min static time. The polyphenolic extract obtained at optimal PLE conditions comprised 29 identified compounds, among which flavonols (rutin and quercetin-3-glucoside) were the most abundant. The results of antioxidant activity assays demonstrated that PLE is an efficient green technique for obtaining polyphenol-rich laurel leaf extracts with relatively high antioxidant activity. Full article
Show Figures

Figure 1

15 pages, 1836 KiB  
Article
Development and Evaluation of an Antimicrobial Formulation Containing Rosmarinus officinalis
by Lucas Malvezzi de Macedo, Érica Mendes dos Santos, Janaína Artem Ataide, Gabriela Trindade de Souza e Silva, João Paulo de Oliveira Guarnieri, Marcelo Lancellotti, Angela Faustino Jozala, Paulo Cesar Pires Rosa and Priscila Gava Mazzola
Molecules 2022, 27(16), 5049; https://doi.org/10.3390/molecules27165049 - 9 Aug 2022
Cited by 5 | Viewed by 2210
Abstract
Rosmarinus officinalis belongs to the Lamiaceae family, and its constituents show antioxidant, anti-inflammatory, antidepressant, antinociceptive, and antibacterial properties. The aim of this study was to develop a topical formulation with R. officinalis extract that had antimicrobial and antioxidant activity. Maceration, infusion, Soxhlet, and [...] Read more.
Rosmarinus officinalis belongs to the Lamiaceae family, and its constituents show antioxidant, anti-inflammatory, antidepressant, antinociceptive, and antibacterial properties. The aim of this study was to develop a topical formulation with R. officinalis extract that had antimicrobial and antioxidant activity. Maceration, infusion, Soxhlet, and ultrasound were used to produce rosemary extracts, which were submitted to antioxidant, compound quantification, cell viability, and antimicrobial assays. Infusion and Soxhlet showed better results in the DPPH assay. During compound quantification, infusion showed promising metabolite extraction in phenolic compounds and tannins, although maceration was able to extract more flavonoids. The infusion and ultrasound extracts affected more strains of skin bacteria in the disk diffusion assays. In the minimum inhibitory concentration assay, the infusion extract showed results against S. aureus, S. oralis, and P. aeruginosa, while ultrasound showed effects against those three bacteria and E. coli. The infusion extract was chosen to be incorporated into a green emulsion. The infusion extract promoted lower spreadability and appropriated the texture, and the blank formulation showed high levels of acceptance among the volunteers. According to the results, the rosemary extract showed promising antioxidant and antimicrobial activity, and the developed formulations containing this extract were stable for over 90 days and had acceptable characteristics, suggesting its potential use as a phytocosmetic. This paper reports the first attempt to produce an oil-in-water emulsion using only natural excipients and rosemary extract, which is a promising novelty, as similar products cannot be found on the market or in the scientific literature. Full article
Show Figures

Graphical abstract

9 pages, 893 KiB  
Article
Impact of Tea Processing on Tryptophan, Melatonin, Phenolic and Flavonoid Contents in Mulberry (Morus alba L.) Leaves: Quantitative Analysis by LC-MS/MS
by Panyada Panyatip, Tanit Padumanonda, Chawalit Yongram, Tiantip Kasikorn, Bunleu Sungthong and Ploenthip Puthongking
Molecules 2022, 27(15), 4979; https://doi.org/10.3390/molecules27154979 - 5 Aug 2022
Cited by 12 | Viewed by 2940
Abstract
Mulberry (Morus alba L.) leaves from two cultivars, Yai-Burirum (YB) and Khunphai (KP), were prepared into green tea (GT) and black tea (BT). Compared to fresh leaf (FL) extract, GT and BT extracts were evaluated for their total phenolic and total flavonoid [...] Read more.
Mulberry (Morus alba L.) leaves from two cultivars, Yai-Burirum (YB) and Khunphai (KP), were prepared into green tea (GT) and black tea (BT). Compared to fresh leaf (FL) extract, GT and BT extracts were evaluated for their total phenolic and total flavonoid contents. Total phenolic content (TPCs) in all samples ranged between 129.93 and 390.89 mg GAE/g extract. The processing of tea decreased the levels of TPC when compared to FL extracts in both cultivars. The total flavonoid content (TFCs) in all samples was found in the range of 10.15–39.09 mg QE/g extract and TFCs in GT and BT extracts were higher than FL extracts. The change in tryptophan, melatonin, phenolic and flavonoid contents was investigated by liquid chromatography–mass spectroscopy (LC-MS). The results exhibited that tryptophan contents in all samples were detected in the range 29.54–673.72 µg/g extract. Both GT and BT extracts increased tryptophan content compared to FL extracts. BT extracts presented the highest amounts of tryptophan among others in both cultivars. Phenolic compounds were found in mulberry leaf extracts, including gallic acid, caffeic acid, gentisic acid, protocatechuic acid and chlorogenic acid. Chlorogenic acid presented the highest amount in all samples. Almost all phenolic acids were increased in the processed tea extracts except chlorogenic acid. Rutin was the only flavonoid that was detected in all extracts in the range 109.48–1009.75 mg/g extract. The change in phenolic and flavonoid compounds during tea processing resulted in the change in antioxidant capacities of the GT and BT extracts. All extracts presented acetylcholinesterase enzyme (AChE) inhibitory activity with IC50 in the range 146.53–165.24 µg/mL. The processing of tea slightly increased the AChE inhibitory effect of GT and BT extracts. In conclusion, processed tea from mulberry leaves could serve as a new alternative functional food for health-concerned consumers because it could be a promising source of tryptophan, phenolics and flavonoids. Moreover, the tea extracts also had antioxidative and anti-AChE activities. Full article
Show Figures

