Analysis of Components and Properties of Extractives from Alnus cremastogyne Pods from Different Provenances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Organic Solvent Extraction
2.3. Gas Chromatograph Mass Spectrometer (GC-MS)
2.4. Ultraviolet–Visible Spectroscopy (UV-Vis Spectra)
2.5. Radical DPPH Scavenging Activity
3. Results and Discussion
3.1. 100-Grain Weight and Extractives Yield
3.2. GC-MS Analysis
3.3. UV Absorbability
3.4. Anti-Oxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kirker, G.T.; Blodgett, A.B.; Arango, R.A.; Lebow, P.K.; Clausen, C.A. The role of extractives in naturally durable wood species. Int. Biodeteri. Biodegr. 2013, 82, 53–58. [Google Scholar] [CrossRef]
- Schultz, T.P.; Nicholas, D.D. Naturally durable heartwood: Evidence for a proposed dual defensive function of the extractives. Phytochemistry 2000, 54, 47–52. [Google Scholar] [CrossRef]
- Flora Reipublicae Popularis Sinicae. Available online: http://www.iplant.cn/info/Alnus (accessed on 10 November 2022).
- Bühlmann, T.; Caprez, R.; Hiltbrunner, E.; Körner, C.; Niklaus, P.A. Nitrogen fixation by Alnus species boosts soil nitrous oxide emissions. Eur. J. Soil Sci. 2017, 68, 740–748. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.; Zhang, Y.; Mou, Q.; Gou, Y.; Liu, K.; Huang, N.; Ouyang, C.; Hu, J.; Du, B. Simulation of potential suitable distribution of Alnus cremastogyne Burk. In China under climate change scenarios. Ecol. Indic. 2021, 133, 108396. [Google Scholar] [CrossRef]
- Sati, S.C.; Sati, N.; Sati, O.P. Bioactive constituents and medicinal importance of genus Alnus. Pharm. Rev. 2011, 5, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Kim, H.J.; Jung, S.Y.; Yook, C.S.; Jin, C.; Lee, Y.S. A new diarylheptanoid glycoside from the stem bark of Alnus hirsuta and protective effects of diarylheptanoid derivatives in human HepG2 cells. Chem. Pharm. Bull. 2010, 58, 238–241. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; He, T.; Chang, Y.; Zhao, Y.; Chen, X.; Bai, S.; Wang, L.; Shen, M.; She, G. The genus Alnus, a comprehensive outline of Its chemical constituents and biological activities. Molecules 2017, 22, 1383. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Tanaka, T.; Nonaka, G.; Nishioka, I. Dimeric ellagitannins from Alnus japonica. Phytochemistry 1992, 31, 2835–2839. [Google Scholar] [CrossRef]
- Wollenweber, E. Flavonoids from Alnus crispa, A. Japonica, A. Koehnei and A. Sinuata. Phytochemistry 1974, 13, 2318–2319. [Google Scholar] [CrossRef]
- Phan, M.G.; Truong, T.T.C.; Phan, T.S. Katsuyoshi Matsunami, Hideaki Otsuka, Mangiferonic acid, 22-hydroxyhopan-3-one, and physcion as specific chemical markers for Alnus nepalensis. Biochem. Syst. Ecol. 2010, 38, 1065–1068. [Google Scholar] [CrossRef]
- Hu, W.; Wang, M. Antioxidative activity and anti-inflammatory effects of diarylheptanoids isolated from Alnus hirsute. J. Wood Sci. 2011, 57, 323–330. [Google Scholar] [CrossRef]
