Determination of Hypoglycemic, Hypolipidemic and Nephroprotective Effects of Berberis Calliobotrys in Alloxan-Induced Diabetic Rats
Abstract
:1. Introduction
2. Results
3. Material and Methods
- In vitro anti-glycation activity using BSA-Glucose method: The protein glycation inhibition was studied by adopting methodology of Matsuura et al., 2002 [17]. The 2 mL of reaction mixture containing glucose (200 mM), BSA i.e., bovine serum albumin (800 ug/mL) and phosphate buffer saline (1 mL; pH 7.4), with extract (1, 0.5 and 0.25 mg/mL) and without extract, was incubated for 7 days at 37 °C in the presence of sodium azide, NaN3 (0.2 g/L). Amino guanidine, AG (1 mg/mL) was employed as reference drug. The fluorescence intensity was noted at excitation (370 nm) and emission (440 nm) wavelengths with Perkin Elmer LS-50B spectrofluorometer. Results were stated as percentage inhibition (1).
- b.
- In vitro anti-glycation activity using BSA-Methylglyoxal method: The protein glycation inhibition at middle stage was investigated in accordance with the method of Peng et al., 2008 [19]. The 300 μL of BSA (10 mg/mL) was combined with 30 μL of MGO (500 mM) in the presence of 0.2 g/L, NaN3. Mixture was incubated at 37 °C, with and without plant extract. AG (1 mg/mL) was used as reference standard. The fluorescence intensity was observed with Perkin Elmer LS-50B spectrophotometer at excitation (370 nm) and emission (420 nm) wavelengths. The percentage inhibition was calculated via Formula (2), mentioned below:
3.1. In Vivo Experiment Protocol
3.2. Hypoglycemic Activity in Oral Glucose Loaded Rats (OGTT)
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Adewole, S.; Ojewole, J. Protective effects of Annona muricata linn. (Annonaceae) leaf aqueous extract on serum lipid profiles and oxidative stress in hepatocytes of streptozotocin-treated diabetic rats. Afr. J. Tradit. Complement. Altern. Med. 2010, 6, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Lanjhiyana, S.; Garabadu, D.; Ahirwar, D.; Bigoniya, P.; Rana, A.C.; Patra, K.C.; Karuppaih, M. Hypoglycemic activity studies on root extracts of Murraya koenigii root in Alloxan-induced diabetic rats. J. Nat. Prod. Plant Resour. 2011, 1, 91–104. [Google Scholar]
- Liu, B.; Wang, Y.; Zhang, Y.; Yan, B. Mechanisms of protective effects of SGLT2 inhibitors in cardiovascular disease and renal dysfunction. Curr. Top. Med. Chem. 2019, 19, 1818–1849. [Google Scholar] [CrossRef] [PubMed]
- Brantner, A.; Al-Ajlani, M.; Zhou, Y.; Zhao, H.; Bian, B. Screening for biological activities of the traditional Chinese medicine Fang Feng Tong Shen San. IJPSR 2017, 8, 3278–3286. [Google Scholar]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004, 27, 1047–1053. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Wareham, N.J. Epidemiology of diabetes. Medicine 2019, 47, 22–27. [Google Scholar] [CrossRef]