Figure 1

20 pages, 2935 KiB  
Article
A Preliminary Assessment of the Nutraceutical Potential of Acai Berry (Euterpe sp.) as a Potential Natural Treatment for Alzheimer’s Disease
by Maryam N. ALNasser, Ian R. Mellor and Wayne G. Carter
Molecules 2022, 27(15), 4891; https://doi.org/10.3390/molecules27154891 - 30 Jul 2022
Cited by 8 | Viewed by 3564
Abstract
Alzheimer’s disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is [...] Read more.
Alzheimer’s disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry’s antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD. Full article
Show Figures

Graphical abstract

26 pages, 7516 KiB  
Article
Molecular Interaction Studies and Phytochemical Characterization of Mentha pulegium L. Constituents with Multiple Biological Utilities as Antioxidant, Antimicrobial, Anticancer and Anti-Hemolytic Agents
by Aisha M. H. Al-Rajhi, Husam Qanash, Mohammed S. Almuhayawi, Soad K. Al Jaouni, Marwah M. Bakri, Magdah Ganash, Hanaa M. Salama, Samy Selim and Tarek M. Abdelghany
Molecules 2022, 27(15), 4824; https://doi.org/10.3390/molecules27154824 - 28 Jul 2022
Cited by 28 | Viewed by 2771
Abstract
Multiple biological functions of Mentha pulegium extract were evaluated in the current work. Phytochemical components of the M. pulegium extract were detected by Gas Chromatography-Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC). Moreover, M. pulegium extract was estimated for antioxidant potential by 2,2-Diphenyl-1-picryl-hydrazyl-hydrate [...] Read more.
Multiple biological functions of Mentha pulegium extract were evaluated in the current work. Phytochemical components of the M. pulegium extract were detected by Gas Chromatography-Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC). Moreover, M. pulegium extract was estimated for antioxidant potential by 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging, antimicrobial activity by well diffusion, and anticoagulant activity via prothrombin time (PT) and activated partial thromboplastin time (APTT). GC-MS analysis detected compounds including cholesterol margarate, stigmast-5-en-3-ol, 19-nor-4-androstenediol, androstan-17-one, pulegone-1,2-epoxide, isochiapin B, dotriacontane, hexadecanoic acid and neophytadiene. Chrysoeriol (15.36 µg/mL) was followed by kaempferol (11.14 µg/mL) and 7-OH flavone (10.14 µg/mL), catechin (4.11 µg/mL), hisperdin (3.05 µg/mL), and luteolin (2.36 µg/mL) were detected by HPLC as flavonoids, in addition to ferulic (13.19 µg/mL), cinnamic (12.69 µg/mL), caffeic (11.45 µg/mL), pyrogallol (9.36 µg/mL), p-coumaric (5.06 µg/mL) and salicylic (4.17 µg/mL) as phenolics. Antioxidant activity was detected with IC50 18 µg/mL, hemolysis inhibition was recorded as 79.8% at 1000 μg/mL, and PT and APTT were at 21.5 s and 49.5 s, respectively, at 50 μg/mL of M. pulegium extract. The acute toxicity of M. pulegium extract was recorded against PC3 (IC50 97.99 µg/mL) and MCF7 (IC50 80.21 µg/mL). Antimicrobial activity of M. pulegium extract was documented against Bacillus subtilis, Escherichia coli, Pseudomonasaureus, Candida albicans, Pseudomonas aeruginosa, but not against black fungus Mucor circinelloides. Molecular docking was applied using MOE (Molecular Operating Environment) to explain the biological activity of neophytadiene, luteolin, chrysoeriol and kaempferol. These compounds could be suitable for the development of novel pharmacological agents for treatment of cancer and bacterial infections. Full article
Show Figures