- Dinić, J.; Ranđelović, T.; Stanković, T.; Dragoj, M.; Isaković, A.; Novaković, M.; Pešić, M. Chemo-protective and regenerative effects of diarylheptanoids from the bark of black alder (Alnus glutinosa) in human normal keratinocytes. Fitoterapia 2015, 105, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Kremer, D.; Kosalec, I.; Locatelli, M.; Epifano, F.; Genovese, S.; Carlucci, G.; Končića, M.Z. Anthraquinone profiles, antioxidant and antimicrobial properties of Frangula rupestris (Scop.) Schur and Frangula alnus Mill. Bark. Food Chem. 2012, 131, 1174–1180. [Google Scholar] [CrossRef]
- Li, H.; Webster, D.; Johnson, J.A.; Gray, C.A. Anti-mycobacterial triterpenes from the Canadian medicinal plant Alnus incana. J. Ethnopharmacol. 2015, 165, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.E.; Park, K.H.; Jeong, M.S.; Kim, H.H.; Lee, D.I.; Joo, S.S.; Lee, C.S.; Bang, H.; Choi, Y.W.; Lee, M.K.; et al. Effect of Alnus japonica extract on a model of atopic dermatitis in NC/Nga mice. J. Ethnopharmacol. 2011, 136, 406–413. [Google Scholar] [CrossRef]
- Williams, W.B.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.A.; Usman, F.I.; Abubakar, M.S.; Salman, A.A.; Adamu, A.; Ibrahima, M.A. Phytol suppresses parasitemia and ameliorates anaemia and oxidative brain damage in mice infected with Plasmodium berghei. Exp. Parasitol. 2021, 224, 108097. [Google Scholar] [CrossRef]
- Shariare, M.H.; Noor, H.B.; Khan, J.H.; Uddin, J.; Ahamad, S.R.; Altamimi, M.A.; Alanazi, F.K.; Kazi, M. Liposomal drug delivery of Corchorus olitorius leaf extract containing phytol using design of experiment (DoE): In-vitro anticancer and in-vivo anti-inflammatory studies. Colloid. Surfaces B 2021, 199, 111543. [Google Scholar] [CrossRef]
- Gryglewski, R.J.; Salmon, J.A.; Ubatuba, F.B.; Weatherly, B.C.; Moncada, S.; Vane, J.R. Effects of all CIS-5,8,11,14,17 eicosapentaenoic acid and PGH3 on platelet aggregation. Prostaglandins 1979, 18, 453–478. [Google Scholar] [CrossRef]
- Smart, T.G.; Constanti, A. Studies on the mechanism of action of picrotoxinin and other convulsants at the crustacean muscle GABA receptor. P. Roy. Soc. B-Biol. Sci. 1986, 227, 91–216. [Google Scholar] [CrossRef]
- Bülow, N.; König, W.A. The role of germacrene D as a precursor in sesquiterpene biosynthesis: Investigations of acid catalyzed, photochemically and thermally induced rearrangements. Phytochemistry 2000, 55, 141–168. [Google Scholar] [CrossRef]
- Yang, D.; Michel, L.; Chaumont, J.P.; Clerc, J.M. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia 2001, 148, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine 2010, 17, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Farvin, K.H.S.; Anandan, R.; Kumar, S.H.S.; Shiny, K.S.; Sankar, T.V.; Thankappan, T.K. Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats. Pharmacol. Res. 2004, 50, 231–236. [Google Scholar] [CrossRef]
- Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Phenolic compounds and squalene in olive oils: The concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Food Chem. Toxicol. 2000, 38, 647–659. [Google Scholar] [CrossRef]
- Huang, Z.; Lin, Y.; Fang, J. Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef]
- Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009, 285, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Geetha, T.; Varalakshmi, P. Anti-inflammatory activity of lupeol and lupeol linoleate in rats. J. Ethnopharmacol. 2001, 76, 77–80. [Google Scholar] [CrossRef]
