Lobularia libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction
2.2. Phytochemical Investigation of L. libyca Aerial Parts Using LC-ESI-MS Technique
2.3. Inductively Coupled Plasma ICP-OES
2.4. Determination of the Total Phenol and Flavonoid Contents
2.5. Determination of the Antioxidant Activity
2.5.1. 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Capacity Assay
- A0: absorbance of DPPH at λ = 517 nm;
- A: absorbance of DPPH in the presence of the sample after 30 min at λ = 517 nm;
- I%: antioxidant inhibition ratio.
2.5.2. Determination of Catalase Antioxidant Activity
2.5.3. 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic Acid Radical Cation Scavenging Assay
- A0: absorbance in the absence of the inhibitor (control);
- A: absorbance in the presence of the inhibitor (sample);
- I%: inhibition rate.
2.6. Assessment of the Cytotoxic Activity In Vitro by MTT Assay
2.7. Assessment of the Antimicrobial Activity In Vitro
2.7.1. Microbial Strains
2.7.2. Determination of Mean Inhibition Zones
2.8. In Silico Studies
2.8.1. Validation of Molecular Docking Studies Using Re-Docking and Superimposition
2.8.2. Molecular Docking Studies
- ΔGbinding: the ligand–protein interaction binding energy;
- Ecomplex: the potential energy for the complex of protein bound with the ligand;
- Eprotein: the potential energy of protein alone;
- Eligand: the potential energy for the ligand alone.
2.9. Statistical Analyses
3. Results and Discussion
3.1. Phytochemical Investigation of L. libyca Aerial Parts Using LC-ESI-MS Technique
3.2. Mineral Elemental Analysis
Mineral Elemental Analysis
3.3. Total Phenol Content and Flavonoids
3.4. Antioxidant Activity
3.5. Anticancer Activity
3.6. Antimicrobial Activity
3.7. In Silico Studies
3.7.1. Validation of Molecular Docking Studies Using Re-Docking and Superimposition
3.7.2. Molecular Docking Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonate) diammonium salt) |
BHT | Butylhydroxytoluene |
C. albicans | Candida albicans (IPA200) |
CAT | Catalase |
CV | Coefficient of variability |
DMSO | Dimethyl sulfoxide |
DNA | Deoxyribonucleic acid |
DPPH | 2,2′-Diphenylo-1-picrylhydrazyl) |
DPPP | Difenylo-1-pyrenylofosfina (diphenyl-1-pyrenylphosphine) |
E. coli | Escherichia coli |
FCR | Folin–Ciocalteu reagent |
K. pneumonia | Klebsiella pneumonia (ATCC700603) |
L. arabica | Lobularia arabica (Boiss.) Muschl. |
L. canariensis | Lobularia canariensis (DC.) L. Borgen |
L. innocua | Listeria innocua (CLIP74915), |
L. libyca | Lobularia libyca (Viv.) Webb & Berthel. |
L. marginata | Lobularia marginata Webb ex Christ. |
L. maritima | Lobularia maritima (L.) Desv. |
S. aureus | Staphylococcus aureus (ATCC2592) |
References
- Ayoub, N.; Nematallah, K.A.; Al-Gendy, A.A.; Zaghloul, S.S. Novel quercetin glycoside with promising hepatoprotective activity isolated from Lobularia libyca (viv). CfW (Brassicaceae). Eur. Sci. J. 2013, 9, 177–193. [Google Scholar]