Figure 1

13 pages, 408 KiB  
Article
Qualitative, Quantitative, Cytotoxic, Free Radical Scavenging, and Antimicrobial Characteristics of Hypericum lanuginosum from Palestine
by Nidal Jaradat
Molecules 2022, 27(14), 4574; https://doi.org/10.3390/molecules27144574 - 18 Jul 2022
Cited by 4 | Viewed by 1623
Abstract
Hypericum lanuginosum is one of the traditional medicinal plants that grows in the arid area of the Al-Naqab desert in Palestine and is used by Bedouins to heal various communicable and non-communicable illnesses. The purpose of this investigation was to estimate the total [...] Read more.
Hypericum lanuginosum is one of the traditional medicinal plants that grows in the arid area of the Al-Naqab desert in Palestine and is used by Bedouins to heal various communicable and non-communicable illnesses. The purpose of this investigation was to estimate the total phenolic, flavonoid, and tannin contents of aqueous, methanol, acetone, and hexane H. lanuginosum extracts and evaluate their cytotoxic, anti-oxidative, and antimicrobial properties. Qualitative phytochemical tests were used to identify the major phytochemical classes in H. lanuginosum extracts, while total phenol, flavonoid, and tannin contents were determined using Folin–Ciocalteu, aluminum chloride, and vanillin assays, respectively. Moreover, a microdilution test was employed to estimate the antimicrobial activity of H. lanuginosum extracts against several microbial species. At the same time, the cytotoxic and free radical scavenging effects were evaluated using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and 2, 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assays, respectively. Quantitative examinations showed that the highest amounts of phenols, flavonoids, and tannins were noticed in the H. lanuginosum aqueous extract. Moreover, H. lanuginosum aqueous extract showed potent activity against methicillin-resistant Staphylococcus aureus even more than Amoxicillin and Ofloxacin antibiotics, with Minimum Inhibitory Concentrations (MICs) of 0.78 ± 0.01, 0, and 1.56 ± 0.03 µg/mL, respectively. Additionally, the aqueous extract exhibited the highest activity against Candida albicans and Epidermatophyton floccosum pathogens, with MIC values of 0.78 ± 0.01 µg/mL. Actually, the aqueous extract showed more potent antimold activity than Ketoconazole against E. floccosum with MICs of 0.78 ± 0.01 and 1.56 ± 0.02 µg/mL, respectively. Furthermore, all H. lanuginosum extracts showed potential cytotoxic effects against breast cancer (MCF-7), hepatocellular carcinoma (Hep 3B and Hep G2), and cervical adenocarcinoma (HeLa) tumor cell lines. In addition, the highest free radical scavenging activity was demonstrated by H. lanuginosum aqueous extract compared with Trolox with IC50 doses of 6.16 ± 0.75 and 2.23 ± 0.57 µg/mL, respectively. Studying H. lanuginosum aqueous extract could lead to the development of new treatments for diseases such as antibiotic-resistant microbes and cancer, as well as for oxidative stress-related disorders such as oxidative stress. H. lanuginosum aqueous extract may help in the design of novel natural preservatives and therapeutic agents. Full article
Show Figures

Figure 1

14 pages, 1769 KiB  
Article
Salpianthus macrodontus Extracts, a Novel Source of Phenolic Compounds with Antibacterial Activity against Potentially Pathogenic Bacteria Isolated from White Shrimp
by Pedro Ulises Bautista-Rosales, Alexeyevich Jassiel Prado-Murguía, Iza Fernanda Pérez-Ramírez, Rosalía Servín-Villegas, Francisco Javier Magallón-Barajas, Rosendo Balois-Morales, Verónica Alhelí Ochoa-Jiménez and Paola Magallón-Servín
Molecules 2022, 27(14), 4397; https://doi.org/10.3390/molecules27144397 - 8 Jul 2022
Cited by 2 | Viewed by 1546
Abstract
This study aimed to evaluate the antibacterial activity in vitro of Salpianthus macrodontus and Azadirachta indica extracts against potentially pathogenic bacteria for Pacific white shrimp. Furthermore, the extracts with higher inhibitory activity were analyzed to identify compounds responsible for bacterial inhibition and evaluate [...] Read more.
This study aimed to evaluate the antibacterial activity in vitro of Salpianthus macrodontus and Azadirachta indica extracts against potentially pathogenic bacteria for Pacific white shrimp. Furthermore, the extracts with higher inhibitory activity were analyzed to identify compounds responsible for bacterial inhibition and evaluate their effect on motility and biofilm formation. S. macrodontus and A. indica extracts were prepared using methanol, acetone, and hexane by ultrasound. The minimum inhibitory concentration (MIC) of the extracts was determined against Vibrio parahaemolyticus, V. harveyi, Photobacterium damselae and P. leiognathi. The polyphenol profile of those extracts showing the highest bacterial inhibition were determined. Besides, the bacterial swimming and swarming motility and biofilm formation were determined. The highest inhibitory activity against the four pathogens was found with the acetonic extract of S. macrodontus leaf (MIC of 50 mg/mL for Vibrio spp. and 25 mg/mL for Photobacterium spp.) and the methanol extract of S. macrodontus flower (MIC of 50 mg/mL for all pathogens tested). Both extracts affected the swarming and swimming motility and the biofilm formation of the tested bacteria. The main phenolic compounds related to Vibrio bacteria inhibition were naringin, vanillic acid, and rosmarinic acid, whilst hesperidin, kaempferol pentosyl-rutinoside, and rhamnetin were related to Photobacterium bacteria inhibition. Full article
Show Figures