- Grundy, S.M.; Jr, E.H.A.; Salen, G. Dietary β-sitosterol as an internal standard to correct for cholesterol losses in sterol balance studies. J. Lipid Res. 1968, 9, 374–387. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, A.K.; Dobhal, M.P.; Sharma, M.C.; Gupta, R.S. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J. Diabetes 2011, 3, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Cureton, T.K. The Physical Effect of Wheat Germ Oil on Human in Exercise, Springfield Illinois; Thomas Publishes: New York, NY, USA, 1976. [Google Scholar]
- Kato, S.; Karino, K.; Hasegawa, S.; Nagasawa, J.; Nagasaki, A.; Eguchi, M.; Ichinose, T.; Tago, K.; Okumori, H.; Hamatani, K. Octacosanol affects lipid metabolism in rats fed on a high-fat diet. Br. J. Nutr. 1995, 73, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, T.; Lin, Q.; Li, X.; Nie, Y.; Wang, L.; Shi, L.; Xu, W.; Hu, T.; Guo, T.; Luo, F. Octacosanol attenuates inflammation in both RAW264.7 macrophages and a mouse model of colitis. J. Agric. Food Chem. 2017, 65, 3647–3658. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, R.; Ni, D.; Luo, X.; Chen, S.; Luo, C.; Xiao, W. Discovery of betulinaldehyde as a natural RORγt agonist. Fitoterapia 2019, 137, 104200. [Google Scholar] [CrossRef] [PubMed]
- Sun, I.C.; Wang, H.K.; Kashiwada, Y.; Shen, J.K.; Cosentino, L.M.; Chen, C.H.; Yang, L.M.; Lee, K.H. Anti-AIDS Agents. 34. Synthesis and Structure−Activity Relationships of Betulin Derivatives as Anti-HIV Agents. J. Med. Chem. 1998, 41, 4648–4657. [Google Scholar] [CrossRef]
- Tiwari, M.; Kakkar, P. Plant derived antioxidants—Geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicol. In Vitro 2009, 23, 295–301. [Google Scholar] [CrossRef]
- Vallianou, I.; Peroulis, N.; Pantazis, P.; Cladaras, M.H. Camphene, a plant-derived monoterpene, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity. PLoS ONE 2011, 6, 20516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, F.G.; Sperber, S.J.; Belshe, R.B.; Clover, R.D.; Hay, A.J.; Pyke, S. Recovery of drug-resistant influenza A virus during therapeutic use of rimantadine. Antimicrob. Agents Ch. 1991, 35, 1741–1747. [Google Scholar] [CrossRef] [Green Version]
- Hayden, F.G.; Hay, A.J. Emergence and transmission of influenza A viruses resistant to amantadine and rimantadine. Curr. Top. Microbiol. Immunol. 1992, 176, 119–130. [Google Scholar] [CrossRef]
- Dolin, R.; Reichman, R.C.; Madore, H.P.; Maynard, R.; Linton, P.N.; Webber-Jones, J. A controlled trial of amantadine and rimantadine in the prophylaxis of influenza a infection. N. Engl. J. Med. 1982, 307, 580–584. [Google Scholar] [CrossRef]
- Balamurugan, R.; Duraipandiyan, V.; Ignacimuthu, S. Antidiabetic activity of γ-sitosterol isolated from Lippia nodiflora L. in streptozotocin induced diabetic rats. Eur. J. Pharmacol. 2011, 667, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, R.; Stalin, A.; Aravinthan, A.; Kim, J. γ-sitosterol a potent hypolipidemic agent: In silico docking analysis. Med. Chem. Res. 2015, 24, 124–130. [Google Scholar] [CrossRef]