- Sudasinghe, H.P.; Peiris, D.C. Hypoglycemic and hypolipidemic activity of aqueous leaf extract of Passiflora suberosa L. PeerJ 2018, 6, e4389. [Google Scholar] [CrossRef]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 24, 6. [Google Scholar] [CrossRef] [PubMed]
- Usman, B.; Sharma, N.; Satija, S.; Mehta, M.; Vyas, M.; Khatik Dua, K. Recent developments in alpha-glucosidase inhibitors for management of type-2 diabetes: An update. Curr. Pharm. Des. 2019, 25, 2510–2525. [Google Scholar] [CrossRef]
- Lankatillake, C.; Huynh, T.; Dias, D.A. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods 2019, 15, 105. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, M.S.; Shah, S.B.; Rasheed, T.; Iqbal, H. Diabetic complications and insight into antidiabetic potentialities of ethno-medicinal plants: A review Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Najeebullah, S.; Ali, M.; Shinwari, Z.K. Phytopharmacological and ethnomedicinal uses of the Genus Berberis (Berberidaceae): A review. Trop. J. Pharm. Res. 2016, 15, 2047–2057. [Google Scholar] [CrossRef]
- Khan, S.; Nazir, M.; Saleem, H.; Raiz, N.; Saleem, M.; Anjum Mahomoodally, F.M. Valorization of the antioxidant, enzyme inhibition and phytochemical propensities of Berberis calliobotrys Bien ex Koehne: A multifunctional approach to probe for bioactive natural products. Ind. Crop. Prod. 2019, 141, 11693. [Google Scholar] [CrossRef]
- Karakaya, S.; Göger, G.; Bostanlik, F.D.; Demirci, B.; Duman, H.; Kilic, C.S. Comparison of the essential oils of Ferula orientalis L., Ferulago sandrasica Peşmen and Quézel, and Hippomarathrum microcarpum Petrov and their antimicrobial activity. Turk. J. Pharm. Sci. 2019, 16, 69. [Google Scholar] [CrossRef] [PubMed]
- Edeoga, H.O.; Okwu, D.; Mbaebie, B. Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol. 2005, 4, 685–688. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. Trees. Food Chem. 2007, 104, 1106–1114. [Google Scholar] [CrossRef]
- Matsuura, N.; Aradate, T.; Sasaki, C.; Kojima, H.; Ohara, M.; Hasegawa, J.; Ubukata, M. Screening system for the Maillard reaction inhibitor from natural product extracts. J. Health Sci. 2002, 48, 520–526. [Google Scholar] [CrossRef]
- Kaewnarin, K.; Suwannarach, N.; Kumla, J.; Choonpicharn, S.; Tanreuan, K.; Lumyong, S. Characterization of polysaccharides from wild edible mushrooms from Thailand and their antioxidant, antidiabetic, and antihypertensive activities. Int. J. Med. Mushrooms 2020, 22, 221–233. [Google Scholar] [CrossRef]
- Peng, X.; Cheng, K.-W.; Ma, J.; Chen, B.; Ho, C.-T.; Lo, C.; Wang, M. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J. Agric. Food Chem. 2008, 56, 1907–1911. [Google Scholar] [CrossRef]
- Kemasari, P.; Sangeetha, S.; Venkatalakshmi, P. Antihyperglycemic activity of Mangifera indica Linn. in alloxan induced diabetic rats. J. Chem. Pharm. Res. 2011, 3, 653–659. [Google Scholar]