Figure 1

18 pages, 961 KiB  
Article
Aronia Melanocarpa: Identification and Exploitation of Its Phenolic Components
by Theodora Kaloudi, Dimitrios Tsimogiannis and Vassiliki Oreopoulou
Molecules 2022, 27(14), 4375; https://doi.org/10.3390/molecules27144375 - 8 Jul 2022
Cited by 12 | Viewed by 2765
Abstract
The phenolic components of Aronia melanocarpa were quantitatively recovered by three successive extractions with methanol. They comprise anthocyanins (mainly cyanidin glycosides) phenolic acids (chlorogenic and neochlorogenic acids) and flavonols (quercetin glycosides). Approximately 30% of the total phenolic compounds are located in the peel [...] Read more.
The phenolic components of Aronia melanocarpa were quantitatively recovered by three successive extractions with methanol. They comprise anthocyanins (mainly cyanidin glycosides) phenolic acids (chlorogenic and neochlorogenic acids) and flavonols (quercetin glycosides). Approximately 30% of the total phenolic compounds are located in the peel and the rest in the flesh and seeds. Peels contain the major part of anthocyanins (73%), while the flesh contains the major part of phenolic acids (78%). Aronia juice, rich in polyphenols, was obtained by mashing and centrifugation, while the pomace residue was dried and subjected to acidified water extraction in a fixed bed column for the recovery of residual phenolics. A yield of 22.5 mg gallic acid equivalents/g dry pomace was obtained; however, drying caused anthocyanins losses. Thus, their recovery could be increased by applying extraction on the wet pomace. The extract was encapsulated in maltodextrin and gum arabic by spray drying, with a high (>88%) encapsulation yield and efficiency for both total phenols and anthocyanins. Overall, fresh aronia fruits are a good source for the production of polyphenol-rich juice, while the residual pomace can be exploited, through water extraction and spray drying encapsulation for the production of a powder containing anthocyanins that can be used as a food or cosmetics additive. Full article
Show Figures

Figure 1

16 pages, 1342 KiB  
Article
Optimization of Antioxidant Synergy in a Polyherbal Combination by Experimental Design
by Tsholofelo M. Mapeka, Maxleene Sandasi, Alvaro M. Viljoen and Sandy F. van Vuuren
Molecules 2022, 27(13), 4196; https://doi.org/10.3390/molecules27134196 - 29 Jun 2022
Cited by 3 | Viewed by 1646
Abstract
Culinary herbs and spices are known to be good sources of natural antioxidants. Although the antioxidant effects of individual culinary herbs and spices are widely reported, little is known about their effects when used in combination. The current study was therefore undertaken to [...] Read more.
Culinary herbs and spices are known to be good sources of natural antioxidants. Although the antioxidant effects of individual culinary herbs and spices are widely reported, little is known about their effects when used in combination. The current study was therefore undertaken to compare the antioxidant effects of crude extracts and essential oils of some common culinary herbs and spices in various combinations. The antioxidant interactions of 1:1 combinations of the most active individual extracts and essential oils were investigated as well as the optimization of various ratios using the design of experiments (DoE) approach. The 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays were used to determine the antioxidant activity, and MODDE 9.1® software (Umetrics AB, Umea, Sweden) was used to determine the DoE. The results revealed synergism for the following combinations: Mentha piperita with Thymus vulgaris methanol extract (ΣFIC = 0.32 and ΣFIC = 0.15 using the DPPH and FRAP assays, respectively); Rosmarinus officinalis with Syzygium aromaticum methanol extract (ΣFIC = 0.47 using the FRAP assay); T. vulgaris with Zingiber officinalis methanol extracts (ΣFIC = 0.19 using the ABTS assay); and R. officinalis with Z. officinalis dichloromethane extract (ΣFIC = 0.22 using the ABTS assay). The DoE produced a statistically significant (R2 = 0.905 and Q2 = 0.710) model that was able to predict extract combinations with high antioxidant activities, as validated experimentally. The antioxidant activities of the crude extracts from a selection of culinary herbs and spices were improved when in combination, hence creating an innovative opportunity for the future development of supplements for optimum health. Full article
Show Figures