- Ashour, M.L.; Youssef, F.S.; Gad, H.A.; El-Readi, M.Z.; Bouzabata, A.; Abuzeid, R.M.; Sobeh, M.; Wink, M. Evidence for the anti-inflammatory activity of Bupleurum marginatum (Apiaceae) extracts using in vitro and in vivo experiments supported by virtual screening. J. Pharm. Pharmacol. 2018, 70, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Messaoudi, M.; Rebiai, A.; Sawicka, B.; Atanassova, M.; Ouakouak, H.; Larkem, I.; Egbuna, C.; Awuchi, C.G.; Boubekeur, S.; Ferhat, M.A.; et al. Effect of Extraction Methods on Polyphenols, Flavonoids, Mineral Elements, and Biological Activities of Essential Oil and Extracts of Mentha pulegium L. Molecules 2021, 27, 11. [Google Scholar] [CrossRef] [PubMed]
- Singab, A.N.B.; Ayoub, N.A.; Noaman, E.; Fadia, S. Hepatoprotective activity of different extracts of Brassica oleracea capitata rubra leaves (red cabbage) against CCl4 induced hepatotoxicity in rats. Youssef Bull. Fac. Pharm. Cairo Univ. 2009, 47, 1–9. [Google Scholar]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef]
- Fiorentino, A.; Ricci, A.; D’Abrosca, B.; Golino, A.; Izzo, A.; Pascarella, M.T.; Piccolella, S.; Esposito, A. Kaempferol glycosides from Lobularia maritima and their potential role in plant interactions. Chem. Biodivers. 2009, 6, 204–217. [Google Scholar] [CrossRef]
- Savo, V.; Caneva, G.; Maria, G.P.; David, R. Folk phytotherapy of the Amalfi Coast (Campania, Southern Italy). J. Ethnopharmacol. 2011, 135, 376–392. [Google Scholar] [CrossRef]
- De Oliveira, M.S.; da Silva, V.M.P.; Freitas, L.C.; Silva, S.G.; Cruz, J.N.; de Aguiar Andrade, E.H. Extraction yield, chemical composition, preliminary toxicity of bignonia nocturna (bignoniaceae) essential oil and in silico evaluation of the interaction. Chem. Biodivers. 2021, 18, e2000982. [Google Scholar] [CrossRef]
- Costa, E.B.; Silva, R.C.; Espejo-Román, J.M.; Neto, M.F.d.A.; Cruz, J.N.; Leite, F.H.A.; Silva, C.; Pinheiro, J.C.; Macêdo, W.J.C.; Santos, C.B.R. Chemometric methods in antimalarial drug design from 1, 2, 4, 5-tetraoxanes analogues. SAR QSAR Environ. Res. 2020, 31, 677–695. [Google Scholar] [CrossRef]
- Alemu, A.; Tamiru, W.; Nedi, T.; Shibeshi, W. Analgesic and anti-inflammatory effects of 80% methanol extract of Leonotis ocymifolia (burm. F.) iwarsson leaves in rodent models. Evid.-Based Complement. Altern. Med. 2018, 2018, 1614793. [Google Scholar] [CrossRef]
- Belachew, T.F.; Asrade, S.; Geta, M.; Fentahun, E. In vivo evaluation of wound healing and anti-inflammatory activity of 80% methanol crude flower extract of Hagenia abyssinica (Bruce) JF Gmel in mice. Evid.-Based Complement. Altern. Med. 2020, 2020, 9645792. [Google Scholar] [CrossRef]
- Boubekeur, S.; Messaoudi, M.; Awuchi, C.G.; Otekunrin, O.A.; Sawicka, B.; Idjeri-Mecherara, S.; Bouchareb, S.; Hassani, A.; Sharifi-Rad, M.; Begaa, S. Biological properties and polyphenols content of Algerian Cistus salviifolius L. aerial parts. Eur. J. Biol. Res. 2022, 12, 163–180. [Google Scholar]
- Tadiwos, Y.; Nedi, T.; Engidawork, E. Analgesic and anti-inflammatory activities of 80% methanol root extract of Jasminum abyssinicum Hochst. ex. Dc.(Oleaceae) in mice. J. Ethnopharmacol. 2017, 202, 281–289. [Google Scholar] [CrossRef]
- Thabet, A.A.; Youssef, F.S.; El-Shazly, M.; El-Beshbishy, H.A.; Singab, A.N.B. Validation of the antihyperglycaemic and hepatoprotective activity of the flavonoid rich fraction of Brachychiton rupestris using in vivo experimental models and molecular modelling. Food Chem. Toxicol. 2018, 114, 302–310. [Google Scholar] [CrossRef]