- Patel, D.; Kumar, R.; Prasad, S.; Sairam, K.; Hemalatha, S. Antidiabetic and in-vitro antioxidant potential of Hybanthus enneaspermus (Linn) F. Muell in streptozotocin–induced diabetic rats. Asian Pac. J. Trop. Biomed. 2011, 1, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Pandurangan, A.; Koul, S.; Sharma, B. Antidiabetic potential of Berberis aristata bark in alloxan induced diabetic rats. Int. J. Pharm. Sci. Res. 2012, 3, 4425. [Google Scholar]
- Irshad, N.; Akhtar, M.S.; Bashir, S.; Hussain, A.; Shafiq, M.; Iqbal, J.; Malik, A. Hypoglycaemic effects of methanolic extract of Canscora decussata (Schult) whole-plant in normal and alloxan-induced diabetic rabbits. Pak. J. Pharm. Sci. 2015, 28, 167–174. [Google Scholar] [PubMed]
- Akhtar, M.S.; Zafar, M.; Irfan, H.M.; Bashir, S. Hypoglycemic effect of a compound herbal formulation (Ziabeen) on blood glucose in normal and alloxan-diabetic rabbits. Diabetol. Croat. 2012, 41, 87–94. [Google Scholar]
- Stanely, P.; Prince, M.; Menon, V.P. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J. Ethnopharmacol. 2000, 70, 9–15. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. Multiple comparison analysis testing in ANOVA. Biochem. Med. 2011, 21, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Meliani, N.; Dib ME, A.; Allali, H.; Tabti, B. Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Biomed. 2011, 1, 468–471. [Google Scholar] [CrossRef]
- Cicero, A.F.; Tartagni, E. Antidiabetic properties of berberine: From cellular pharmacology to clinical effects. Hosp. Pract. 2012, 40, 56–63. [Google Scholar] [CrossRef]
- Chang, W.; Chen, L.; Hatch, G.M. Berberine as a therapy for type 2 diabetes and its complications: From mechanism of action to clinical studies. Biochem. Cell Biol. 2015, 93, 479–486. [Google Scholar] [CrossRef]
- Ali Asgar, M. Anti-diabetic potential of phenolic compounds: A review. Int. J. Food Prop. 2013, 16, 91–103. [Google Scholar] [CrossRef]
- Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine 2020, 3, 152906. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.I.; Rahman, S.A.; Leong, Y.-H.; Azizul, N.H. A review on the phytochemicals of Parkia Speciosa, stinky beans as potential Phytomedicine. J. Food Sci. Nutr. Res. 2019, 2, 151–173. [Google Scholar]
- Qayyum, A.; Sarfraz, R.A.; Ashraf, A.; Adil, S. Phenolic composition and biological (anti diabetic and antioxidant) activities of different solvent extracts of an endemic plant (Heliotropium strigosum). J. Chil. Chem. Soc. 2016, 61, 2828–2831. [Google Scholar] [CrossRef]
- Ahmad, M.; Alamgeer, S.T. A potential adjunct to insulin: Berberis lycium Royle. Diabetol Croat 2009, 8, 13–18. [Google Scholar]
- Yin, J.; Ye, J.; Jia, W. Effects and mechanisms of berberine in diabetes treatment. Acta Pharm. Sin. B 2012, 2, 327–334. [Google Scholar] [CrossRef]
