Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,518)

Search Parameters:
Keywords = layer quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13479 KB  
Article
Friction and Wear of Extrusion Dies Under Extreme Transient High-Temperature Conditions in the Extrusion of a Novel Nickel-Based High-Temperature Powder Alloy
by Baizhi Sun, Jinhui Wang, Yanzhuo Liu, Kongyan Zhang, Yuhua Zhang, Zifeng Liu, Falin Zhang, Guangyun Duan, Hongqiang Du, Yongsheng Wei, Yingnan Shi and Xinmei Hou
Lubricants 2026, 14(2), 55; https://doi.org/10.3390/lubricants14020055 - 27 Jan 2026
Abstract
During the extrusion of novel nickel-based powder superalloy bars, the die is subjected to elevated temperatures, high pressures, and severe friction, which readily lead to abrasive wear and thermal-fatigue damage. These failures deteriorate the quality of the extruded products and significantly shorten the [...] Read more.
During the extrusion of novel nickel-based powder superalloy bars, the die is subjected to elevated temperatures, high pressures, and severe friction, which readily lead to abrasive wear and thermal-fatigue damage. These failures deteriorate the quality of the extruded products and significantly shorten the service life of the die. Frequent repair and replacement of the tooling ultimately increase the overall manufacturing cost. This study investigates the friction and wear behavior of H13 and 5CrNiMo hot-work tool steels under extreme transient high-temperature conditions by combining finite element simulation with tribological testing. The temperature and stress distributions of the billet and key tooling components during extrusion were analyzed using DEFORM-3D. In addition, pin-on-disk friction and wear tests were conducted at 1000 °C to examine the friction coefficient, wear morphology, and subsurface grain structural evolution under various loading conditions. The results show that the extrusion die and die holder experience the highest loads and most severe wear during the extrusion process. For 5CrNiMo tool steel, the wear mechanism under low loads is dominated by mild abrasive wear and oxidative wear, whereas increasing the load causes a transition toward adhesive wear and severe oxidative wear. In contrast, H13 tool steel exhibits a transition from abrasive wear to severe oxidative wear. In 5CrNiMo steel, friction-induced recrystallization, grain refinement, and softening lead to the formation of a mechanically mixed layer, which, together with a stable third-body layer, markedly reduces and stabilizes the friction coefficient. H13 steel, however, undergoes surface strain localization and spalling, resulting in persistent fluctuations in the friction coefficient. The toughness and adhesion of the oxide film govern the differences in wear mechanisms between the two steels. Owing to its higher Cr, V, and Mo contents, H13 forms a dense but highly brittle oxide scale dominated by Cr and Fe oxides at 1000 °C. This oxide layer readily cracks and delaminates under frictional shear and thermal cycling. The repeated spalling exposes the fresh surface to further oxidation, accompanied by recurrent adhesion–delamination cycles. Consequently, the subsurface undergoes alternating intense shear and transient load variations, leading to localized dislocation accumulation and cracking, which suppresses the progression of continuous recrystallization. Full article
(This article belongs to the Special Issue Friction and Wear Mechanism Under Extreme Environments)
Show Figures

Figure 1

35 pages, 2368 KB  
Review
Bridging Light and Immersion: Visible Optical Interfaces for Extended Reality
by Haixuan Xu, Zhaoxu Wang, Jiaqi Sun, Chengkai Zhu and Yi Xia
Photonics 2026, 13(2), 115; https://doi.org/10.3390/photonics13020115 - 27 Jan 2026
Abstract
Extended reality (XR), encompassing virtual reality (VR), augmented reality (AR), and mixed reality (MR), is rapidly reshaping the landscape of digital interaction and immersive communication. As XR evolves toward ultra-realistic, real-time, and interactive experiences, it places unprecedented demands on wireless communication systems in [...] Read more.
Extended reality (XR), encompassing virtual reality (VR), augmented reality (AR), and mixed reality (MR), is rapidly reshaping the landscape of digital interaction and immersive communication. As XR evolves toward ultra-realistic, real-time, and interactive experiences, it places unprecedented demands on wireless communication systems in terms of bandwidth, latency, and reliability. Conventional RF-based networks, constrained by limited spectrum and interference, struggle to meet these stringent requirements. In contrast, visible light communication (VLC) offers a compelling alternative by exploiting the vast unregulated visible spectrum to deliver high-speed, low-latency, and interference-free data transmission—making it particularly suitable for future XR environments. This paper presents a comprehensive survey on VLC-enabled XR communication systems. We first analyze XR technologies and their diverse quality-of-service (QoS) and quality-of-experience (QoE) requirements, identifying the unique challenges posed to existing wireless infrastructures. Building upon this, we explore the fundamentals, characteristics, and opportunities of VLC systems in supporting immersive XR applications. Furthermore, we elaborate on the key enabling techniques that empower VLC to fulfill XR’s stringent demands, including high-speed transmission technologies, hybrid VLC-RF architectures, dynamic beam control, and visible light sensing capabilities. Finally, we discuss future research directions, emphasizing AI-assisted network intelligence, cross-layer optimization, and collaborative multi-element transmission frameworks as vital enablers for the next-generation VLC–XR ecosystem. Full article
(This article belongs to the Special Issue Advanced Optical Fiber Communication)
Show Figures

