Statistical Optimization of Flavonoid and Antioxidant Recovery from Macerated Chinese and Malaysian Lotus Root (Nelumbo nucifera) Using Response Surface Methodology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Investigating the Effects of the Parameters on Antioxidant Activities
2.2. Effect of pH
2.3. Effect of Extraction Time
2.4. Effect of Solvent-to-Sample Ratio
2.5. Effect of Temperature
2.6. Comparison of CLR and MLR Extracts
2.7. Optimization Study
2.8. Model Fitting
2.9. Response Surface Model and Contour Plot
2.10. Validation of Predictive Models
3. Materials and Methods
3.1. Materials
3.2. Design of Experiments
3.3. Statistical Analysis
3.4. Extract Preparation
3.5. Determination of Total Flavonoid Content (TFC)
3.6. DPPH Radical Scavenging Activity Determination
3.7. Ferric-Reducing Power Assay (FRAP)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cancer Research UK, 2008. Worldwide Cancer Statistics. Available online: http://www.cancerresearchuk.org/cancer-info/cancerstats/world/ (accessed on 2 March 2021).
- Sharma, M.; Rajappa, M.; Kumar, G.; Sharma, A. Oxidant-antioxidant status in Indian patients with carcinoma of posterior one-third of tongue. Cancer Biomark. 2009, 5, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.N.T.; Van, J.A.S.; Vuong, Q.; Bowyer, M.C.; Scarlett, C.J. Physicochemical Properties, Antioxidant and Cytotoxic Activities of Crude Extracts and Fractions from Phyllanthus amarus. Mol. Biol. Rep. 2019, 46, 3265–3273. [Google Scholar] [CrossRef] [PubMed]
- Olalere, O.A.; Gan, C.Y.; Akintomiwa, O.E.; Adeyi, O.; Adeyi, A. Optimization of Microwave-assisted extraction and functional elucidation of bioactive compounds from Cola nitida pod. Phytochem. Analys. 2021, 1–9. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food Bioprod. Process. 2018, 107, 36–48. [Google Scholar]
- Olalere, O.A.; Gan, C.Y. Microwave-assisted extraction of phenolic compounds from Euphorbia hirta leaf and characterization of its morphology and thermal stability. Sep. Sci. Technol. 2020, 1–13. [Google Scholar] [CrossRef]
- Olalere, O.A.; Abdurahman, H.N.; Gan, C.Y. Microwave-enhanced extraction and mass spectrometry fingerprints of polyphenolic constituents in Sesamum indicum leaves. Ind. Crops Prod. 2019, 131, 151–159. [Google Scholar] [CrossRef]
- Tseng, H.C.; Tsai, P.M.; Chou, Y.H.; Lee, Y.C.; Lin, H.H.; Chen, H.J. In vitro and in vivo protective effects of flavonoid-enriched lotus seedpod extract on lipopolysaccharide-induced hepatic inflammation. Am. J. Chin. Med. 2019, 47, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Lien, D.P.; Lieu, V.T.; Tram, P.B.; Toan, H.T. Influence of Different Drying Techniques on Drying Characteristics and Quality Aspects of Pink Lotus (Nelumbo nucifera) Flowers. J. Adv. Res. Food Sci. Nut. 2020, 3, 16–23. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, M.; Guo, M. Research advances in traditional and modern use of Nelumbo nucifera: Phytochemicals, health promoting activities and beyond. Crit. Rev. Food Sci. Nut. 2019, 59, S189–S209. [Google Scholar]