- Mooradian, A.D. Dyslipidemia in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2009, 5, 150–159. [Google Scholar] [CrossRef]
- Shetgiri, P.; Darji, K.; D’mello, P. Evaluation of antioxidant and antihyperlipidemic activity of extracts rich in polyphenols. Int. J. Phytomed. 2010, 2, 267–276. [Google Scholar]
- Ibrahim, R.M.; El-Halawany, A.M.; Saleh, D.O.; El Naggar, E.M.B.; El-Shabrawy, A.E.-R.O.; El-Hawary, S.S. HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev. Bras. De Farmacogn. 2015, 25, 134–141. [Google Scholar] [CrossRef]
- Sachdewa, A.; Khemani, L. Effect of Hibiscus rosa sinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin induced diabetes in rats. J. Ethnopharmacol. 2003, 89, 61–66. [Google Scholar] [CrossRef]
- Makare, N.; Bodhankar, S.; Rangari, V. Immunomodulatory activity of alcoholic extract of Mangifera indica L. in mice. J. Ethnopharmacol. 2001, 78, 133–137. [Google Scholar] [CrossRef]
- Selvaraj, N.; Bobby, Z.; Sridhar, M.G. Increased glycation of hemoglobin in chronic renal failure patients and its potential role of oxidative stress. Arch. Med. Res. 2008, 39, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Khangholi, S.; Majid, F.A.A.; Berwary, N.J.A.; Ahmad, F.; Abd Aziz, R.B. The mechanisms of inhibition of advanced glycation end products formation through polyphenols in hyperglycemic condition. Planta Med. 2016, 82, 32–45. [Google Scholar] [CrossRef] [PubMed]
Identification Tests | Methanol Extract | Ethyl Acetate Fraction | n-Butanol Fraction | Aqueous Fraction |
---|---|---|---|---|
Carbohydrates | ||||
Molisch test | + | - | + | + |
Benedict’s test | + | - | - | + |
Proteins | ||||
Ninhydrin test | - | - | - | - |
Millons test | + | - | + | + |
Alkaloids | ||||
Mayer’s test | + | + | + | + |
Dragendorff’s test | + | + | + | + |
Wagner’s test | + | - | + | + |
Hager’s test | + | - | + | + |
Glycosides | ||||
Keller-Killiani test | + | + | + | + |
Legal’s test | + | - | + | + |
Tannins, Phenols | ||||
Ferric chloride test | + | - | + | + |
Bromine water test | - | + | + | + |
Fats and Fixed Oils | ||||
Spot test | + | - | + | - |
Flavonoids | ||||
Lead acetate test | + | - | + | + |
Alkaline reagent test | + | - | - | - |
Saponins | ||||
Foam test | + | - | + | - |
Terpenoids | ||||
Salkowski test | + | + | - | - |
Lieber Burchard test | + | - | - | + |
Sr. No | Compound | Retention Time (min) | Area (mV) | Area (%) | Quantity (ppm) |
---|---|---|---|---|---|
1 | Quercetin | 2.913 | 84.558 | 0.7 | 4.45 ± 0.02 |
2 | Gallic acid | 4.647 | 78.887 | 0.6 | 2.83 ± 0.04 |
3 | Caffeic acid | 11.920 | 71.175 | 0.6 | 3.26 ± 0.03 |
4 | Vanillic acid | 13.293 | 649.745 | 5.2 | 40.23 ± 0.03 |
5 | chlorogenic acid | 15.013 | 1069.443 | 8.6 | 84.44 ± 0.06 |
6 | p-coumeric acid | 17.960 | 1000.535 | 8.0 | 13.21 ± 0.04 |
7 | Trans-4-hydroxyl,3-methoxy cinnamic acid | 25.367 | 89.406 | 0.7 | 3.11 ± 0.02 |