Figure 1

27 pages, 4789 KB  
Article
Assessing Interaction Quality in Human–AI Dialogue: An Integrative Review and Multi-Layer Framework for Conversational Agents
by Luca Marconi, Luca Longo and Federico Cabitza
Mach. Learn. Knowl. Extr. 2026, 8(2), 28; https://doi.org/10.3390/make8020028 - 26 Jan 2026
Abstract
Conversational agents are transforming digital interactions across various domains, including healthcare, education, and customer service, thanks to advances in large language models (LLMs). As these systems become more autonomous and ubiquitous, understanding what constitutes high-quality interaction from a user perspective is increasingly critical. [...] Read more.
Conversational agents are transforming digital interactions across various domains, including healthcare, education, and customer service, thanks to advances in large language models (LLMs). As these systems become more autonomous and ubiquitous, understanding what constitutes high-quality interaction from a user perspective is increasingly critical. Despite growing empirical research, the field lacks a unified framework for defining, measuring, and designing user-perceived interaction quality in human–artificial intelligence (AI) dialogue. Here, we present an integrative review of 125 empirical studies published between 2017 and 2025, spanning text-, voice-, and LLM-powered systems. Our synthesis identifies three consistent layers of user judgment: a pragmatic core (usability, task effectiveness, and conversational competence), a social–affective layer (social presence, warmth, and synchronicity), and an accountability and inclusion layer (transparency, accessibility, and fairness). These insights are formalised into a four-layer interpretive framework—Capacity, Alignment, Levers, and Outcomes—operationalised via a Capacity × Alignment matrix that maps distinct success and failure regimes. It also identifies design levers such as anthropomorphism, role framing, and onboarding strategies. The framework consolidates constructs, positions inclusion and accountability as central to quality, and offers actionable guidance for evaluation and design. This research redefines interaction quality as a dialogic construct, shifting the focus from system performance to co-orchestrated, user-centred dialogue quality. Full article
Show Figures

Figure 1

22 pages, 7687 KB  
Article
Aniline Electropolymerization on Indium–Tin Oxide Nanofilms with Different Surface Resistivity: A Comprehensive Study
by Sonia Kotowicz, Barbara Hajduk, Paweł Jarka, Agnieszka Katarzyna Pająk, Pallavi Kumari and Andreea Irina Barzic
Nanomaterials 2026, 16(3), 165; https://doi.org/10.3390/nano16030165 - 26 Jan 2026
Abstract
Aniline (ANI) was electropolymerized on ITO substrates with different surface resistivities. The process was performed by cyclic voltammetry from an aqueous, homogeneous solution containing sulfuric acid and the aniline monomer using various numbers of cycles and scan rates. The resulting polymer films (PANI) [...] Read more.
Aniline (ANI) was electropolymerized on ITO substrates with different surface resistivities. The process was performed by cyclic voltammetry from an aqueous, homogeneous solution containing sulfuric acid and the aniline monomer using various numbers of cycles and scan rates. The resulting polymer films (PANI) were characterized by ATR-IR spectroscopy, spectroscopic ellipsometry and atomic force microscopy. The influence of ITO surface resistivity on the electropolymerization process, the quality of the obtained PANI layers, and their optical properties was evaluated. Homogeneous PANI films were produced on ITO substrates with surface resistivities of 15–25 Ω/sq, encompassing both emeraldine salt and emeraldine base forms. Although the film’s growth was rapid, it also led to adhesion issues. In contrast, for ITO substrates with surface resistivities of 70–100 Ω/sq and 80–100 Ω/sq, the resulting films showed improved adhesion but were less homogeneous. Nevertheless, the conductive emeraldine salt form of polyaniline was successfully obtained. The conductive form of polyaniline was obtained without any additional modifications to the electropolymerization procedure. Notably, the literature provides no systematic analysis of electropolymerization on ITO substrates with different surface resistivities, which opens up new research opportunities and provides a basis for the rational design and optimization of PANI-based electro-optical coatings for advanced sensing applications. Full article
Show Figures