- Shen, Y.; Guan, Y.; Song, X.; He, J.; Xie, Z.; Zhang, Y.; Tang, D. Polyphenols extract from lotus seedpod (Nelumbo nucifera Gaertn.): Phenolic compositions, antioxidant, and antiproliferative activities. Food Sci. Nutr. 2019, 7, 3062–3070. [Google Scholar] [PubMed] [Green Version]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Olalere, O.A.; Abdurahman, N.H.; Bin Mohd Yunus, R.; Alara, O.R.; Gan, C.Y. Synergistic intermittent heating and energy intensification of scale-up parameters in an optimized microwave extraction process. Chem. Eng. Process.-Process Intensif. 2018, 132, 160–168. [Google Scholar]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Alara, O.R.; Olalere, O.A. Extraction, characterization and antioxidant activity of fenugreek (Trigonella-foenum graecum) seed oil. Mater. Sci. Energy Technol. 2019, 2, 349–355. [Google Scholar] [CrossRef]
- Nepote, V.; Grosso, N.R.; Guzmán, C.A. Optimization of extraction of phenolic antioxidants from peanut skins. J. Sci. Food Agric. 2005, 85, 33–38. [Google Scholar] [CrossRef]
- Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Sati, P.; Pandey, A.; Rawat, S.; Rani, A. Phytochemicals and antioxidants in leaf extracts of Ginkgo biloba with reference to location, seasonal variation and solvent system. J. Pharmacol. Res. 2013, 7, 804–809. [Google Scholar] [CrossRef]
- Xu, Q.; Shen, Y.; Wang, H.; Zhang, N.; Xu, S.; Zhang, L. Application of response surface methodology to optimise extraction of flavonoids from fructus sophorae. Food Chem. 2013, 138, 2122–2129. [Google Scholar] [CrossRef] [PubMed]
- Settharaksa, S.; Jongjareonrak, A.; Hmadhlu, P.; Chansuwan, W.; Siripongvutikorn, S. Flavonoid, phenolic contents and antioxidant properties of Thai hot curry paste extract and its ingredients as affected of pH, solvent types and high temperature. Int. Food Res. J. 2012, 19, 1581–1587. [Google Scholar]
- Olalere, O.A.; Gan, C.Y. Intensification of microwave energy parameters and main effect analysis of total phenolics recovery from Euphorbia hirta leaf. Food Charact. Meas. 2020, 14, 886–893. [Google Scholar] [CrossRef]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar]
- Liu, L.; Sun, Y.; Laura, T.; Liang, X.; Ye, H.; Zeng, X. Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha CJ Tseng. Food Chem. 2009, 112, 35–41. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Strain Method Enzymol. 1999, 299, 15–27. [Google Scholar]
(a) China Lotus Root | |||||
Source | Sum of Squares | DF | Mean Square | F-Value | p-Value |
TFC (mg PCE/g)a | |||||
Model | 0.89 | 9 | 0.10 | 32.32 | <0.0001 |
Quadratic | 0.79 | 3 | 0.26 | 85.51 | <0.0001 |
A | 0.01 | 1 | 0.01 | 3.03 | 0.1254 |
B | 0.02 | 1 | 0.02 | 5.44 | 0.0525 |
C | 0.07 | 1 | 0.07 | 21.53 | 0.0024 |
A2 | 0.76 | 1 | 0.76 | 248.23 | <0.0001 |
B2 | 0.01 | 1 | 0.01 | 4.14 | 0.0814 |
C2 | 0.00 | 1 | 0.00 | 0.51 | 0.5001 |
AB | 0.00 | 1 | 0.00 | 0.10 | 0.7558 |
AC | 0.01 | 1 | 0.01 | 4.20 | 0.0796 |
BC | 0.00 | 1 | 0.00 | 0.01 | 0.9364 |
Residual | 0.02 | 7 | 0.00 | ||
Lack of Fit | 0.02 | 3 | 0.01 | 9.67 | 0.0264 |
Total | 0.91 | 16 | |||
%DPPHscb | |||||
Model | 4355.20 | 9 | 483.91 | 121.87 | <0.0001 |
Quadratic | 4185.33 | 3 | 1395.11 | 351.35 | <0.0001 |
