The Valorisation of Melissa officinalis Distillation By-Products for the Production of Polyphenol-Rich Formulations
Abstract
:1. Introduction
2. Results
2.1. Identification and Quantification of Essential Oil Components
2.2. Identification and Quantification of Phenolic Components
2.2.1. Recovery of Phenolic Compounds and Antiradical Activity
2.2.2. Phenolic Compound Analysis
2.3. Encapsulation of the Phenolic Extract
2.3.1. Encapsulation Conditions
2.3.2. Encapsulation Yield and Efficiency
2.3.3. Shelf-Life of the Powders
3. Materials and Methods
3.1. Solvents and Reagents
3.2. Plant Material
3.3. Pretreatment Procedures
Grinding
3.4. Water–Steam Distillation
3.5. Extraction Procedure
Fixed-Bed Semi-Batch Extraction
3.6. Encapsulation
3.6.1. Preparation of Feed Mixture
3.6.2. Spray-Drying Encapsulation
3.6.3. Freeze-Drying Encapsulation
3.6.4. Storage
3.7. Analytical Procedures
3.7.1. GC-MS Analyses
- Temperature: The initial temperature of the oven was 50 °C. After the injection, the temperature rose to 100 °C at a rate of 10 °C/min, and then, reached 220 °C at a rate of 15 °C/min.
- Carrier gas: helium, at a flow rate of 1 mL/min.
- Scanning range: mass-to-charge ratios, m/z = 40–400.
3.7.2. Determination of Total Phenolic Content
3.7.3. Antiradical Capacity
3.7.4. HPLC-DAD Analyses
3.7.5. Encapsulation Yield and Efficiency
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basar, S.N.; Zaman, R. An overview of badranjboya (Melissa officinalis). Int. Res. J. Biol. Sci. 2013, 2, 107–109. [Google Scholar]
- Bogdanovic, A.; Tadic, V.; Arsic, I.; Milovanovic, S.; Petrovic, S.; Skala, D. Supercritical and high pressure subcritical fluid extraction from Lemon balm (Melissa officinalis L.; Lamiaceae). J. Supercrit. Fluids 2016, 107, 234–242. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Kejík, Z.; Kaplánek, R.; Masařík, M.; Babula, P.; Matkowski, A.; Filipenský, P.; Veselá, K.; Gburek, J.; Sýkora, D.; Martásek, P.; et al. Iron complexes of flavonoids-antioxidant capacity and beyond. Int. J. Mol. Sci. 2021, 22, 646. [Google Scholar] [CrossRef] [PubMed]
- Draginic, N.D.; Jakovljevic, V.L.; Jeremic, J.N.; Srejovic, I.M.; Andjic, M.M.; Rankovic, M.R.; Sretenovic, J.Z.; Zivkovic, V.I.; Ljujic, B.T.; Mitrovic, S.L.; et al. Melissa officinalis L. Supplementation Provides Cardioprotection in a Rat Model of Experimental Autoimmune Myocarditis. Oxidative Med. Cell. Longev. 2022, 2022, 1344946. [Google Scholar] [CrossRef]
- Mabrouki, H.; Duarte, C.M.M.; Akretche, D.E. Estimation of total phenolic contents and in vitro antioxidant and antimicrobial activities of various solvent extracts of Melissa officinalis L. Arab. J. Sci. Eng. 2018, 43, 3349–3357. [Google Scholar] [CrossRef]
- Tülek, Z.; Alaşalvar, H.; Başyiğit, B.; Berktas, S.; Salum, P.; Erbay, Z.; Telci, I.; Çam, M. Extraction optimization and microencapsulation of phenolic antioxidant compounds from lemon balm (Melissa officinalis L.): Instant soluble tea production. J. Food Process. Preserv. 2021, 45, e14995. [Google Scholar] [CrossRef]
- Palamutoğlu, R.; Kasnak, C.; Dursun, M.; Ünaldi, R.N.; Özkaplan, N. Determination of Phenolic contents and antioxidant activities of infusions prepaered from lemongrass (Melissa officinalis). Carpathian J. Food Sci. Technol. 2022, 14, 98–109. [Google Scholar]