Graphical abstract

22 pages, 1878 KiB  
Article
Characterizations of Six Pomegranate (Punica granatum L.) Varieties of Global Commercial Interest in Morocco: Pomological, Organoleptic, Chemical and Biochemical Studies
by Sara El Moujahed, Rodica-Mihaela Dinica, Mihaela Cudalbeanu, Sorin Marius Avramescu, Iman Msegued Ayam, Fouad Ouazzani Chahdi, Youssef Kandri Rodi and Faouzi Errachidi
Molecules 2022, 27(12), 3847; https://doi.org/10.3390/molecules27123847 - 15 Jun 2022
Cited by 6 | Viewed by 2519
Abstract
Pomegranate variety properties are important not only to demonstrate their diversity but also to satisfy the current market need for high-quality fruits. This study aims to characterize pomological and physico-chemical features as well as the antioxidant capacity of Moroccan local cultivars (Djeibi, Mersi, [...] Read more.
Pomegranate variety properties are important not only to demonstrate their diversity but also to satisfy the current market need for high-quality fruits. This study aims to characterize pomological and physico-chemical features as well as the antioxidant capacity of Moroccan local cultivars (Djeibi, Mersi, Sefri 1 and Sefri 2) compared to the imported ones (Mollar de Elche and Hicaz). The pomological characteristics of varieties were relatively diverse. The juice varieties (PJ) displayed a marketed variability in organoleptic and quality properties, such as the flavor, juice yield, and micro/macronutrients contents. Interrelationships among the analyzed properties and PJ varieties were investigated by principal component analysis (PCA). Dimension of the data set was reduced to two components by PCA accounting for 64.53% of the variability observed. The rinds varieties (PR) were studied for their total phenolics, flavonoids, and condensed tannins quantifications. PR varieties extracts exhibited different levels of free radical scavenging activity and local varieties revealed a greater potential with stability over time. The HPLC-DAD analyses of PR extracts revealed (+) catechin as the major compound, where the highest content was found for the local varieties. The SEC analysis showed the molecular weight distribution of phenolic compounds with a high size of condensed tannins formed by the polymerization of the catechin monomer. Given these properties, this research provides an easy selection of high-quality fruits as potential candidates for local market needs. Full article
Show Figures

Figure 1

18 pages, 4218 KiB  
Article
Lobularia libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies
by Naima Benchikha, Imane Chelalba, Hanane Debbeche, Mohammed Messaoudi, Samir Begaa, Imane Larkem, Djilani Ghamem Amara, Abdelkrim Rebiai, Jesus Simal-Gandara, Barbara Sawicka, Maria Atanassova and Fadia S. Youssef
Molecules 2022, 27(12), 3744; https://doi.org/10.3390/molecules27123744 - 10 Jun 2022
Cited by 9 | Viewed by 2020
Abstract
Lobularia libyca (L. libyca) is a traditional plant that is popular for its richness in phenolic compounds and flavonoids. The aim of this study was to comprehensively investigate the phytochemical profile by liquid chromatography, electrospray ionization and tandem mass spectrometry (LC-ESI-MS), [...] Read more.
Lobularia libyca (L. libyca) is a traditional plant that is popular for its richness in phenolic compounds and flavonoids. The aim of this study was to comprehensively investigate the phytochemical profile by liquid chromatography, electrospray ionization and tandem mass spectrometry (LC-ESI-MS), the mineral contents and the biological properties of L. libyca methanol extract. L. libyca contains significant amounts of phenolic compounds and flavonoids. Thirteen compounds classified as flavonoids were identified. L. libyca is rich in nutrients such as Na, Fe and Ca. Moreover, the methanol extract of L. libyca showed significant antioxidant activity without cytotoxic activity on HCT116 cells (human colon cancer cell line) and HepG2 cells (human hepatoma), showing an inhibition zone of 13 mm in diameter. In silico studies showed that decanoic acid ethyl ester exhibited the best fit in β-lactamase and DNA gyrase active sites; meanwhile, oleic acid showed the best fit in reductase binding sites. Thus, it can be concluded that L. libyca can serve as a beneficial nutraceutical agent, owing to its significant antioxidant and antibacterial potential and due to its richness in iron, calcium and potassium, which are essential for maintaining a healthy lifestyle. Full article
Show Figures