- Breyer-Pfaff, U.; Jerg, H.; Petruch, F. Cyclobarbital as a test substance for oxidative drug metabolism in man. Findings in neuropsychiatric patients. Eur. J. Clin. Pharmacol. 1979, 15, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.; Chen, H. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 2000, 14, 323–328. [Google Scholar] [CrossRef]
- Matthäus, B. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem. 2002, 50, 3444–3452. [Google Scholar] [CrossRef]
Sample | Age (Year) | Provenances | Latitude and Longitude |
---|---|---|---|
A | 20 | Yucheng District, Ya’an City | E 103°01′20″ N 29°58′44″ |
B | 21 | Yanbian County, Liangshan Prefecture | E 102°34′23″ N 26°37′43″ |
C | 18 | Pingwu County, Mianyang City | E 104°32′02″ N 32°24′38″ |
D | 21 | Wenjiang District, Chengdu City | E 103°47′32″ N 30°44′36″ |
E | 23 | Hejiang County, Luzhou City | E 105°49′10″ N 28°48′48″ |
F | 21 | Qingchuan County, Guangyuan City | E 105°14′38″ N 32°34′59″ |
G | 20 | Qu County, Dazhou City | E 106°57′28″ N 30°50′05″ |
H | 20 | Nanbu County, Nanchong City | E 105°48′00″ N 31°15′12″ |
I | 19 | Pengshan District, Meishan City | E 103°49′40″ N 30°17′03″ |
J | 18 | Cuiping District, Yibing City | E 104°39′46″ N 28°52′11″ |
K | 21 | Jiajiang County, Leshan City | E 103°33′44″ N 29°45′09″ |
L | 20 | Renhe District, Panzhihua City | E 101°45′10″ N 26°28′50″ |
Sample | 100-Grain Weight(g) | Extractive Yield | ||
---|---|---|---|---|
Ethanol | Petroleum Ether | Ethyl Acetate | ||
A | 49.92 ± 1.02 a | 6.40 ± 0.20% h | 4.20 ± 0.30% a | 7.60 ± 0.60% f |
B | 17.07 ± 0.34 i | 7.20 ± 0.50% f | 4.80 ± 0.20% c | 6.80 ± 0.40% g |
C | 30.05 ± 0.61 d | 7.80 ± 0.60% f | 5.20 ± 0.40% b c | 8.20 ± 0.50% f |
D | 39.26 ± 0.45 b | 5.20 ± 0.30% i | 3.20 ± 0.20% b c | 5.20 ± 0.30% g |
E | 14.45 ± 0.22 j | 11.40 ± 0.40% c | 7.00 ± 0.50% b c | 12.80 ± 0.40% c |
F | 17.45 ± 0.30 i | 10.00 ± 0.80% d | 6.60 ± 0.40% c d | 12.00 ± 0.60% d |
G | 21.94 ± 0.41 h | 10.40 ± 0.60% d | 7.00 ± 0.40% d e | 11.40 ± 0.70% d |
H | 23.42 ± 0.55 f | 11.60 ± 0.60% c | 7.00 ± 0.60% e | 11.20 ± 0.50% d e |
I | 34.76 ± 1.25 c | 12.80 ± 0.50% b | 10.40 ± 0.60% e f | 15.40 ± 0.20% b |
J | 26.35 ± 0.47 e | 9.00 ± 0.20% e | 6.00 ± 0.30% f g | 8.60 ± 0.30% f |
K | 34.00 ± 1.01 c | 16.80 ± 0.40% a | 7.60 ± 0.40% g | 17.40 ± 0.40% a |
L | 14.15 ± 0.29 j | 9.00 ± 0.30% e | 5.40 ± 0.50% h | 10.00 ± 0.50% c |
S/N | Compound | Relative Amount (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | ||
1 | Phenol, 3,5-bis(1,1-dimethylethyl)- | 12.02 | 5.25 | 7.01 | 6.60 | 3.20 | 2.18 | 4.28 | 3.88 | 2.90 | 2.59 | 11.41 | 6.75 |
2 | Sulfurous acid, 2-ethylhexyl isohexyl ester | 0.67 | 2.17 | 2.88 | 2.33 | 2.28 | 2.57 | ||||||
3 | Undecanoic acid, ethyl ester | 3.86 | 1.39 | ||||||||||
4 | Phytol | 1.62 | 1.08 | 0.75 | 0.84 | 0.68 | 0.72 | ||||||
5 | 1,9-Cyclohexadecadiene | 13.78 | 4.98 | ||||||||||
6 | 1-Tetradecyne | 3.26 | 0.74 | ||||||||||
7 | 1-Octadecanesulphonyl chloride | 1.39 | 0.64 | 3.76 | 0.52 | 2.47 | |||||||
8 | Phenol, 2,2’-methylenebis[6-(1,1-dimethylethyl)-4-methyl- | 5.64 | 1.10 | 1.79 | 3.12 | 1.04 | 0.81 | 1.84 | 1.09 | ||||
9 | Dodecane, 2,6,11-trimethyl- | 29.29 | |||||||||||
10 | 1R,4S,7S,11R-2,2,4,8-Tetramethyltricyclo[5.3.1.0(4,11)]undec-8-ene | 23.42 | 18.53 | 25.68 | 10.44 | 10.92 | 10.50 | 2.84 | |||||
11 | Nonadecane | 30.08 | 34.58 | 39.60 | 46.66 | 41.68 | 43.81 | 59.27 | |||||