- Larkem, I.; Tarai, N.; Benchikha, N.; Messaoudi, M.; Begaa, S.; Martins, M.; Silva, A.M.S.; Pinto, D.C.G.A. Chemical profile and antioxidant activity of Sesbania bispinosa (Jacq.) W. Wight aerial parts and seeds extracts. J. Food Process. Preserv. 2021, 45, e15468. [Google Scholar] [CrossRef]
- Chelalba, I.; Benchikha, N.; Begaa, S.; Messaoudi, M.; Debbeche, H.; Rebiai, A.; Youssef, F.S. Phytochemical composition and biological activity of Neurada procumbens L. growing in southern Algeria. J. Food Process. Preserv. 2020, 44, e14774. [Google Scholar] [CrossRef]
- Chelalba, I.; Rebiai, A.; Debbeche, H.; Begaa, S.; Messaoudi, M.; Benchikha, N. Total phenol and flavonoid content, antioxidant and cytotoxicity assessment of Algerian Launaea glomerata (Cass.) Hook. f. extracts. Eur. J. Biol. Res. 2021, 11, 168–176. [Google Scholar]
- Willis, R. Improved method for measuring hydrolyzable tannins using potassium iodate. Analyst 1998, 123, 435–439. [Google Scholar] [CrossRef]
- Jafri, L.; Saleem, S.; Ullah, N.; Mirza, B. In vitro assessment of antioxidant potential and determination of polyphenolic compounds of Hedera nepalensis K. Koch. Arab. J. Chem. 2017, 10, S3699–S3706. [Google Scholar] [CrossRef]
- Banothu, V.; Neelagiri, C.; Adepally, U.; Lingam, J.; Bommareddy, K. Phytochemical screening and evaluation of in vitro antioxidant and antimicrobial activities of the indigenous medicinal plant Albizia odoratissima. Pharm. Biol. 2017, 55, 1155–1161. [Google Scholar] [CrossRef]
- Ouakouak, H.; Benarfa, A.; Messaoudi, M.; Begaa, S.; Sawicka, B.; Benchikha, N.; Simal-Gandara, J. Biological Properties of Essential Oils from Thymus algeriensis Boiss. Plants 2021, 10, 786. [Google Scholar] [CrossRef]
- Abdellatif, F.; Akram, M.; Begaa, S.; Messaoudi, M.; Benarfa, A.; Egbuna, C.; Ouakouak, H.; Hassani, A.; Sawicka, B.; Elbossaty, W.F.M. Minerals, Essential Oils, and Biological Properties of Melissa officinalis L. Plants 2021, 10, 1066. [Google Scholar] [CrossRef]
- Da Rocha Galucio, N.C.; de Araújo Moysés, D.; Pina, J.R.S.; Marinho, P.S.B.; Júnior, P.C.G.; Cruz, J.N.; Vale, V.V.; Khayat, A.S.; do Rosario Marinho, A.M. Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn. Arab. J. Chem. 2022, 15, 103589. [Google Scholar] [CrossRef]
- Neto, R.d.A.M.; Santos, C.B.R.; Henriques, S.V.C.; Machado, L.d.O.; Cruz, J.N.; da Silva, C.H.T.d.P.; Federico, L.B.; de Oliveira, E.H.C.; de Souza, M.P.C.; da Silva, P.N.B. Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2022, 40, 2204–2216. [Google Scholar] [CrossRef]
- Elings, W.; Tassoni, R.; van der Schoot, S.A.; Luu, W.; Kynast, J.P.; Dai, L.; Blok, A.J.; Timmer, M.; Florea, B.I.; Pannu, N.S. Phosphate promotes the recovery of Mycobacterium tuberculosis β-lactamase from clavulanic acid inhibition. Biochemistry 2017, 56, 6257–6267. [Google Scholar] [CrossRef]
- Laponogov, I.; Pan, X.-S.; Veselkov, D.A.; Cirz, R.T.; Wagman, A.; Moser, H.E.; Fisher, L.M.; Sanderson, M.R. Exploring the active site of the Streptococcus pneumoniae topoisomerase IV–DNA cleavage complex with novel 7, 8-bridged fluoroquinolones. Open Biol. 2016, 6, 160157. [Google Scholar] [CrossRef]
- Dias, M.V.B.; Tyrakis, P.; Domingues, R.R.; Leme, A.F.P.; Blundell, T.L. Mycobacterium tuberculosis dihydrofolate reductase reveals two conformational states and a possible low affinity mechanism to antifolate drugs. Structure 2014, 22, 94–103. [Google Scholar] [CrossRef]