- Fecka, I.; Turek, S. Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: Peppermint, melissa, and sage. J. Agric. Food Chem. 2007, 55, 10908–10917. [Google Scholar] [CrossRef]
- Barros, L.; Dueñas, M.; Dias, M.I.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C. Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chem. 2013, 136, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.N.; Cadavez, V.; Caleja, C.; Pereira, E.; Calhelha, R.C.; Añibarro-Ortega, M.; Finimundy, T.; Kostić, M.; Soković, M.; Teixeira, J.A.; et al. Phytochemical composition and bioactive potential of Melissa officinalis L.; Salvia officinalis L. and Mentha spicata L. extracts. Foods 2023, 12, 947. [Google Scholar] [CrossRef] [PubMed]
- Caniova, A.; Brandsteterova, E. HPLC analysis of phenolic acids in Melissa officinalis. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 2647–2659. [Google Scholar] [CrossRef]
- Sik, B.; Hanczné, E.L.; Kapcsándi, V.; Ajtony, Z. Conventional and nonconventional extraction techniques for optimal extraction processes of rosmarinic acid from six Lamiaceae plants as determined by HPLC-DAD measurement. J. Pharm. Biomed. Anal. 2020, 184, 113173. [Google Scholar] [CrossRef] [PubMed]
- Angelov, P.; Condoret, J.S. Optimization of operational conditions of ethanol extraction of Rosmarinic acid from lemon balm (Melissa officinalis L.). Chem. Book 2007, 5, 71–77. [Google Scholar]
- Wang, H.; Provan, G.J.; Helliwell, K. Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem. 2004, 87, 307–311. [Google Scholar] [CrossRef]
- Kim, S.; Yun, E.J.; Bak, J.S.; Lee, H.; Lee, S.J.; Kim, C.T.; Lee, J.H.; Kim, K.H. Response surface optimised extraction and chromatographic purification of rosmarinic acid from Melissa officinalis leaves. Food Chem. 2010, 121, 521–526. [Google Scholar] [CrossRef]
- Duda, S.C.; Mărghitaş, L.A.; Dezmirean, D.; Duda, M.; Mărgăoan, R.; Bobiş, O. Changes in major bioactive compounds with antioxidant activity of Agastache foeniculum, Lavandula angustifolia, Melissa officinalis and Nepeta cataria: Effect of harvest time and plant species. Ind. Crops Prod. 2015, 77, 499–507. [Google Scholar] [CrossRef]
- Petrisor, G.; Motelica, L.; Craciun, L.N.; Oprea, O.C.; Ficai, D.; Ficai, A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems—A Review. Int. J. Mol. Sci. 2022, 23, 3591. [Google Scholar] [CrossRef]
- Carvalho, F.; Duarte, A.P.; Ferreira, S. Antimicrobial activity of Melissa officinalis and its potential use in food preservation. Food Biosci. 2021, 44, 101437. [Google Scholar] [CrossRef]
- Moradpour, M.; Ghoran, S.H.; Asghari, J. Phytochemical investigation of Melissa officinalis L. flowers from Northern part of Iran (Kelardasht). J. Med. Plants Stud. 2017, 5, 176–181. [Google Scholar]
- Chizzola, R.; Lohwasser, U.; Franz, C. Biodiversity within Melissa officinalis: Variability of bioactive compounds in a cultivated collection. Molecules 2018, 23, 294. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Sahebkar, A.; Javadi, B. Melissa officinalis L.—A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 188, 204–228. [Google Scholar] [CrossRef]
- Herodež, Š.S.; Hadolin, M.; Škerget, M.; Knez, Ž. Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food Chem. 2003, 80, 275–282. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Choulitoudi, E.; Bimpilas, A.; Mitropoulou, G.; Kourkoutas, Y.; Oreopoulou, V. Exploitation of the biological potential of Satureja thymbra essential oil and distillation by-products. J. Appl. Res. Med. Aromat. Plants 2017, 4, 12–20. [Google Scholar] [CrossRef]