12 | 6β-Bicyclo[4.3.0]nonane, 5β-iodomethyl-1β-isopropenyl-4α,5α-dimethyl-, | 30.61 | 23.99 | 53.26 | 22.85 | 4.91 | 35.98 | 21.93 | 31.78 | 42.17 | 88.54 | 59.91 | |
13 | Card-20(22)-enolide, 3,5,14,19-tetrahydroxy-, (3β,5β)- | 90.58 | |||||||||||
14 | Azulene, 1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl)-, [1S-(1α,7α,8aβ)]- | 45.35 | 8.06 | ||||||||||
15 | 9,12-Octadecadienoic acid, methyl ester, (E,E)- | 1.08 | 12.06 | 0.90 | |||||||||
16 | 7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(2-methyloxiranyl)- | 2.89 | 1.25 | 0.65 | 0.85 | 1.59 | |||||||
17 | 3,4-Hexanedione, 2,2,5-trimethyl- | 3.15 | 0.70 | ||||||||||
18 | Cis-5,8,11,14,17-eicosapentaenoic acid | 0.57 | |||||||||||
19 | 2,5,5,8a-Tetramethyl-4-methylene-6,7,8,8a-tetrahydro-4H,5H-chromen-4a-yl hydroperoxide | 1.64 | 1.24 | 1.27 | |||||||||
20 | Octacosane | 3.16 | |||||||||||
21 | Octadecane | 80.85 | |||||||||||
22 | trans-Z-α-Bisabolene epoxide | 62.46 | 5.72 | 0.53 | |||||||||
23 | 1-Cycloheptene, 1,4-dimethyl-3-(2-methyl-1-propene-1-yl)-4-vinyl- | 28.60 | 61.73 | 17.54 | |||||||||
24 | Butanoic acid, 2-methyl- | 0.55 | 3.60 | 1.39 | |||||||||
25 | Dodecanoic acid, ethyl ester | 5.56 | 1.37 | 3.04 | |||||||||
26 | 9,12-Octadecadienoyl chloride, (Z,Z)- | 1.72 | 0.53 | 3.11 | 3.21 | ||||||||
27 | β-Guaiene | 51.87 | |||||||||||
28 | Retinal | 3.11 | |||||||||||
29 | Decanoic acid, ethyl ester | 1.52 | 0.55 | 0.52 | 0.89 | 0.96 | 2.00 | ||||||
30 | Citronellyl isobutyrate | 6.35 | |||||||||||
31 | Linoelaidic acid | 0.81 | |||||||||||
32 | Hexane, 3,3-dimethyl- | 1.65 | 1.64 | 0.60 | 0.73 | 2.86 | 1.88 | 2.30 | 2.64 | ||||
33 | Hexadecane | 30.61 | 2.04 | 2.46 | 2.33 | 2.06 | 44.83 | ||||||
34 | Diepicedrene-1-oxide | 1.06 | 1.34 | 1.61 | 4.45 | ||||||||
35 | Dodecane, 1-iodo- | 4.02 | |||||||||||
36 | Thunbergol | 25.40 | 22.23 | 5.15 | |||||||||
37 | (1R,6S)-6-Hydroxy-6-methyl-4-oxocyclohex-2-en-1-yl benzoate | 0.69 | 0.75 | 2.43 | 1.57 | ||||||||
38 | 2,12-Dimethylidenecyclododecan-1-one | 2.46 | 2.37 | ||||||||||
39 | Eicosane | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
40 | (Z)6,(Z)9-Pentadecadien-1-ol | 3.88 | 1.63 | ||||||||||
41 | Aromadendrene oxide-(1) | 1.56 | 0.98 | 3.20 | |||||||||
42 | Humulane-1,6-dien-3-ol | 19.66 | |||||||||||
43 | Heptacosane | 43.29 | |||||||||||
44 | β-Sitosterol | 10.67 | |||||||||||
45 | 1H-Benzocycloheptene, 2,4a,5,6,7,8,9,9a-octahydro-3,5,5-trimethyl-9-methylene-, (4aS-cis)- | 25.79 | |||||||||||
46 | 2-Isopropenyl-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalene | 22.27 | |||||||||||
47 | Diazoprogesterone | 7.25 | |||||||||||
48 | Naphthalene, decahydro-4a-methyl-1-methylene-7-(1-methylethenyl)-, [4aR-(4aα,7α,8aβ)]- | 5.97 | |||||||||||
49 | α-Guaiene | 52.78 | 18.89 | ||||||||||
50 | Alloaromadendrene oxide-(1) | 31.94 | |||||||||||
51 | Nonanoic acid, 5-methyl-, ethyl ester | 0.50 | |||||||||||
52 | 1H-Cycloprop[e]azulene, 1a,2,3,5,6,7,7a,7b-octahydro-1,1,4,7-tetramethyl-, [1aR-(1aα,7α,7aβ,7bα)]- | 10.94 | |||||||||||
53 | Picrotoxinin | 8.78 | |||||||||||
54 | (1R,2R,4S,6S,7S,8S)-8-Isopropyl-1-methyl-3-methylenetricyclo[4.4.0.02,7]decan-4-ol | 4.88 | |||||||||||
55 | (1R,7S,E)-7-Isopropyl-4,10-dimethylenecyclodec-5-enol | 6.54 | |||||||||||