- Janibekov, A.A.; Youssef, F.S.; Ashour, M.L.; Mamadalieva, N.Z. New flavonoid glycosides from two Astragalus species (Fabaceae) and validation of their antihyperglycaemic activity using molecular modelling and in vitro studies. Ind. Crops Prod. 2018, 118, 142–148. [Google Scholar] [CrossRef]
- George, D.; Mallery, P. IBM SPSS Statistics 26 Step by Step: A Simple Guide and Reference; Routledge: London, UK, 2019; ISBN 0429056761. [Google Scholar]
- Ibe, O.C. Introduction to Descriptive Statistics. In Fundamentals of Applied Probability and Random Processes; Academic Press: Cambridge, MA, USA, 2014; pp. 253–274. [Google Scholar] [CrossRef]
- Ibrahim, L.F.; Elkhateeb, A.; Marzouk, M.M.; Hussein, S.R.; Abdel-Hameed, E.-S.S.; Kassem, M.E. Flavonoid investigation, LC–ESI-MS profile and cytotoxic activity of Raphanus raphanistrum L.(Brassicaceae). J. Chem. Pharm. Res. 2016, 8, 786–793. [Google Scholar]
- Saldanha, L.L.; Allard, P.-M.; Afzan, A.; de Melo, F.P.d.S.R.; Marcourt, L.; Queiroz, E.F.; Vilegas, W.; Furlan, C.M.; Dokkedal, A.L.; Wolfender, J.-L. Metabolomics of Myrcia bella populations in Brazilian Savanna reveals strong influence of environmental factors on its specialized metabolism. Molecules 2020, 25, 2954. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.W.H.; Malchev, I.T.; Rajcan, I.; Kott, L.S. Identification of putative quantitative trait loci associated with a flavonoid related to resistance to cabbage seedpod weevil (Ceutorhynchus obstrictus) in canola derived from an intergeneric cross, Sinapis alba × Brassica napus. Theor. Appl. Genet. 2014, 127, 419–428. [Google Scholar] [CrossRef]
- Calderon-Montano, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Shen, J.; Zhao, C.-C.; Shao, J.-H. A new flavonoid glycoside with α-glucosidase inhibitory activity from Galium Verum. Chem. Nat. Compd. 2020, 56, 67–69. [Google Scholar] [CrossRef]
- Baruah, N.C.; Sharma, R.P.; Thyagarajan, G.; Herz, W.; Govindan, S.V. New flavonoids from Inula cappa. Phytochemistry 1979, 18, 2003–2006. [Google Scholar] [CrossRef]
- Ishizu, T.; Kajitani, S.; Tsutsumi, H.; Sato, T.; Yamamoto, H.; Hirata, C. Configurational studies of complexes of tea catechins with caffeine and various cyclodextrins. Planta Med. 2011, 77, 1099–1109. [Google Scholar] [CrossRef]
- Sobeh, M.; Youssef, F.S.; Esmat, A.; Petruk, G.; El-Khatib, A.H.; Monti, D.M.; Ashour, M.L.; Wink, M. High resolution UPLC-MS/MS profiling of polyphenolics in the methanol extract of Syzygium samarangense leaves and its hepatoprotective activity in rats with CCl4-induced hepatic damage. Food Chem. Toxicol. 2018, 113, 145–153. [Google Scholar] [CrossRef]
- Oliw, E.H.; Su, C.; Skogström, T.; Benthin, G. Analysis of novel hydroperoxides and other metabolites of oleic, linoleic, and linolenic acids by liquid chromatography-mass spectrometry with ion trap MSn. Lipids 1998, 33, 843–852. [Google Scholar] [CrossRef]
- Stevens, S.; Hofmeyr, J.-H.S. Effects of ethanol, octanoic and decanoic acids on fermentation and the passive influx of protons through the plasma membrane of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1993, 38, 656–663. [Google Scholar] [CrossRef]