Figure 1

19 pages, 1251 KiB  
Article
GC/MS Analysis, Antioxidant Activity, and Antimicrobial Effect of Pelargonium peltatum (Geraniaceae)
by Alan-Misael Alonso, Oscar Kevin Reyes-Maldonado, Ana María Puebla-Pérez, Martha Patricia Gallegos Arreola, Sandra Fabiola Velasco-Ramírez, Victor Zúñiga-Mayo, Rosa E. Sánchez-Fernández, Jorge-Iván Delgado-Saucedo and Gilberto Velázquez-Juárez
Molecules 2022, 27(11), 3436; https://doi.org/10.3390/molecules27113436 - 26 May 2022
Cited by 5 | Viewed by 4054
Abstract
In recent years, the increase in antibiotic resistance demands searching for new compounds with antimicrobial activity. Phytochemicals found in plants offer an alternative to this problem. The genus Pelargonium contains several species; some have commercial use in traditional medicine such as P. sinoides [...] Read more.
In recent years, the increase in antibiotic resistance demands searching for new compounds with antimicrobial activity. Phytochemicals found in plants offer an alternative to this problem. The genus Pelargonium contains several species; some have commercial use in traditional medicine such as P. sinoides, and others such as P. peltatum are little studied but have promising potential for various applications such as phytopharmaceuticals. In this work, we characterized the freeze-dried extracts (FDEs) of five tissues (root, stem, leaf, and two types of flowers) and the ethyl acetate fractions from leaf (Lf-EtOAc) and flower (Fwr-EtOAc) of P. peltatum through the analysis by thin-layer chromatography (T.L.C.), gas chromatography coupled to mass spectrometry (GC-MS), phytochemicals quantification, antioxidant capacity, and antimicrobial activity. After the first round of analysis, it was observed that the FDE-Leaf and FDE-Flower showed higher antioxidant and antimicrobial activities compared to the other FDEs, for which FDE-Leaf and FDE-Flower were fractionated and analyzed in a second round. The antioxidant activity determined by ABTS showed that Lf-EtOAc and Fwr-EtOAc had the lowest IC50 values with 27.15 ± 1.04 and 28.11 ± 1.3 µg/mL, respectively. The content of total polyphenols was 264.57 ± 7.73 for Lf-EtOAc and 105.39 ± 4.04 mg G.A./g FDE for Fwr-EtOAc. Regarding the content of flavonoid, Lf-EtOAc and Fw-EtOAc had the highest concentration with 34.4 ± 1.06 and 29.45 ± 1.09 mg Q.E./g FDE. In addition, the minimum inhibitory concentration (M.I.C.) of antimicrobial activity was evaluated: Lf-EtOAc and Fwr-EtOAc were effective at 31.2 µg/mL for Staphylococcus aureus and 62.5 µg/mL for Salmonella enterica, while for the Enterococcus feacalis strain, Fwr-EtOAc presented 31.2 µg/mL of M.I.C. According to the GC-MS analysis, the main compounds were 1,2,3-Benzenetriol (Pyrogallol), with 77.38% of relative abundance in the Lf-EtOAc and 71.24% in the Fwr-EtOAc, followed by ethyl gallate (13.10%) in the Fwr-EtOAc and (Z)-9-Octadecenamide (13.63% and 6.75%) in both Lf-EtOAc and Fwr-EtOAc, respectively. Full article
Show Figures

Figure 1

25 pages, 6114 KiB  
Article
In Vitro Antioxidant and Anticancer Properties of Various E. senegalensis Extracts
by Souleymane Fofana, Cédric Delporte, Rafaèle Calvo Esposito, Moussa Ouédraogo, Pierre Van Antwerpen, Innocent Pierre Guissou, Rasmané Semdé and Véronique Mathieu
Molecules 2022, 27(8), 2583; https://doi.org/10.3390/molecules27082583 - 16 Apr 2022
Cited by 8 | Viewed by 2987
Abstract
Although Erythrina senegalensis is a plant widely used in traditional medicine in sub-Saharan Africa, its biological properties have been poorly investigated to date. We first characterized by conventional reactions the composition of several stem bark extracts and evaluated in acellular and cellular assays [...] Read more.
Although Erythrina senegalensis is a plant widely used in traditional medicine in sub-Saharan Africa, its biological properties have been poorly investigated to date. We first characterized by conventional reactions the composition of several stem bark extracts and evaluated in acellular and cellular assays their pro- or antioxidant properties supported by their high phenolic and flavonoid content, particularly with the methanolic extract. The pro- or antioxidant effects observed did not correlate with their IC50 concentrations against five cancer cell lines determined by MTT assay. Indeed, the CH2Cl2 extract and its ethyl acetate (EtOAc) subfraction appeared more potent although they harbored lower pro- or antioxidant effects. Nevertheless, at equipotent concentration, both extracts induced ER- and mitochondria-derived vacuoles observed by fluorescent microscopy that further led to non-apoptotic cell death. LC coupled to high resolution MS investigations have been performed to identify chemical compounds of the extracts. These investigations highlighted the presence of compounds formerly isolated from E. senegalensis including senegalensein that could be retrieved only in the EtOAc subfraction but also thirteen other compounds, such as 16:3-Glc-stigmasterol and hexadecanoic acid, whose anticancer properties have been previously reported. Nineteen other compounds remain to be identified. In conclusion, E. senegalensis appeared rich in compounds with antioxidant and anticancer properties, supporting its use in traditional practice and its status as a species of interest for further investigations in anticancer drug research. Full article
Show Figures