56 | 1,14-Tetradecanediol | 7.28 | |||||||||||
57 | 2H-Pyran-2-one, tetrahydro-6-nonyl- | 0.64 | |||||||||||
58 | Caryophyllene oxide | 0.93 | |||||||||||
59 | Aromadendrene oxide-(2) | 43.4 |
S/N | Compound | Relative Amount (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | ||
1 | Phenol, 2,2’-methylenebis[6-(1,1-dimethylethyl)-4-methyl- | 1.85 | 1.09 | 2.71 | 3.82 | 0.50 | 3.38 | 0.82 | 1.48 | 0.53 | |||
2 | 1H-Tetrazol-5-amine | 2.93 | |||||||||||
3 | Undecane, 3,8-dimethyl- | 11.68 | 6.78 | 7.31 | 13.90 | 25.16 | 4.61 | 7.91 | |||||
4 | Squalene | 1.22 | 0.90 | 0.70 | 1.34 | ||||||||
5 | Hexane, 3,3-dimethyl- | 5.81 | 3.54 | ||||||||||
6 | D-Friedoolean-14-en-3-one | 2.98 | 4.33 | 9.14 | 7.64 | 35.29 | 1.11 | 4.91 | 7.07 | 1.37 | 5.38 | 1.80 | 2.03 |
7 | A’-Neogammacer-22(29)-en-3-one | 6.22 | 22.18 | 11.58 | 17.67 | 68.56 | 8.96 | 6.74 | 13.13 | 11.95 | 18.66 | 24.46 | 12.55 |
8 | 13,27-Cycloursan-3-one | 7.61 | 8.45 | 27.29 | 19.58 | 50.25 | 2.07 | 3.12 | 2.71 | 8.01 | 22.81 | 7.34 | 4.07 |
9 | γ-Sitosterol | 4.19 | 0.67 | 4.06 | 13.72 | 20.60 | 3.72 | 6.35 | 5.48 | 16.22 | 9.03 | ||
10 | Olean-18-ene | 7.00 | |||||||||||
11 | Lup-20(29)-en-3-one | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
12 | Lupeol | 16.74 | 19.86 | 19.22 | 26.80 | 54.82 | 16.91 | 15.76 | 16.85 | 9.58 | 30.74 | 17.63 | 17.39 |
13 | γ-Sitostenone | 3.60 | 3.95 | ||||||||||
14 | β-Amyrone | 11.97 | 5.91 | 13.02 | |||||||||
15 | Octane, 2,7-dimethyl- | 3.01 | 5.97 | 2.67 | 11.01 | ||||||||
16 | Nonadecane | 10.57 | |||||||||||
17 | β-Sitosterol | 2.09 | 13.28 | ||||||||||
18 | 6a,14a-Methanopicene, perhydro-1,2,4a,6b,9,9,12a-heptamethyl-10-hydroxy- | 3.39 | 15.83 | 6.28 | 6.70 | 4.57 | |||||||
19 | 17α,21β-28,30-Bisnorhopane | 2.80 | 3.94 | 0.54 | 0.50 | 0.65 | |||||||
20 | Dodecane, 2,6,11-trimethyl- | 13.73 | |||||||||||
21 | Eicosane, 1-iodo- | 0.76 | 29.55 | 2.36 | 6.57 | 2.92 | 14.38 | ||||||
22 | Germanicol | 14.32 | 40.70 | 9.02 | 9.10 | 2.99 | |||||||
23 | Decane, 2,4-dimethyl- | 7.61 | 2.35 | ||||||||||
24 | Di-n-decylsulfone | 0.86 | 3.62 | 0.72 | |||||||||
25 | Heptacosane | 1.86 | 0.64 | 18.57 | |||||||||
26 | 3,7-Dimethyl-1-phenylsulfonyl-2,6-octadiene | 9.58 | |||||||||||
27 | Pentacosane | 6.59 | 10.30 | 9.70 | 5.83 | ||||||||
28 | Hexacosane | 15.53 | |||||||||||
29 | α-Amyrone | 1.12 | 3.79 | 0.58 | |||||||||
30 | 9,19-Cyclolanost-23-ene-3,25-diol, (3β,23E)- | 4.67 | 4.42 | 1.13 | |||||||||
31 | Undecane, 4,8-dimethyl- | 6.41 | |||||||||||
32 | Sulfurous acid, 2-ethylhexyl isohexyl ester | 3.94 | |||||||||||
33 | Octacosanal | 6.26 | 1.06 | 0.74 | 1.92 | 1.55 | |||||||
34 | 9,19-Cyclo-27-norlanostan-25-one, 3-(acetyloxy)-24-methyl-, (3β,24R)- | 6.35 | 4.25 | ||||||||||
35 | Undecane, 3,7-dimethyl- | 8.63 | |||||||||||
36 | Stigmast-4-en-3-one | 11.69 | 2.06 | 0.86 | 2.22 | ||||||||
37 | 7a-Isopropenyl-4,5-dimethyloctahydroindene-4-carboxylic acid | 3.77 | |||||||||||
38 | Decane, 2,3,5-trimethyl- | 3.52 | |||||||||||
39 | Hexadecane | 3.49 | |||||||||||
41 | Decane, 2,9-dimethyl- | 5.84 | |||||||||||
42 | Nonane, 3,7-dimethyl- | 5.66 | |||||||||||
43 | 3,5-Dimethoxycinnamic acid | 1.45 | |||||||||||