- Ibourki, M.; Ait Bouzid, H.; Bijla, L.; Sakar, E.H.; Asdadi, A.; Laknifli, A.; El Hammadi, A.; Gharby, S. Mineral profiling of twenty wild and cultivated aromatic and medicinal plants growing in Morocco. Biol. Trace Elem. Res. 2022, 1–10. [Google Scholar] [CrossRef]
- Zeroual, A.; Sakar, E.H.; Ibourki, M.; Bijla, L.; Ainane, A.; Mahjoubi, F.; Chaouch, M.; Gharby, S.; Chaqroune, A.; Ainane, T. Phytochemical screening and mineral profiling of wild and cultivated rosemary (Rosmarinus officinalis L.) from Taounate region (northern Morocco). PharmacologyOnline 2021, 2, 576–582. [Google Scholar]
- Messaoudi, M.; Benarfa, A.; Ouakouak, H.; Begaa, S. Determination of Some Chemical Elements of Common Spices Used by Algerians and Possible Health Risk Assessment. Biol. Trace Elem. Res. 2021, 200, 2498–2509. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.N.; Kumar, A.; Nair, A.G.C.; Reddy, A.V.R. Analysis of some Indian medicinal herbs by INAA. J. Radioanal. Nucl. Chem. 2007, 271, 611–619. [Google Scholar] [CrossRef]
- Messaoudi, M.; Begaa, S. Application of INAA technique for analysis of essential trace and toxic elements in medicinal seeds of Carum carvi L. & Foeniculum vul-gare Mill. used in Algeria. J. Appl. Res. Med. Aromat. Plants 2018, 9, 39–45. [Google Scholar] [CrossRef]
- Messaoudi, M.; Begaa, S.; Benarfa, A.; Ouakouak, H.; Benchikha, N.; Ferhat, M.A. Radiochemical separation by liquid-liquid extraction for the determination of selenium in Mentha pulegium L.: Toxicity monitoring and health study. Appl. Radiat. Isot. 2020, 159, 109099. [Google Scholar] [CrossRef]
- Ibourki, M.; Bouzid, H.A.; Bijla, L.; Aissa, R.; Ainane, T.; Gharby, S.; El Hammadi, A. Physical fruit traits, proximate composition, fatty acid and elemental profiling of almond [Prunus dulcis Mill. DA Webb] kernels from ten genotypes grown in southern Morocco. OCL 2022, 29, 9. [Google Scholar] [CrossRef]
- Nodushan, S.K.H.; Emtiazy, M.; Salmani, M.H.; Lotfi, M.H.; Zadeh, M.E. Monitoring of Essential and Toxic Elements in Leaves, Branches, and Stem of Prosopis cineraria (as Anti-Inflammatory) Growing in Iran. Biol. Trace Elem. Res. 2020, 198, 714–720. [Google Scholar] [CrossRef]
- FAO; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World, I. Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; FAO: Rome, Italy, 2021. [Google Scholar]
- Begaa, S.; Messaoudi, M. Toxicological Aspect of Some Selected Medicinal Plant Samples Collected from Djelfa, Algeria Region. Biol. Trace Elem. Res. 2019, 187, 301–306. [Google Scholar] [CrossRef]
- Benarfa, A.; Begaa, S.; Messaoudi, M.; Hamlat, N.; Sawicka, B. Elemental composition analysis of Pistacia lentiscus L., leaves collected from Mitidja plain in Algeria using instrumental neutron activation analysis (INAA) technique. Radiochim. Acta 2020, 108, 821–828. [Google Scholar] [CrossRef]
- Begaa, S.; Messaoudi, M.; Benarfa, A. Statistical Approach and Neutron Activation Analysis for Determining Essential and Toxic Elements in Two Kinds of Algerian Artemisia Plant. Biol. Trace Elem. Res. 2021, 199, 2399–2405. [Google Scholar] [CrossRef]
- Speich, M.; Pineau, A.; Ballereau, F. Minerals, trace elements and related biological variables in athletes and during physical activity. Clin. Chim. Acta 2001, 312, 1–11. [Google Scholar] [CrossRef]