A | 8.07 | 1 | 8.07 | 2.03 | 0.1969 |
B | 2.05 | 1 | 2.05 | 0.52 | 0.4957 |
C | 85.12 | 1 | 85.12 | 21.44 | 0.0024 |
A2 | 4134.86 | 1 | 4134.86 | 1041.35 | <0.0001 |
B2 | 9.90 | 1 | 9.90 | 2.49 | 0.1583 |
C2 | 0.96 | 1 | 0.96 | 0.24 | 0.6374 |
AB | 19.09 | 1 | 19.09 | 4.81 | 0.0644 |
AC | 55.53 | 1 | 55.53 | 13.99 | 0.0073 |
BC | 0.00 | 1 | 0.00 | 0.00 | 0.9879 |
Residual | 27.79 | 7 | 3.97 | ||
Lack of Fit | 25.59 | 3 | 8.53 | 15.50 | 0.0115 |
Total | 4383.00 | 16 | |||
FRAP (mM)c | |||||
Model | 3.26 | 9 | 0.36 | 9.09 | 0.0041 |
Quadratic | 3.05 | 3 | 1.02 | 25.55 | 0.0004 |
A | 0.00 | 1 | 0.00 | 0.02 | 0.8793 |
B | 0.01 | 1 | 0.01 | 0.19 | 0.6725 |
C | 0.09 | 1 | 0.09 | 2.29 | 0.1736 |
A2 | 3.02 | 1 | 3.02 | 75.99 | <0.0001 |
B2 | 0.00 | 1 | 0.00 | 0.12 | 0.7379 |
C2 | 0.01 | 1 | 0.01 | 0.30 | 0.6010 |
AB | 0.02 | 1 | 0.02 | 0.54 | 0.4865 |
AC | 0.08 | 1 | 0.08 | 1.99 | 0.2010 |
BC | 0.00 | 1 | 0.00 | 0.10 | 0.7651 |
Residual | 0.28 | 7 | 0.04 | ||
Lack of Fit | 0.12 | 3 | 0.04 | 1.08 | 0.4533 |
Total | 3.53 | 16 | |||
(b) Malaysia Lotus Root | |||||
Source | Sum of Squares | DF | Mean Square | F-Value | p-Value |
TFC (mg PCE/g)d | |||||
Model | 0.35 | 9 | 0.038 | 55.79 | <0.0001 |
Quadratic | 0.21 | 3 | 0.069 | 100.21 | <0.0001 |
A | 0.03 | 1 | 0.029 | 41.83 | 0.0003 |
B | 0.00 | 1 | 0.00 | 3.56 | 0.1012 |
C | 0.10 | 1 | 0.097 | 140.58 | <0.0001 |
A2 | 0.19 | 1 | 0.20 | 284.64 | <0.0001 |
B2 | 0.00 | 1 | 0.00 | 0.20 | 0.6666 |
C2 | 0.01 | 1 | 0.00 | 7.82 | 0.0267 |
AB | 0.01 | 1 | 0.00 | 8.17 | 0.0244 |
AC | 0.00 | 1 | 0.00 | 2.94 | 0.1301 |
BC | 0.00 | 1 | 0.00 | 4.39 | 0.0743 |
Residual | 0.00 | 7 | 0.00 | ||
Lack of Fit | 0.00 | 3 | 0.00 | 4.40 | 0.0930 |
Total | 0.35 | 16 | |||
%DPPHsce | |||||
Model | 448.98 | 9 | 49.89 | 14.02 | 0.0011 |
Quadratic | 84.57 | 3 | 28.19 | 7.92 | 0.0119 |
A | 187.89 | 1 | 187.89 | 52.79 | 0.0002 |
B | 23.15 | 1 | 23.15 | 6.51 | 0.0381 |
C | 133.01 | 1 | 133.01 | 37.37 | 0.0005 |
A2 | 76.69 | 1 | 76.69 | 21.55 | 0.0024 |
B2 | 0.57 | 1 | 0.57 | 0.16 | 0.7015 |
C2 | 5.47 | 1 | 5.47 | 1.54 | 0.2549 |
AB | 7.87 | 1 | 7.87 | 2.21 | 0.1807 |
AC | 0.022 | 1 | 0.022 | 0.00 | 0.9389 |
BC | 12.46 | 1 | 12.46 | 3.50 | 0.1035 |
Residual | 24.91 | 7 | 3.56 | ||
Lack of Fit | 16.22 | 3 | 5.41 | 2.49 | 0.1988 |
Total | 473.83 | 16 | |||
FRAP (mM)f | |||||
Model | 0.92 | 9 | 0.10 | 6.12 | 0.0130 |
Quadratic | 0.51 | 3 | 0.17 | 10.12 | 0.0061 |
A | 0.14 | 1 | 0.14 | 8.42 | 0.0229 |
B | 0.00 | 1 | 0.00 | 0.22 | 0.6559 |
C | 0.26 | 1 | 0.26 | 15.75 | 0.0054 |
A2 | 0.48 | 1 | 0.48 | 28.91 | 0.0010 |
B2 | 0.00 | 1 | 0.00 | 0.00 | 0.9511 |
C2 | 0.013 | 1 | 0.013 | 0.79 | 0.4032 |
AB | 0.00 | 1 | 0.00 | 0.18 | 0.6831 |
AC | 0.00 | 1 | 0.00 | 0.073 | 0.7942 |
BC | 0.00 | 1 | 0.00 | 0.054 | 0.8230 |
Residual | 0.12 | 7 | 0.017 | ||
Lack of Fit | 0.01 | 3 | 0.00 | 0.071 | 0.9723 |
Total | 1.04 | 16 |
Run | Variable Levels | (a) China Lotus Root | (b) Malaysia Lotus Root | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Observed (Y1) a | Predicted (Y0) | Observed (Y1) a | Predicted (Y0) | ||||||||||||