44 | Spirost-8-en-11-one, 3-hydroxy-, (3β,5α,14β,20β,22β,25R)- | 2.56 | |||||||||||
45 | 3,4-Hexanedione, 2,2,5-trimethyl- | 3.48 | |||||||||||
46 | Octatriacontyl pentafluoropropionate | 4.56 | |||||||||||
47 | 3,6,9,12-Tetraoxatetradecan-1-ol, 14-[4-(1,1,3,3-tetramethylbutyl)phenoxy]- | 2.34 | |||||||||||
48 | Betulinaldehyde | 4.10 | |||||||||||
49 | Betulin | 9.75 |
S/N | Compound | Relative Amount (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | ||
1 | Bicyclo[3.1.0]hex-2-ene, 4-methyl-1-(1-methylethyl)- | 71.19 | 69.59 | 67.17 | 68.05 | 44.44 | 31.88 | 50.81 | 68.78 | 58.44 | 56.97 | 73.08 | |
2 | Camphene | 5.84 | 5.25 | 5.66 | 5.56 | 3.56 | 2.39 | 4.12 | 5.12 | 4.58 | 4.56 | 4.26 | 5.28 |
3 | Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)- | 15.40 | 14.38 | 6.11 | 12.60 | ||||||||
4 | Ethanol, 1,1’-oxybis-, diacetate | 4.40 | 4.00 | 5.27 | 3.29 | 6.08 | 2.32 | 4.20 | 3.62 | ||||
5 | Germacrene D | 1.07 | 1.68 | 1.40 | 1.17 | 6.60 | |||||||
6 | α-Cubebene | 3.22 | 3.05 | 2.01 | 1.19 | 2.72 | 2.57 | ||||||
7 | (1R,5R)-2-Methyl-5-((R)-6-methylhept-5-en-2-yl)bicyclo[3.1.0]hex-2-ene | 7.72 | 7.44 | 7.15 | 6.91 | 4.71 | 3.07 | 6.83 | 5.40 | 0.68 | 4.95 | 5.96 | |
8 | β-Gurjunene | 44.96 | 44.33 | 42.7 | 43.34 | 28.67 | 19.94 | 31.81 | 43.11 | 37.92 | 35.4 | 33.57 | 42.00 |
9 | isoledene | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
10 | cis-β-Farnesene | 10.03 | 10.43 | 1.55 | 0.83 | 4.28 | 8.93 | 9.96 | 8.34 | 8.94 | |||
11 | (E)-β-Famesene | 1.26 | 1.62 | 1.46 | 10.16 | 0.51 | 1.05 | 1.06 | 1.17 | 1.19 | 1.08 | ||
12 | Phytol | 8.39 | 21.47 | 1.72 | 4.36 | 1.02 | 6.44 | 1.41 | 5.36 | 7.30 | 2.66 | ||
13 | Eicosane, 1-iodo- | 0.86 | 2.23 | 2.34 | 0.77 | 2.53 | 3.38 | 0.90 | 1.87 | 2.36 | |||
14 | Phenol, 2,2’-methylenebis[6-(1,1-dimethylethyl)-4-methyl- | 24.78 | 17.93 | 16.31 | 21.06 | 19.05 | 6.00 | 87.51 | 8.89 | 12.14 | 10.41 | 26.11 | 35.49 |
15 | Hexane, 3,3-dimethyl- | 21.25 | 22.21 | ||||||||||
16 | Nonane, 3,7-dimethyl- | 59.89 | 68.42 | ||||||||||
17 | 16-Hentriacontanone | 89.14 | |||||||||||
18 | γ-Sitosterol | 2.27 | 16.35 | ||||||||||
19 | Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-methylene-, (1S)- | 15.19 | 14.29 | 9.10 | 10.64 | 13.40 | 11.71 | ||||||
20 | cis-muurola-4(15),5-diene | 1.62 | 1.83 | 0.52 | 0.80 | 2.30 | 0.95 | 2.07 | 3.11 | ||||
21 | cis-muurola-3,5-diene | 3.05 | 2.87 | 0.58 | 0.87 | 0.63 | 2.85 | ||||||
22 | Bicyclo[3.1.1]heptane, 6-methyl-2-methylene-6-(4-methyl-3-pentenyl)-, [1R-(1α,5α,6β)]- | 2.08 | 2.01 | 2.17 | 1.85 | 1.62 | |||||||
23 | Cubenene | 1.72 | 2.35 | ||||||||||
24 | Di-n-decylsulfone | 1.48 | 1.78 | 1.23 | 2.79 | 0.67 | 1.78 | 0.86 | 3.15 | 3.41 | |||
25 | Sulfurous acid, 2-ethylhexyl isohexyl ester | 30.28 | |||||||||||
26 | Eicosane, 7-hexyl- | 3.51 | 6.13 | 2.07 | 2.82 | 1.52 | |||||||
27 | Ginsenol | 11.70 | 7.14 | 2.34 | 3.04 | ||||||||
28 | Undecane, 3,8-dimethyl- | 71.11 | 72.59 | 65.88 | 41.76 | 52.02 | 85.15 | 73.22 | |||||
29 | A’-Neogammacer-22(29)-en-3-one | 44.50 | 18.37 | 25.20 | 11.65 | 41.88 | 24.64 | 39.50 | 23.36 | 76.29 | 25.47 | 44.12 | |
30 | Germanicol | 8.83 | 22.69 | ||||||||||
31 | Butanoic acid, 2-methyl- | 6.18 | 13.89 | ||||||||||