- Devi, O.A.; Das, M.; Saikia, A.; Das, P.; Sharma, D. Evaluation of total mineral, calcium, selenium, iron content of ten medicinal plants extracts of Manipur having anti-inflammatory properties. J. Med. Plants Stud. 2016, 4, 189–194. [Google Scholar]
- Khan, Z.I.; Ashraf, M.; Hussain, A. Evaluation of macro mineral contents of forages: Influence of pasture and seasonal variation. Asian-Australas. J. Anim. Sci. 2007, 20, 908–913. [Google Scholar] [CrossRef]
- Vaghari-Tabari, M.; Jafari-Gharabaghlou, D.; Sadeghsoltani, F.; Hassanpour, P.; Qujeq, D.; Rashtchizadeh, N.; Ghorbanihaghjo, A. Zinc and selenium in inflammatory bowel disease: Trace elements with key roles? Biol. Trace Elem. Res. 2021, 199, 3190–3204. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Messaoudi, M.; Begaa, S. Dietary Intake and Content of Some Micronutrients and Toxic Elements in Two Algerian Spices (Coriandrum sativum L. and Cuminum cyminum L.). Biol. Trace Elem. Res. 2019, 188, 508–513. [Google Scholar] [CrossRef]
- Zazzo, J.F. Oligo-éléments, vitamines et immunité. Nutr. Clin. Metab. 1993, 7, 121–129. [Google Scholar] [CrossRef]
- Festa, R.A.; Thiele, D.J. Copper: An essential metal in biology. Curr. Biol. 2011, 21, R877–R883. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Ouakouak, H.; Benchikha, N.; Hassani, A.; Ashour, M.L. Chemical composition and biological activity of Mentha citrata Ehrh., essential oils growing in southern Algeria. J. Food Sci. Technol. 2019, 56, 5346–5353. [Google Scholar] [CrossRef]
- Nikolić, M.; Glamočlija, J.; Ferreira, I.C.F.R.; Calhelha, R.C.; Fernandes, Â.; Marković, T.; Marković, D.; Giweli, A.; Soković, M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Speert, D.P.; Wannamaker, L.W.; Gray, E.D.; Clawson, C.C. Bactericidal effect of oleic acid on group A streptococci: Mechanism of action. Infect. Immun. 1979, 26, 1202–1210. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Jain, S.; Kumar, P. Synthesis, antimicrobial evaluation, QSAR and in silico admet studies of decanoic acid derivatives. Pol. Pharm. Soc. 2011, 68, 191–204. [Google Scholar]
Peak | RT | [M-H]− | Compound | Area (%) | Ref. |
---|---|---|---|---|---|
1 | 1.15 | 191 | Quinic acid | 12 | [38] |
2 | 7.24 | 917.4 | Kaempferol 3-O-trihexoside 7-O-α-L-rhamnopyranoside | 5 | [6] |
3 | 7.39 | 755.3 | Kaempferol 3-O-dihexoside 7-O-α-L-rhamnopyranoside | 24 | [6] |
4 | 7.99 | 739.3 | Kaempferol 3-O-hexosyl-α- rhamnopyranoside-7-O-α-rhamnopyranoside | >1 | [31] |
5 | 8.51 | 569.4 | Kaempferol 3-O-trihydroxybenzoyl- α-L-arabinofuranoside | 12 | [32] |
6 | 8.84 | 977.4 | Kaempferol 3-O-hexoside, 7-O-[4-hydroxy-3,5-dimethoxy-E-cinnamoyl dihexoside | 2 | [33] |
7 | 10.12 | 961.3 | Kaempferol 3-O-[4-Hydroxy-3,5-dimethoxy-E-cinnamoyl dihexoside 7-O-α-L-rhamnopyranoside | 1 | [34] |
8 | 15.36 | 661.4 | Apigenin 7-O-[3,4-di-O-acetyl-α-L-rhamnopyranosyl-hexoside | 1 | [35] |
9 | 22.43 | 577.3 | Kaempferol 3,7-di-O-α-rhamnopyranoside | 1 | [31] |
10 | 24.70 | 555.3 | Tetrahydroxyflavanone- trihydroxyflavone | 1 | [36] |
11 | 27.65 | 281.3 | Oleic acid | 2 | [39] |
12 | 28.31 | 457.2 | Hexahydroxyflavan, 3-O-Trihydroxybenzoyl | 1 | [37] |
13 | 31.44 | 198.8 | Decanoic acid ethyl ester | 4 | [40] |
Elements | Mean ± SD * (mg/kg of DM) | Variability Coefficient (%) |