- Papoti, V.T.; Totomis, N.; Atmatzidou, A.; Zinoviadou, K.; Androulaki, A.; Petridis, D.; Ritzoulis, C. Phytochemical content of Melissa officinalis L. herbal preparations appropriate for consumption. Processes 2019, 7, 88. [Google Scholar] [CrossRef]
- Ibragić, S.; Salihović, M.; Tahirović, I.; Toromanović, J. Quantification of some phenolic acids in the leaves of Melissa officinalis L. from Turkey and Bosnia. Bull. Chem. Tech. Bosnia Herzeg. 2014, 42, 47–50. [Google Scholar]
- Marques, V.; Farah, A. Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem. 2009, 113, 1370–1376. [Google Scholar] [CrossRef]
- Siahpoush, A.; Ghasemi, N.; Ardakani, M.S.; Asghari, G. Production of chlorogenic acid in Varthemia persica DC (var. persica) callus cultures. Res. Pharm. Sci. 2011, 6, 63. [Google Scholar]
- Szopa, A.; Kokotkiewicz, A.; Kubica, P.; Banaszczak, P.; Wojtanowska-Krośniak, A.; Krośniak, M.; Ekiert, H. Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. prunifolia and their antioxidant activities. Eur. Food Res. Technol. 2017, 243, 1645–1657. [Google Scholar] [CrossRef]
- Miron, T.L.; Herrero, M.; Ibáñez, E. Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction. J. Chromatogr. A 2013, 1288, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Barros, L.; Calhelha, R.C.; Ćirić, A.; Soković, M.; Santos-Buelga, C.; Morales, P.; Ferreira, I.C. Melissa officinalis L. decoctions as functional beverages: A bioactive approach and chemical characterization. Food Funct. 2015, 6, 2240–2248. [Google Scholar] [CrossRef]
- Berker, K.I.; Ozdemir Olgun, F.A.; Ozyurt, D.; Demirata, B.; Apak, R. Modified Folin–Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants. J. Agric. Food Chem. 2013, 61, 4783–4791. [Google Scholar] [CrossRef]
- Mahdavi, S.A.; Jafari, S.M.; Assadpoor, E.; Dehnad, D. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int. J. Biol. Macromol. 2016, 85, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, N.K.; Tan, C.P.; Manap, Y.A.; Muhialdin, B.J.; Hussin, A.S.M. Spray drying for the encapsulation of oils—A review. Molecules 2020, 25, 3873. [Google Scholar] [CrossRef]
- Kanakidi, L.D.; Tsimogiannis, D.; Kiokias, S.; Oreopoulou, V. Formulation of rosemary extracts through spray-drying encapsulation or emulsification. Nutraceuticals 2022, 2, 1–21. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Zhang, W.; Kou, G.; Zhou, Z. Physical stability and antioxidant activity of citrus flavonoids in arabic gum-stabilized microcapsules: Modulation of whey protein concentrate. Food Hydrocoll. 2018, 77, 588–597. [Google Scholar] [CrossRef]
- Esfanjani, A.F.; Jafari, S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B Biointerfaces 2016, 146, 532–543. [Google Scholar] [CrossRef]
- González-Ortega, R.; Faieta, M.; Di Mattia, C.D.; Valbonetti, L.; Pittia, P. Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders. J. Food Eng. 2020, 285, 110089. [Google Scholar] [CrossRef]
- Ziagova, M.G.; Mavromatidou, C.; Samiotis, G.; Amanatidou, E. Enhancing Phenolic Content of Medicinal Aromatic Plants Extracts-Biofunctional Foods Preparation. Plants 2021, 11, 76. [Google Scholar] [CrossRef]