Figure 1

24 pages, 3162 KB  
Article
Development and Evaluation of Thixotropic UHPC Overlay Mixtures for Bridge Deck and Low-Slope Roof Slab Repair
by Akbota Aitbayeva, Mina Gerges, George Morcous and Jiong Hu
Buildings 2026, 16(3), 500; https://doi.org/10.3390/buildings16030500 - 26 Jan 2026
Abstract
Ultra-high-performance concrete (UHPC) is a sophisticated construction material known for its exceptional strength and durability. Conventional UHPC generally self-consolidates, which makes it unsuitable for roof and bridge deck rehabilitation applications due to its thin layers and inclined surfaces. UHPC overlay construction generally requires [...] Read more.
Ultra-high-performance concrete (UHPC) is a sophisticated construction material known for its exceptional strength and durability. Conventional UHPC generally self-consolidates, which makes it unsuitable for roof and bridge deck rehabilitation applications due to its thin layers and inclined surfaces. UHPC overlay construction generally requires a highly thixotropic material that responds well to vibration and remains stable on slopes. Despite the complex rheological properties of thixotropic UHPC, there are limited testing methods for effectively assessing the workability of overlay mixes. Therefore, this paper provides a comprehensive evaluation of the workability of overlay UHPC using existing and newly developed tests. Besides the commonly used static and dynamic flow tests, this study introduces Patting Response (PR) and Vibration-Slope Stability (VSS) tests, designed to evaluate different qualities of UHPC overlay mixtures. Seven groups of mixtures with varying binder content, water-to-binder ratio (w/b), fiber reinforcement, and admixture dosages were prepared and tested. A lab-scale sloped slab was constructed to validate the buildability of the most promising mixtures. These tests and mixtures support effective overlay solutions for roof slab and bridge deck repairs, providing protection against infrastructure deterioration and improving overall performance by introducing a dense, durable UHPC overlay. Results indicate that mixtures with static flow below 6 in. and dynamic flow between 7 and 8 in. consistently passed both PR and VSS tests, demonstrating stable vibration response and slope retention. The constructability evaluation confirmed the effectiveness of the new testing methods. Additionally, the correlation between different tests, particularly flow and VSS, was examined. Recommendations for appropriate ranges for various workability tests were established based on the performance of the developed mixtures. The proposed static and dynamic flow ranges are performance-based and are expected to be broadly applicable to thixotropic UHPC overlay systems exhibiting comparable workability and rheological behavior under vibration and sloped placement conditions. Overall, these tests and thixotropic UHPC mixtures facilitate effective repair of roof slabs and bridge decks, providing overlay protection against deterioration and potentially enhancing structural capacity through composite behavior. Full article
Show Figures

Figure 1

18 pages, 8134 KB  
Article
Research on a High-Quality Welding Method for Multi-Layer Aluminum Foil Current Collectors Based on Laser Power Control
by Jingang Liu, Yun Chen and Liang Guo
Metals 2026, 16(2), 150; https://doi.org/10.3390/met16020150 - 26 Jan 2026
Abstract
Reliable joining of multi-layer aluminum foil current collectors is crucial for enhancing the performance and safety of high-capacity lithium-ion batteries. However, laser welding of such thin-thick aluminum combinations is often hindered by porosity, cracks and unstable weld-pool behavior. In this study, a ring-mode [...] Read more.
Reliable joining of multi-layer aluminum foil current collectors is crucial for enhancing the performance and safety of high-capacity lithium-ion batteries. However, laser welding of such thin-thick aluminum combinations is often hindered by porosity, cracks and unstable weld-pool behavior. In this study, a ring-mode fiber laser combined with sinusoidal oscillation and linearly gradient power modulation was employed to achieve high-quality lap welding between 80 layers of 1060 aluminum foil (1 mm in total thickness) and a 1.5 mm thick aluminum plate. Welding experiments and thermo-mechanical simulations were conducted to investigate the effects of welding speed (15–45 mm/s) and central-power modulation parameters (−2, 0, +2, +4) on weld morphology, defect formation, and mechanical properties. The results indicate that increasing the welding speed can effectively suppress cracks and improve the shear strength from 249.8 N to 403.9 N, but it also leads to an increase in porosity from 5.78% to 12.26% and deterioration of the weld reinforcement. Higher central-power modulation (+2, +4) transformed the weld-pool geometry from an ω shape to U shape, effectively suppressing fusion-line cracks but leading to increased porosity (up to 8.41%) and deteriorated surface morphology. Overall, a low welding speed of 15 mm/s combined with an optimized power modulation strategy achieves effective crack suppression while maintaining controlled porosity, resulting in a welded joint with superior comprehensive performance. This research provides a robust process solution for high-quality laser welding of multi-layer aluminum foil current collectors in power battery manufacturing. Full article
(This article belongs to the Special Issue Advanced Laser Welding Technology of Alloys)
Show Figures