Figure 1

15 pages, 3306 KiB  
Article
Effect of Tomato Peel Extract Grown under Drought Stress Condition in a Sarcopenia Model
by Francesca Felice, Maria Michela Cesare, Luca Fredianelli, Marinella De Leo, Veronica Conti, Alessandra Braca and Rossella Di Stefano
Molecules 2022, 27(8), 2563; https://doi.org/10.3390/molecules27082563 - 15 Apr 2022
Cited by 6 | Viewed by 2212
Abstract
Tomatoes and their derivates represent an important source of natural biologically active components. The present study aims to investigate the protective effect of tomato peel extracts, grown in normal (RED-Ctr) or in drought stress (RED-Ds) conditions, on an experimental model of sarcopenia. The [...] Read more.
Tomatoes and their derivates represent an important source of natural biologically active components. The present study aims to investigate the protective effect of tomato peel extracts, grown in normal (RED-Ctr) or in drought stress (RED-Ds) conditions, on an experimental model of sarcopenia. The phenolic profile and total polyphenols content (TPC) of RED-Ctr and RED-Ds were determined by Ultra High-Performance Liquid Chromatography (UHPLC) analyses coupled to electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). Human skeletal muscle myoblasts (HSMM) were differentiated in myotubes, and sarcopenia was induced by dexamethasone (DEXA) treatment. Differentiation and sarcopenia were evaluated by both real-time PCR and immunofluorescent techniques. Data show that myosin heavy chain 2 (MYH2), troponin T (TNNT1), and miogenin (MYOG) were expressed in differentiated myotubes. 5 μg Gallic Acid Equivalent (GAE/mL) of TPC from RED-Ds extract significantly reduced muscle atrophy induced by DEXA. Moreover, Forkhead BoxO1 (FOXO1) expression, involved in cell atrophy, was significantly decreased by RED-Ds extract. The protective effect of tomato peel extracts depended on their qualitative polyphenolic composition, resulting effectively in the in vitro model of sarcopenia. Full article
Show Figures

Figure 1

9 pages, 1443 KiB  
Article
GSH Protects the Escherichia coli Cells from High Concentrations of Thymoquinone
by Robert Łyżeń, Grzegorz Gawron, Leszek Kadziński and Bogdan Banecki
Molecules 2022, 27(8), 2546; https://doi.org/10.3390/molecules27082546 - 14 Apr 2022
Cited by 2 | Viewed by 1938
Abstract
The aim of the present study was to evaluate the potential protective effect of glutathione (GSH) on Escherichia coli cells grown in a high concentration of thymoquinone (TQ). This quinone, as the main active compound of Nigella sativa seed oil, exhibits a wide [...] Read more.
The aim of the present study was to evaluate the potential protective effect of glutathione (GSH) on Escherichia coli cells grown in a high concentration of thymoquinone (TQ). This quinone, as the main active compound of Nigella sativa seed oil, exhibits a wide range of biological activities. At low concentrations, it acts as an antioxidant, and at high concentrations, an antimicrobial agent. Therefore, any interactions between thymoquinone and glutathione are crucial for cellular defense against oxidative stress. In this study, we found that GSH can conjugate with thymoquinone and its derivatives in vitro, and only fivefold excess of GSH was sufficient to completely deplete TQ and its derivatives. We also carried out studies on cultures of GSH-deficient Escherichia coli strains grown on a minimal medium in the presence of different concentrations of TQ. The strains harboring mutations in gene ΔgshA and ΔgshB were about two- and fourfold more sensitive (256 and 128 µg/mL, respectively) than the wild type. It was also revealed that TQ concentration has an influence on reactive oxygen species (ROS) production in E. coli strains—at the same thymoquinone concentration, the level of ROS was higher in GSH-deficient E. coli strains than in wild type. Full article
Show Figures