Treatment Groups | Conc. (mg/mL) | % Age Inhibition of Protein Glycation | |
---|---|---|---|
BSA-MGO Method | BSA-Glucose Method | ||
Methanol extract | 1 | 81% | 91% |
0.5 | 72% | 82% | |
0.25 | 62% | 75% | |
Butanol fraction | 1 | 80% | 60% |
0.5 | 60% | 75% | |
0.25 | 57% | 68% | |
Ethyl acetate fraction | 1 | 70% | 77% |
0.5 | 65% | 69% | |
0.25 | 52% | 60% | |
Aqueous fraction | 1 | 49% | 64% |
0.5 | 38% | 58% | |
0.25 | 31% | 47% | |
Amino guanidine | 1 | 84% | 86% |
0.5 | 76% | 76% |
Treatment Groups | Decrease in Blood Glucose Level in Normal Rats | Decrease in Blood Glucose Level in Diabetic Rats | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 2 h | 4 h | 6 h | 8 h | 24 h | 0 h | 2 h | 4 h | 6 h | 8 h | 24 h | |
Methanol extract 200 mg/kg | 89.0 ± 1.3 | 85.8 ± 0.2 * | 82.0 ± 0.8 ** | 74.7 ± 0.5 ** | 72.5 ± 0.9 ** | 86.8 ± 0.9 ns | 438.0 ± 1.9 | 425.7 ± 1.4 * | 391.2 ± 1.0 * | 362.5 ± 0.7 ** | 355.0 ± 2.1 ** | 421.8 ± 1.0 * |
Methanol extract 400 mg/kg | 89.3 ± 0.9 | 83.0 ± 1.5 ** | 75.7 ± 0.9 ** | 66.1 ± 0.8 ** | 62.3 ± 0.3 ** | 78.2 ± 0.9 ** | 438.5 ± 2.5 | 398.0 ± 1.6 ** | 358.0 ± 1.9 ** | 302.0 ± 2.7 ** | 278.0 ± 1.1 ** | 392.0 ± 2.0 ** |
Methanol extract 600 mg/kg | 90.2 ± 1.3 | 78.0 ± 0.8 ** | 66.7 ± 0.8 ** | 60.7 ± 1.1 ** | 57.3 ± 0.5 ** | 74.5 ± 1.5 | 439.0 ± 1.7 | 374.5 ± 0.8 ** | 320.7 ± 3.0 ** | 285.5 ± 2.4 ** | 251.8 ± 1.4 ** | 350.6 ± 1.7 ** |
Butanol fraction 200 mg/kg | 90.0 ± 1.4 | 86.0 ± 0.4 * | 84.3 ± 1.6 * | 77.5 ± 1.0 ** | 75.1 ± 0.8 ** | 87.8 ± 0.8 ns | 436.7 ± 1.5 | 426.8 ± 0.9 * | 404.8 ± 3.2 ** | 385.0 ± 2.7 ** | 381.67 ± 1.7 ** | 430.5 ± 2.2 ns |
Butanol fraction 400 mg/kg | 90.5 ± 0.8 | 84.8 ± 0.4 * | 75.1 ± 0.6 ** | 68.7 ± 1.0 ** | 65.5 ± 0.4 ** | 84.0 ± 0.4 ** | 434.0 ± 0.67 | 401.5 ± 1.0 ** | 69.7 ± 2.9 ** | 328.3 ± 1.8 ** | 309.3 ± 1.5 ** | 397.0 ± 0.8 ** |
Butanol fraction 600 mg/kg | 91.0 ± 0.6 | 77.5 ± 1.6 ** | 70.5 ± 1.3 ** | 62.8 ± 0.8 ** | 59.0 ± 0.6 ** | 79.0 ± 0.5 ** | 435.7 ± 1.0 | 376.0 ± 2.2 ** | 322.0 ± 0.9 ** | 297.2 ± 2.6 ** | 277.8 ± 1.3 ** | 361.9 ± 1.9 ** |
EA fraction 200 mg/kg | 90.3 ± 1.2 | 88.5 ± 0.7 ns | 84.7 ± 0.5 * | 78.5 ± 1.3 ** | 78.0 ± 0.4 ** | 87.0 ± 0.8 ns | 437.0 ± 0.6 | 434.2 ± 0.7 ns | 427.8 ± 1.0 * | 418.7 ± 2.3 ** | 414.0 ± 3.4 ** | 431.0 ± 1.6 ns |
EA fraction 400 mg/kg | 89.0 ± 0.4 | 86.5 ± 0.3 * | 79.3 ± 0.4 ** | 74.5 ± 1.0 ** | 72.7 ± 2.0 ** | 84.8 ± 0.3 * | 436.0 ± 0.9 | 427.2 ± 1.4 * | 403.67 ± 1.8 ** | 379.7 ± 1.1 ** | 371.0 ± 2.8 ** | 414.2 ± 3.2 ** |
EA fraction 600 mg/kg | 90.0 ± 0.6 | 84.8 ± 0.9 * | 75.3 ± 0.5 ** | 71.0 ± 1.0 ** | 67.7 ± 0.9 ** | 80.5 ± 0.2 ** | 439.2 ± 3.1 | 400.0 ± 1.9 ** | 376.0 ± 2.0 * | 340.8 ± 1.6 ** | 313.2 ± 1.7 ** | 394.3 ± 0.8 ** |
Aqueous fraction 200 mg/kg | 90.5 ± 1.2 | 89.0 ± 0.4 ns | 87.3 ± 0.7 ns | 84.8 ± 0.4 * | 84.3 ± 1.1 * | 887 ± 0.7 ns | 436.3 ± 1.0 | 435.0 ± 0.9 ns | 431.2 ± 1.31 ns | 427.7 ± 0.7 * | 423.84 ± 0.8 * | 435.0 ± 0.8 ns |