32 | Cyclohexene, 3-(1,5-dimethyl-4-hexenyl)-6-methylene-, [S-(R*,S*)]- | 9.84 | 6.43 | 7.48 | 0.69 | ||||||||
33 | Sulfurous acid, 2-ethylhexyl hexyl ester | 25.62 | 26.61 | ||||||||||
34 | D-Homopregn-17a(20)-ene, (5α,17aE)- | 28.44 | |||||||||||
35 | Nonadecane | 64.86 | 50.27 | ||||||||||
36 | 6βBicyclo[4.3.0]nonane, 5β-iodomethyl-1β-isopropenyl-4α,5α-dimethyl-, | 4.22 | 2.01 | 4.42 | 5.60 | ||||||||
37 | 5α-Pregn-16-en-20-one | 13.28 | |||||||||||
38 | Pentacosane | 44.58 | |||||||||||
39 | Tetradecane, 1-iodo- | 55.35 | |||||||||||
40 | Hexadecane | 97.11 | 66.09 | 39.65 | 60.54 | 54.48 | |||||||
41 | Methyl 3-bromo-1-adamantaneacetate | 7.16 | |||||||||||
42 | Cyclohexene, 4-methylene-1-(1-methylethyl)- | 14.08 | 60.85 | 14.25 | |||||||||
43 | Paraldehyde | 2.81 | |||||||||||
44 | 13,27-Cycloursan-3-one | 27.49 | |||||||||||
45 | trans-α-Bergamotene | 5.54 | 6.15 | ||||||||||
46 | Tetracosane | 71.91 | |||||||||||
47 | (3S,3aR,3bR,4S,7R,7aR)-4-Isopropyl-3,7-dimethyloctahydro-1H-cyclopenta[1,3]cyclopropa[1,2]benzen-3-ol | 13.15 | 6.08 | ||||||||||
48 | Pregnan-3α-ol-20-one | 15.83 | |||||||||||
49 | 1-Adamantanemethylamine, α-methyl- | 0.72 | |||||||||||
50 | ((4aS,8S,8aR)-8-Isopropyl-5-methyl-3,4,4a,7,8,8a-hexahydronaphthalen-2-yl)methanol | 3.05 | |||||||||||
51 | Cyclobarbital | 1.05 |
Sample | IC50 (mg/mL) | ||
---|---|---|---|
Ethanol | Petroleum Ether | Ethyl Acetate | |
A | 1.027 ± 0.013 e | 3.223 ± 0.010 g | 2.405 ± 0.022 e |
B | 0.513 ± 0.009 f | 3.760 ± 0.048 e | 2.131 ± 0.023 f |
C | 0.342 ± 0.001 g | 3.388 ± 0.048 f | 1.074 ± 0.016 h |
D | 0.076 ± 0.002 i | 1.522 ± 0.031 i | 0.390 ± 0.006 i |
E | 1.379 ± 0.008 c | 4.700 ± 0.064 c | 2.640 ± 0.034 c |
F | 1.451 ± 0.078 b | 4.904 ± 0.081 b | 2.972 ± 0.042 b |
G | 1.358 ± 0.020 cd | 3.387 ± 0.056 f | 2.377 ± 0.031 e |
H | 1.341 ± 0.012 cd | 3.387 ± 0.005 f | 2.020 ± 0.025 g |
I | 1.320 ± 0.020 d | 3.933 ± 0.060 d | 2.516 ± 0.020 d |
J | 0.184 ± 0.003 h | 2.456 ± 0.045 h | 0.333 ± 0.006 j |
K | 1.992 ± 0.026 k | 4.975 ± 0.048 b | 3.283 ± 0.041 a |
L | 1.024 ± 0.012 e | 5.266 ± 0.087 a | 1.980 ± 0.021 g |
Vitamin C | 0.002 ± 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Pan, F.; Gao, Y.; Li, H.; Qin, X.; Jiang, Y.; Qi, J.; Xie, J.; Jia, S. Analysis of Components and Properties of Extractives from Alnus cremastogyne Pods from Different Provenances. Molecules 2022, 27, 7802. https://doi.org/10.3390/molecules27227802
Chen G, Pan F, Gao Y, Li H, Qin X, Jiang Y, Qi J, Xie J, Jia S. Analysis of Components and Properties of Extractives from Alnus cremastogyne Pods from Different Provenances. Molecules. 2022; 27(22):7802. https://doi.org/10.3390/molecules27227802
Chicago/Turabian StyleChen, Guoxi, Fangya Pan, Yemei Gao, Hao Li, Xiaqing Qin, Yongze Jiang, Jinqiu Qi, Jiulong Xie, and Shanshan Jia. 2022. "Analysis of Components and Properties of Extractives from Alnus cremastogyne Pods from Different Provenances" Molecules 27, no. 22: 7802. https://doi.org/10.3390/molecules27227802
APA StyleChen, G., Pan, F., Gao, Y., Li, H., Qin, X., Jiang, Y., Qi, J., Xie, J., & Jia, S. (2022). Analysis of Components and Properties of Extractives from Alnus cremastogyne Pods from Different Provenances. Molecules, 27(22), 7802. https://doi.org/10.3390/molecules27227802