- Da Silva, F.C.; da Fonseca, C.R.; de Alencar, S.M.; Thomazini, M.; de Carvalho Balieiro, J.C.; Pittia, P.; Favaro-Trindade, C.S. Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum Arabic and OSA starch-based carrier systems. Food Bioprod. Process. 2013, 91, 28–36. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Katsimichas, A.; Tsimogiannis, D.; Oreopoulou, V.; Taoukis, P. Cell permeabilization processes for improved encapsulation of oregano essential oil in yeast cells. J. Food Eng. 2021, 294, 110408. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Oreopoulou, V. A kinetic study of essential oil components distillation for the recovery of carvacrol rich fractions. J. Appl. Res. Med. Aromat. Plants 2018, 9, 117–123. [Google Scholar] [CrossRef]
- Choulitoudi, E.; Bravou, K.; Bimpilas, A.; Tsironi, T.; Tsimogiannis, D.; Taoukis, P.; Oreopoulou, V. Antimicrobial and antioxidant activity of Satureja thymbra in gilthead seabream fillets edible coating. Food Bioprod. Process. 2016, 100, 570–577. [Google Scholar] [CrossRef]
- Kaloudi, T.; Tsimogiannis, D.; Oreopoulou, V. Aronia melanocarpa: Identification and exploitation of its phenolic components. Molecules 2022, 27, 4375. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
No. | Compound | RI | Ci (%) |
---|---|---|---|
1 | δ-car-3-ene | 1014 | 4.0 |
2 | 1,3,8-p-menthatriene | 1125 | 28.8 |
3 | cis-citral (neral) | 1273 | 49.6 |
4 | thymol | 1296 | 0.2 |
5 | (Ε)-β-caryophyllene | 1437 | 16.6 |
6 | alpha-caryophyllene | 1489 | 0.8 |
Compound | Concentration (mg/g) Dry Extract | Yield (mg/gdw) |
---|---|---|
Rosmarinic acid | 73.5 | 25.3 |
Higher derivatives of caffeic acid | 31 | 10.7 |
Luteolin-7-O-glucuronide | 9.9 | 1.9 |
Chlorogenic acid | 4.3 | 1.5 |
Neochlorogenic acid | 47.2 | 16.3 |
Sum | 165.9 | 55.7 |
Total Phenolic Content | Yield (%) | Efficiency (%) |
---|---|---|
Spray-Drying/Maltodextrin | 100 ± 1 | 96.8 ± 0.4 |
Spray-Drying/Gum Arabic–Maltodextrin | 93 ± 4 | 96.5 ± 0.2 |
Freeze-Drying/Maltodextrin | 89 ± 1 | 97.9 ± 0.1 |
Freeze-Drying/Gum Arabic–Maltodextrin | 90 ± 4 | 98.5 ± 0.1 |
Rosmarinic acid content | ||
Spray-Drying/Maltodextrin | 100.5 ± 0.1 | 94.0 ± 1.0 |
Spray-Drying/Gum Arabic–Maltodextrin | 99.6 ± 0.9 | 94.5 ± 0.6 |
Freeze-Drying/Maltodextrin | 101.2 ± 0.4 | 97.4 ± 0.1 |
Freeze-Drying/Gum Arabic–Maltodextrin | 95 ± 3 | 97.7 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stini, E.; Tsimogiannis, D.; Oreopoulou, V. The Valorisation of Melissa officinalis Distillation By-Products for the Production of Polyphenol-Rich Formulations. Molecules 2024, 29, 377. https://doi.org/10.3390/molecules29020377
Stini E, Tsimogiannis D, Oreopoulou V. The Valorisation of Melissa officinalis Distillation By-Products for the Production of Polyphenol-Rich Formulations. Molecules. 2024; 29(2):377. https://doi.org/10.3390/molecules29020377
Chicago/Turabian StyleStini, Eirini, Dimitrios Tsimogiannis, and Vassiliki Oreopoulou. 2024. "The Valorisation of Melissa officinalis Distillation By-Products for the Production of Polyphenol-Rich Formulations" Molecules 29, no. 2: 377. https://doi.org/10.3390/molecules29020377
APA StyleStini, E., Tsimogiannis, D., & Oreopoulou, V. (2024). The Valorisation of Melissa officinalis Distillation By-Products for the Production of Polyphenol-Rich Formulations. Molecules, 29(2), 377. https://doi.org/10.3390/molecules29020377