Aqueous fraction 400 mg/kg | 91.3 ± 1.2 | 87.5 ± 0.6 ns | 85.3 ± 0.3 * | 81.9 ± 0.7 ** | 79.5 ± 0.7 ** | 86.3 ± 0.6 * | 438.0 ± 0.9 | 432.2 ± 0.9 ns | 426.0 ± 1.0 * | 410.3 ± 1.9 ** | 399.0 ± 1.5 ** | 430.5 ± 1.8 * |
Aqueous fraction 600 mg/kg | 90.0 ± 1.0 | 84.3 ± 0.4 * | 81.5 ± 0.6 ** | 78.2 ± 0.9 ** | 75.7 ± 0.6 ** | 84.0 ± 0.5 * | 437.0 ± 1.9 | 424.2 ± 1.6 * | 412.8 ± 2.1 ** | 391.0 ± 2.2 ** | 383.5 ± 2.7 ** | 428.0 ± 1.8 ns |
Glibenclamide 10 mg/kg | 91.5 ± 0.7 | 81.3 ± 0.7 ** | 74.5 ± 0.9 ** | 70.7 ± 0.4 ** | 67.8 ± 0.9 ** | 82.7 ± 0.5 ** | 437.3 ± 2.21 | 433.7 ± 1.0 ns | 430.8 ± 1.53 * | 427.0 ± 0.99 * | 428.0 ± 1.8 ns | 436.0 ± 2.9 ns |
2% Gum Acacia 2 ml/kg | 90.0 ± 0.8 | 89.7 ± 0.4 | 89.5 ± 1.0 | 88.3 ± 0.9 | 88.0 ± 1.3 | 90.0 ± 0.9 | 437.6 ± 2.2 | 437.0 ± 1.0 | 436.3 ± 1.5 | 436.0 ± 0.9 | 435.0 ± 1.8 | 436.5 ± 2.9 |
Treatment Groups | Decrease in Blood Glucose Level | ||||||
---|---|---|---|---|---|---|---|
0 min | 30 min | 60 min | 90 min | 120 min | 150 min | 180 min | |
Methanol extract 200 mg/kg | 89.6 ± 0.3 | 106.2 ± 0.9 ** | 98.7 ± 0.5 * | 93.2 ± 0.3 * | 89.0 ± 1.0 ns | 87.0 ± 1.2 * | 84.0 ± 2.8 * |
Methanol extract 400 mg/kg | 90.2 ± 0.5 | 96.5 ± 0.4 * | 89.3 ± 1.3 NS | 85.5 ± 0.9 * | 77.3 ± 0.6 ** | 74.7 ± 0.83 ** | 70.50 ± 1.26 ** |
Methanol extract 600 mg/kg | 90.00 ± 0.91 | 86.67 ± 1.04 * | 80.33 ± 1.28 ** | 74.50 ± 0.77 ** | 70.00 ± 0.7 ** | 68.0 ± 0.9 ** | 66.5 ± 0.9 ** |
Butanol fraction 200 mg/kg | 90.5 ± 0.9 | 112.3 ± 2.5 ** | 103.2 ± 1.0 ** | 100.0 ± 0.7 ** | 96.2 ± 0.8 * | 92.8 ± 0.6 ns | 89.1 ± 1.0 ns |
Butanol fraction 400 mg/kg | 89.0 ± 0.3 | 92.3 ± 0.8 ns | 84.7 ± 0.9 * | 81.8 ± 0.7 ** | 77.0 ± 0.5 ** | 73.2 ± 1.1 ** | 71.3 ± 0.9 ** |
Butanol fraction 600 mg/kg | 89.0 ± 1.9 | 87.0 ± 1.0 ns | 81.5 ± 0.8 ** | 77.3 ± 0.9 ** | 74.8 ± 0.8 ** | 71.5 ± 0.9 ** | 69.3 ± 1.2 ** |
EA fraction 200 mg/kg | 89.5 ± 0.3 | 125.3 ± 0.6 ** | 117.0 ± 1.5 ** | 109.7 ± 0.6 ** | 102.8 ± 0.9 ** | 96.2 ± 0.4 * | 94.5 ± 1.6 * |
EA fraction 400 mg/kg | 90.0 ± 0.3 | 121.2 ± 0.5 ** | 106.0 ± 0.6 ** | 96.0 ± 1.5 * | 94.0 ± 2.3 * | 89.7 ± 1.5 ns | 85.0 ± 0.7 * |
EA fraction 600 mg/kg | 89.0 ± 0.7 | 96.8 ± 1.9 * | 90.2 ± 1.4 ns | 85.7 ± 0.7 * | 83.3 ± 0.8 * | 74.0 ± 0.4 ** | 71.5 ± 1.9 ** |
Aqueous fraction 200 mg/kg | 90.2 ± 1.3 | 127.5 ± 0.6 ** | 123.0 ± 0.7 ** | 114.5 ± 1.0 ** | 104.3 ± 2.3 ** | 101.7 ± 1.2 ** | 97.8 ± 0.9 * |
Aqueous fraction 400 mg/kg | 90.3 ± 0.6 | 125.5 ± 0.3 ** | 117.0 ± 1.0 ** | 108.7 ± 1.3 ** | 96.8 ± 0.8 * | 93.2 ± 2.6 ns | 91.8 ± 1.6 ns |
Aqueous fraction 600 mg/kg | 89.0 ± 2.6 | 118.3 ± 0.6 ** | 107.5 ± 0.5 ** | 96.8 ± 2.5 * | 89.7 ± 1.5 ns | 87.3 ± 1.3 ns | 84.7 ± 0.4 ns |
Glibenclamide 10 mg/kg | 89.5 ± 0.7 | 101.6 ± 0.5 ** | 95.0 ± 0.4 * | 84.5 ± 0.8 * | 80.2 ± 0.7 ** | 78.5 ± 1.3 ** | 74.8 ± 1.4 ** |