Figure 1

27 pages, 3966 KiB  
Article
Sustainable Green Processing of Grape Pomace Using Micellar Extraction for the Production of Value-Added Hygiene Cosmetics
by Tomasz Wasilewski, Zofia Hordyjewicz-Baran, Magdalena Zarębska, Natalia Stanek, Ewa Zajszły-Turko, Magdalena Tomaka, Tomasz Bujak and Zofia Nizioł-Łukaszewska
Molecules 2022, 27(8), 2444; https://doi.org/10.3390/molecules27082444 - 10 Apr 2022
Cited by 14 | Viewed by 3034
Abstract
This study sought to evaluate the possibility of using grape pomace, a waste material from wine production, for the preparation of cosmetic components. Following the existing clear research trend related to improving the safety of cleansing cosmetics, an attempt was made to determine [...] Read more.
This study sought to evaluate the possibility of using grape pomace, a waste material from wine production, for the preparation of cosmetic components. Following the existing clear research trend related to improving the safety of cleansing cosmetics, an attempt was made to determine the possibility of preparing model shower gels based on grape pomace extract. A new method for producing cosmetic components named loan chemical extraction (LCE) was developed and is described for the first time in this paper. In the LCE method, an extraction medium consisting only of the components from the final product was used. Thus, there were no additional substances in the cosmetics developed, and the formulation was significantly enriched with compounds isolated from grape pomace. Samples of the model shower gels produced were evaluated in terms of their basic parameters related to functionality (e.g., foaming properties, rheological characteristics, color) and their effect on the skin. The results obtained showed that the extracts based on waste grape pomace contained a number of valuable cosmetic compounds (e.g., organic acids, phenolic compounds, amino acids and sugars), and the model products basis on them provided colorful and safe natural cosmetics. Full article
Show Figures

Figure 1

17 pages, 6548 KiB  
Article
Nanoconjugate Synthesis of Elaeocarpus ganitrus and the Assessment of Its Antimicrobial and Antiproliferative Properties
by Arpitha Badarinath Mahajanakatti, Telugu Seetharam Deepak, Raghu Ram Achar, Sushma Pradeep, Shashanka K Prasad, Rajeswari Narayanappa, Deepthi Bhaskar, Sushravya Shetty, Govindappa Melappa, Lavanya Chandramouli, Sanjukta Mazumdar, Ekaterina Silina, Victor Stupin, Chandrashekar Srinivasa, Chandan Shivamallu and Shiva Prasad Kollur
Molecules 2022, 27(8), 2442; https://doi.org/10.3390/molecules27082442 - 10 Apr 2022
Cited by 6 | Viewed by 2785
Abstract
Cancer is one of the leading causes of death worldwide, accountable for a total of 10 million deaths in the year 2020, according to GLOBOCAN 2020. The advancements in the field of cancer research indicate the need for direction towards the development of [...] Read more.
Cancer is one of the leading causes of death worldwide, accountable for a total of 10 million deaths in the year 2020, according to GLOBOCAN 2020. The advancements in the field of cancer research indicate the need for direction towards the development of new drug candidates that are instrumental in a tumour-specific action. The pool of natural compounds proves to be a promising avenue for the discovery of groundbreaking cancer therapeutics. Elaeocarpus ganitrus (Rudraksha) is known to possess antioxidant properties and after a thorough review of literature, it was speculated to possess significant biomedical potential. Green synthesis of nanoparticles is an environmentally friendly approach intended to eliminate toxic waste and reduce energy consumption. This approach was reported for the synthesis of silver nanoparticles from two different solvent extracts: aqueous and methanolic. These were characterized by biophysical and spectroscopic techniques, namely, UV-Visible Spectroscopy, FTIR, XRD, EDX, DLS, SEM, and GC-MS. The results showed that the nanoconjugates were spherical in geometry. Further, the assessment of antibacterial, antifungal, and antiproliferative activities was conducted which yielded results that were qualitatively positive at the nanoscale. The nanoconjugates were also evaluated for their anticancer properties using a standard MTT Assay. The interactions between the phytochemicals (ligands) and selected cancer receptors were also visualized in silico using the PyRx tool for molecular docking. Full article
Show Figures

Figure 1

16 pages, 10827 KiB  
Article
Baicalein and Αlpha-Tocopherol Inhibit Toll-like Receptor Pathways in Cisplatin-Induced Nephrotoxicity
by Amira Awadalla, Mohamed R. Mahdi, Mohamed H. Zahran, Ahmed Abdelbaset-Ismail, Mohamed El-Dosoky and Amr Negm
Molecules 2022, 27(7), 2179; https://doi.org/10.3390/molecules27072179 - 28 Mar 2022
Cited by 8 | Viewed by 1945
Abstract
Cisplatin (CP) is a conventional chemotherapeutic agent with serious adverse effects. Its toxicity was linked to the stimulation of oxidative stress and inflammation. As a result, this study