X1 (pH) | X2 (time) | X3 (ratio) | TFC (mg PCE/g) | %DPPHsc | FRAP (mM) | TFC (mg PCE/g) | %DPPHsc | FRAP (mM) | TFC (mg PCE/g) | %DPPHsc | FRAP (mM) | TFC (mg PCE/g) | %DPPHsc | FRAP (mM) | |
1 | 2.5 | 0.5 | 40 | 0.66 | 50.5 | 2.20 | 0.60 | 48.18 | 2.06 | 0.58 | 30.22 | 1.84 | 0.55 | 28.58 | 1.88 |
2 | 2.5 | 0.5 | 20 | 0.43 | 41.4 | 1.89 | 0.42 | 41.63 | 1.79 | 0.38 | 23.54 | 1.48 | 0.39 | 23.95 | 1.49 |
3 | 2.5 | 1 | 30 | 0.62 | 45.7 | 2.10 | 0.59 | 45.46 | 1.87 | 0.52 | 26.41 | 1.72 | 0.49 | 25.34 | 1.71 |
4 | 3 | 1 | 40 | 0.34 | 18.6 | 1.31 | 0.36 | 20.58 | 1.32 | 0.26 | 18.83 | 1.36 | 0.27 | 19.09 | 1.35 |
5 | 3 | 1 | 20 | 0.10 | 7.2 | 0.86 | 0.07 | 6.60 | 0.82 | 0.12 | 12.88 | 1.00 | 0.1 | 11.08 | 1.02 |
6 | 2 | 0.5 | 30 | 0 | 10.2 | 0.86 | 0.03 | 11.91 | 0.96 | 0.31 | 26.74 | 1.52 | 0.31 | 26.58 | 1.50 |
7 | 2 | 1.5 | 30 | 0.15 | 15.6 | 1.18 | 0.11 | 15.27 | 1.05 | 0.37 | 27.37 | 1.49 | 0.35 | 25.98 | 1.51 |
8 | 2.5 | 1 | 30 | 0.55 | 45.2 | 1.88 | 0.59 | 45.46 | 1.87 | 0.48 | 25.67 | 1.54 | 0.49 | 25.34 | 1.71 |
9 | 3 | 1.5 | 30 | 0.23 | 10.6 | 0.98 | 0.20 | 8.89 | 0.88 | 0.16 | 13.33 | 1.18 | 0.16 | 13.49 | 1.20 |
10 | 2.5 | 1.5 | 20 | 0.44 | 38.3 | 1.64 | 0.50 | 40.65 | 1.79 | 0.27 | 15.38 | 1.51 | 0.3 | 17.02 | 1.47 |
11 | 2.5 | 1 | 30 | 0.58 | 44.4 | 1.72 | 0.59 | 45.46 | 1.87 | 0.49 | 25.70 | 1.76 | 0.49 | 25.34 | 1.71 |
12 | 2 | 1 | 20 | 0.14 | 18.1 | 1.13 | 0.11 | 16.06 | 1.12 | 0.18 | 20.88 | 1.24 | 0.17 | 20.62 | 1.25 |
13 | 2.5 | 1 | 30 | 0.61 | 45.5 | 2.03 | 0.59 | 45.46 | 1.87 | 0.5 | 26.15 | 1.96 | 0.49 | 25.34 | 1.71 |
14 | 2 | 1 | 40 | 0.15 | 14.6 | 1.02 | 0.18 | 15.14 | 1.06 | 0.41 | 27.13 | 1.67 | 0.44 | 28.93 | 1.65 |
15 | 2.5 | 1 | 30 | 0.58 | 46.5 | 1.64 | 0.59 | 45.46 | 1.87 | 0.48 | 22.76 | 1.58 | 0.49 | 25.34 | 1.71 |
16 | 2.5 | 1.5 | 40 | 0.68 | 47.4 | 1.84 | 0.69 | 47.14 | 1.94 | 0.58 | 29.12 | 1.81 | 0.57 | 28.71 | 1.81 |
17 | 3 | 0.5 | 30 | 0.04 | 13.9 | 0.95 | 0.08 | 14.27 | 1.09 | 0.25 | 18.31 | 1.32 | 0.27 | 19.70 | 1.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, S.-J.; Lee, C.-K.; Gan, C.-Y.; Olalere, O.A. Statistical Optimization of Flavonoid and Antioxidant Recovery from Macerated Chinese and Malaysian Lotus Root (Nelumbo nucifera) Using Response Surface Methodology. Molecules 2021, 26, 2014. https://doi.org/10.3390/molecules26072014
Tan S-J, Lee C-K, Gan C-Y, Olalere OA. Statistical Optimization of Flavonoid and Antioxidant Recovery from Macerated Chinese and Malaysian Lotus Root (Nelumbo nucifera) Using Response Surface Methodology. Molecules. 2021; 26(7):2014. https://doi.org/10.3390/molecules26072014
Chicago/Turabian StyleTan, Sze-Jack, Chee-Keong Lee, Chee-Yuen Gan, and Olusegun Abayomi Olalere. 2021. "Statistical Optimization of Flavonoid and Antioxidant Recovery from Macerated Chinese and Malaysian Lotus Root (Nelumbo nucifera) Using Response Surface Methodology" Molecules 26, no. 7: 2014. https://doi.org/10.3390/molecules26072014
APA StyleTan, S.-J., Lee, C.-K., Gan, C.-Y., & Olalere, O. A. (2021). Statistical Optimization of Flavonoid and Antioxidant Recovery from Macerated Chinese and Malaysian Lotus Root (Nelumbo nucifera) Using Response Surface Methodology. Molecules, 26(7), 2014. https://doi.org/10.3390/molecules26072014