2% Gum Acacia 2 ml/kg | 90.3 ± 0.4 | 128.7 ± 1.3 | 125.0 ± 0.8 | 121.5 ± 0.4 | 119.3 ± 0.9 | 116.2 ± 0.8 | 111.8 ± 0.9 |
Treatment Groups | Decrease in Glucose Level | ||||
---|---|---|---|---|---|
0 h | 2 h | 4 h | 6 h | 8 h | |
Insulin (6 U/kg) | 408.3 ± 1.0 | 293.7 ± 1.5 | 211.5 ± 1.4 | 131.8 ± 0.9 | 102.3 ± 1.2 |
Insulin (3 U/kg) + methanol extract (600 mg/kg) | 404.5 ± 0.9 | 243.33 ± 1.06 ** | 178.8 ± 2.3 ** | 111.8 ± 2.5 ** | 85.0 ± 2.0 ** |
Insulin (2 U/kg) + methanol extract (600 mg/kg) | 409.0 ± 1.6 | 258.0 ± 0.9 ** | 198.1 ± 1.3 ** | 124.0 ± 1.0 ** | 94.5 ± 1.2 ** |
Methanol extract (600 mg/kg) | 406.5 ± 2.0 | 350.3 ± 2.4 ** | 316.8 ± 1.3 ** | 274.5 ± 1.46 ** | 248.0 ± 1.8 ** |
Insulin 3 U/kg + butanol fraction (600 mg/kg) | 410.5 ± 0.9 | 253.0 ± 1.0 ** | 194.3 ± 2.0 ** | 121.8 ± 1.3 ** | 89.0 ± 1.8 ** |
Insulin 2 U/kg + BF (600 mg/kg) | 409.0 ± 0.7 | 271.6 ± 0.9 ** | 208.7 ± 1.9 ** | 139.8 ± 3.0 ** | 109.5 ± 2.2 ** |
Butanolic fraction (600 mg/kg) | 407.3 ± 1.3 | 361.0 ± 2.7 ** | 314.0 ± 2.1 ** | 272.0 ± 1.6 ** | 257.0 ± 0.7 ** |
Insulin 3 U/kg + EA fraction (600 mg/kg) | 403.8 ± 1.2 | 267.0 ± 1.7 ** | 217.0 ± 2.0 ** | 144.0 ± 1.0 ** | 115.0 ± 0.9 ** |
Insulin 2 U/kg + EA fraction (600 mg/kg) | 404.0 ± 0.8 | 287.5 ± 0.8 ** | 229.3 ± 1.0 ** | 168.5 ± 1.3 ** | 136.0 ± 1.0 ** |
EA fraction (600 mg/kg) | 409.0 ± 0.5 | 373.0 ± 0.9 ** | 347.0 ± 1.6 ** | 303.0 ± 1.6 ** | 289.0 ± 1.7 ** |
Insulin 3 U/kg + Aq fraction (600 mg/kg) | 406.5 ± 1.1 | 300.0 ± 1.0 ** | 246.0 ± 1.4 ** | 198.0 ± 1.5 ** | 173.0 ± 1.0 ** |
Insulin 2 U/kg + Aq fraction (600 mg/kg) | 406.0 ± 1.0 | 329.0 ± 1.1 ** | 267.0 ± 1.09 ** | 213.0 ± 0.50 ** | 195.0 ± 0.49 ** |
Aqueous fraction (600 mg/kg) | 410.0 ± 0.9 | 39.0 ± 0.57 ** | 376.0 ± 1.23 ** | 351.0 ± 1.45 ** | 340.0 ± 1.79 ** |
Treatment Groups | Decrease in Glucose Level(mg/dl) | Change in Body Weight(g) | ||||||
---|---|---|---|---|---|---|---|---|
0 Day | 10th Day | 20th Day | 30th Day | 0 Day | 10th Day | 20th Day | 30th Day | |
Methanol Extract 600 mg/kg | 426.5 ± 0.9 | 396.0 ± 1.9 ** | 354.5 ± 1.2 ** | 285.8 ± 1.7 ** | 248.5 ± 1.1 | 250.5 ± 1.0 ns | 251.3 ± 1.5 ns | 255.6 ± 2.0 * |
Butanol Fraction 600 mg/kg | 423.0 ± 1.0 | 405.3 ± 2.0 ** | 366.6 ± 1.5 ** | 297.5 ± 1.1 ** | 246.0 ± 0.8 | 246.6 ± 1.0 ns | 248.0 ± 1.5 ns | 253.3 ± 1.4 * |
EA Fraction 600 mg/kg | 424.5 ± 1.6 | 414.8 ± 1.9 * | 384.8 ± 2.1 ** | 313.0 ± 1.0 ** | 253.0 ± 1.4 | 248.8 ± 1.6 ns | 250.5 ± 1.6 ns | 252.0 ± 1.0 ns |
Aqueous Fraction 600 mg/kg | 428.0 ± 1.88 | 418.6 ± 1.5 * | 407.6 ± 1.3 ** | 385.8 ± 1.4 ** | 251.5 ± 1.8 | 243.3 ± 2.0 ** | 244.0± 1.3 * | 246.5 ± 1.2 ns |
Diabetic Control | 428.33 ± 1.2 | 424.0 ± 2.0 ns | 421.6 ± 1.1 ns | 423.5 ± 1.4 ns | 252.0 ± 1.0 | 239.5 ± 1.4 ** | 232.33 ± 1.50 ** | 226.6 ± 1.1 ** |
Treatment Groups | Total Cholesterol (mg/dl) | Triglycerides (mg/dl) | HDL- Cholesterol (mg/dl) | LDL- Cholesterol (mg/dl) | VLDL- Cholesterol (mg/dl) |