---|---|---|
Na | 12,442.0 ± 1512.0 | 12.15 |
K | 24,564.0 ± 2741.0 | 11.16 |
Ca | 41,126.0 ± 6909.0 | 16.80 |
Mg | 6651.0 ± 904.0 | 13.59 |
P | 2864.0 ± 689.0 | 24.06 |
S | 12,769.0 ± 1153.0 | 9.03 |
Fe | 353.0 ± 52.0 | 14.73 |
Cu | 8.13 ± 1.15 | 14.15 |
Zn | 55.0 ± 6.6 | 12.00 |
Mn | 38.00 ± 3.33 | 8.76 |
B | 35.7 ± 4.6 | 12.89 |
Mo | 3.14 ± 0.09 | 2.87 |
N | 25,014.0 ± 2666.0 | 10.66 |
Total Phenolic | Total Flavonoids | ||
---|---|---|---|
(mg GAE/g Dry plant) | (mg GAE/g extract) | (mg quercetin/g Dry plant) | (mg quercetin/g extract) |
11.49 ± 0.01 | 57.45 ± 0.04 | 7.10 ± 0.06 | 0.30 |
Plant | Total Phenolic Content mg GAE | Total Flavonoid Content mg Quercetin |
---|---|---|
L. libyca A/g Dry plant | 11.49b ± 0.01 | 7.10a ± 0.06 |
L. libyca E/g fresh plant | 25.26a ± 0.03 | 3.56b ± 0.102 |
LSD0.05 | 0.94 | 0.27 |
Sample | LC50 (µg/mL) | LC90 (µg/mL) | Doxorubicin LC50 (μg/mL) | DMSO (100 ppm%) |
---|---|---|---|---|
HCT116 | >100 | >100 | 37.6 | 1 |
HepG 2 | >100 | >100 | 21.6 | 1 |
Microorganisms | Diameter of Inhibition Zone (mm) | ||
---|---|---|---|
L.libyca (10 mg/mL) | L.libyca (20 µg/mL) | Amoxclav (30 µg/mL) | |
Gram (+) | |||
Staphylococcus aureus (S. aureus) (ATCC2592) | 12 ± 0.25 | NT | 23 ± 0.15 |
Listeria innocua (L. innocua) (LIP74915) | 11 ± 0.15 | NT | |
Gram (−) | |||
(ATCC700603) | 12 ± 0.28 | NT | 22 ± 0.45 |
Escherichia coli (E. coli) (ATCC25922) | 13 ± 0.17 | NT | |
Yeast | |||
Candida albicans (C. albicans) (IPA200) | NT | 0.9 ± 0.18 | 23 ± 0.30 |
Compounds | β-Lactamase | DNA-Gyrase | Dihydrofolate Reductase |
---|---|---|---|
Quinic acid (1) | −10.06 | −7.50 | −5.79 |
Kaempferol 3-O-trihydroxybenzoyl- α-L-arabinofuranoside (5) | −26.68 | −7.95 | −21.8055 |
Kaempferol 3,7-di-O-α-rhamnopyranoside (9) | 0.18 | 16.68 | 5.44 |
Oleic acid (11) | −34.34 | −25.68 | −32.52 |
Decanoic acid ethyl ester (13) | −37.34 | −27.16 | −31.94 |
Cefuroxime | −61.76 | ND | ND |
Levofloxacin | ND | −9.90 | ND |
Trimethoprim | ND | ND | −30.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benchikha, N.; Chelalba, I.; Debbeche, H.; Messaoudi, M.; Begaa, S.; Larkem, I.; Amara, D.G.; Rebiai, A.; Simal-Gandara, J.; Sawicka, B.; et al. Lobularia libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies. Molecules 2022, 27, 3744. https://doi.org/10.3390/molecules27123744
Benchikha N, Chelalba I, Debbeche H, Messaoudi M, Begaa S, Larkem I, Amara DG, Rebiai A, Simal-Gandara J, Sawicka B, et al. Lobularia libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies. Molecules. 2022; 27(12):3744. https://doi.org/10.3390/molecules27123744
Chicago/Turabian StyleBenchikha, Naima, Imane Chelalba, Hanane Debbeche, Mohammed Messaoudi, Samir Begaa, Imane Larkem, Djilani Ghamem Amara, Abdelkrim Rebiai, Jesus Simal-Gandara, Barbara Sawicka, and et al. 2022. "Lobularia libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies" Molecules 27, no. 12: 3744. https://doi.org/10.3390/molecules27123744
APA StyleBenchikha, N., Chelalba, I., Debbeche, H., Messaoudi, M., Begaa, S., Larkem, I., Amara, D. G., Rebiai, A., Simal-Gandara, J., Sawicka, B., Atanassova, M., & Youssef, F. S. (2022). Lobularia libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies. Molecules, 27(12), 3744. https://doi.org/10.3390/molecules27123744