---|---|---|---|---|---|
Methanol Extract 600 mg/kg | 69.3 ± 0.33 ** | 66.7± 1.2 ** | 42.2 ± 0.8 ** | 38.9± 1.6 ** | 42.0 ± 1.2 ** |
Butanol Fraction 600 mg/kg | 73.9 ± 1.0 ** | 71.5± 1.9 ** | 36.0 ± 0.2 ** | 47.7 ± 1.6 ** | 36.0± 1.1 ** |
EA Fraction 600 mg/kg | 85.4 ± 0.5 ** | 83.7 ± 1.3 ** | 31.7± 0.3 ** | 62.2± 0.9 ** | 31.7 ± 1.0 * |
Aqueous Fraction 600 mg/kg | 99.8 ± 0.6 ** | 104.7± 1.3 ** | 28.3 ± 0.6 ** | 80.3 ± 0.5 * | 24.3 ± 1.0 ns |
Normal Control | 68.5 ± 0.6 | 81.2 ± 1.1 | 46.2 ± 0.8 | 52.7 ± 0.1 | 20.2± 1.1 |
Diabetic Control | 108.3 ± 1.2 | 119.8 ± 1.9 | 25.3 ± 1.5 | 86.3 ± 0.9 | 25.3 ± 1.5 |
Treatment Groups | Hb (g/dl) | HbA1c (%) | Serum Urea (mg/dl) | Serum Creatinine (mg/dl) | Total Protein (g/dl) | Albumin (g/dl) | Globulin (g/dl) | A/G Ratio |
---|---|---|---|---|---|---|---|---|
Normal control | 15.00 ± 0.48 | 4.12 ± 0.67 | 28.60 ± 1.00 | 0.84 ± 0.44 | 6.25 ± 0.56 | 4.59 ± 0.16 | 3.76 ± 0.98 | 1.20 ± 0.14 |
Diabetic control | 8.16 ± 0.44 | 10.66 ± 0.96 | 59.3 ± 0.47 | 1.29 ± 0.28 | 3.87 ± 1.14 | 2.27 ± 0.16 | 2.15 ± 0.67 | 1.05 ± 0.77 |
Methanol extract 600 mg/kg | 13.67 ± 0.67 ** | 4.00 ± 0.04 ** | 32.00 ± 0.67 ** | 0.68 ± 0.06 ** | 5.78 ± 0.39 ** | 4.15 ± 0.12 ** | 3.50 ± 0.08 ** | 1.18 ± 0.88 * |
Butanol fraction 600 mg/kg | 13.00 ± 1.00 ** | 4.83 ± 0.84 ** | 38.42 ± 1.24 ** | 0.74 ± 0.47 ** | 5.36 ± 0.85 ** | 3.82 ± 0.24 ** | 3.29 ± 0.72 ** | 1.16 ± 1.00 * |
EA fraction 600 mg/kg | 12.25 ± 0.55 ** | 5.57 ± 0.23 ** | 47.09 ± 0.28 ** | 0.83 ± 0.04 ** | 4.86 ± 0.04 ** | 3.30 ± 0.28 ** | 2.90 ± 0.98 ** | 1.13 ± 0.47 * |
Aqueous fraction 600 mg/kg | 10.21 ± 1.16 ** | 7.78 ± 0.40 ** | 53.03 ± 1.16 * | 0.98 ± 0.55 * | 4.43 ± 0.44 ** | 2.75 ± 0.77 ** | 2.52 ± 1.47 ** | 1.09 ± 0.92 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasool, S.; Al Meslmani, B.; Alajlani, M. Determination of Hypoglycemic, Hypolipidemic and Nephroprotective Effects of Berberis Calliobotrys in Alloxan-Induced Diabetic Rats. Molecules 2023, 28, 3533. https://doi.org/10.3390/molecules28083533
Rasool S, Al Meslmani B, Alajlani M. Determination of Hypoglycemic, Hypolipidemic and Nephroprotective Effects of Berberis Calliobotrys in Alloxan-Induced Diabetic Rats. Molecules. 2023; 28(8):3533. https://doi.org/10.3390/molecules28083533
Chicago/Turabian StyleRasool, Shahid, Bassam Al Meslmani, and Muaaz Alajlani. 2023. "Determination of Hypoglycemic, Hypolipidemic and Nephroprotective Effects of Berberis Calliobotrys in Alloxan-Induced Diabetic Rats" Molecules 28, no. 8: 3533. https://doi.org/10.3390/molecules28083533
APA StyleRasool, S., Al Meslmani, B., & Alajlani, M. (2023). Determination of Hypoglycemic, Hypolipidemic and Nephroprotective Effects of Berberis Calliobotrys in Alloxan-Induced Diabetic Rats. Molecules, 28(8), 3533. https://doi.org/10.3390/molecules28083533