Figure 1

14 pages, 21879 KB  
Article
Comparison of Different Numbers of White Base Coat Layers on Metallized Cardboard for Obtaining High Print Quality After Rubbing
by Dino Priselac, Maja Rudolf, Ivana Plazonić and Irena Bates
Coatings 2026, 16(2), 158; https://doi.org/10.3390/coatings16020158 - 25 Jan 2026
Viewed by 52
Abstract
Metallized papers or cardboards, used when high barrier properties are required in packaging, are usually coated with white ink prior to printing to ensure accurate colors and high print quality. The coating provides well-controlled sorption properties at a certain thickness, allowing for better [...] Read more.
Metallized papers or cardboards, used when high barrier properties are required in packaging, are usually coated with white ink prior to printing to ensure accurate colors and high print quality. The coating provides well-controlled sorption properties at a certain thickness, allowing for better printability and reduced penetration of ink components into the substrate. The white ink used for coating ensures the dimensional stability of the substrate after the drying process is complete. This research compares how different numbers of white base coat layers affect the print quality of multicolor offset prints onto metallized cardboard after rubbing. A high print quality assessment after rubbing was obtained based on spectrophotometric and gloss measurements. A comparison of the number of white base coat layers on metallized cardboard indicated that multicolor prints with two base coat layers have lower reflectance, better color stability, and high print quality after rubbing. Gloss measurements showed that prints with one layer of white base coat exhibited higher gloss values, while rubbing led to a moderate increase in gloss for all samples. Ultimately, a thicker layer of white base coat enhances mechanical resistance while maintaining acceptable optical properties in multicolor prints on metallized cardboards. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

15 pages, 3850 KB  
Article
The Influence of Electron Beam Treatment on the Structure and Properties of the Surface Layer of the Composite Material AlMg3-5SiC
by Shunqi Mei, Roman Mikheev, Pavel Bykov, Igor Kalashnikov, Lubov Kobeleva, Andrey Sliva and Egor Terentyev
Lubricants 2026, 14(2), 50; https://doi.org/10.3390/lubricants14020050 - 25 Jan 2026
Viewed by 62
Abstract
The influence of electron beam treatment parameters (electron gun speed, electron beam current, scanning frequency, and sweep type) on the structure and properties of the surface layer of the composite material AlMg3-5SiC has been investigated. Composite specimens of AlMg3 alloy reinforced with [...] Read more.
The influence of electron beam treatment parameters (electron gun speed, electron beam current, scanning frequency, and sweep type) on the structure and properties of the surface layer of the composite material AlMg3-5SiC has been investigated. Composite specimens of AlMg3 alloy reinforced with 5 wt.% silicon carbide particles were manufactured via the stir casting process. Experimentally, processing modes with heat input from 120 to 240 J/mm yield a modified layer thickness from 74 to 1705 µm. Heat input should not exceed 150 J/mm to ensure a smooth and defect-free surface layer. The macro- and microstructure were examined using optical microscopy. Brinell hardness was measured. Friction and wear tests were performed under dry sliding friction conditions using the “bushing on plate” scheme. This evaluated the tribological properties of the composite material in its original cast state and after modifying treatment. Due to the matrix alloy structure refinement by 5–10 times, the surface layer’s hardness increases by 11% after treatment. The modified specimens have superior tribological properties to the initial ones. Wear rate reduces by 17.5%, the average friction coefficient reduces by 32%, and the root mean squared error of the friction coefficient, which measures friction process stability, reduces by 50% at a specific load of 2.5 MPa. Therefore, the electron beam treatment process is a useful method for producing high-quality and uniform wear-resistant aluminum matrix composite surface layers. Full article
Show Figures

Figure 1

23 pages, 3554 KB  
Article
Hybrid Mechanism–Data-Driven Modeling for Crystal Quality Prediction in Czochralski Process
by Duqiao Zhao, Junchao Ren, Xiaoyan Du, Yixin Wang and Dong Ding
Crystals 2026, 16(2), 86; https://doi.org/10.3390/cryst16020086 - 25 Jan 2026
Viewed by 46
Abstract
The V/G criterion is a critical indicator for monitoring dynamic changes during Czochralski silicon single crystal (Cz-SSC) growth. However, the inability to measure it in real time forces reliance on offline feedback for process regulation, leading to imprecise control and compromised crystal quality. [...] Read more.
The V/G criterion is a critical indicator for monitoring dynamic changes during Czochralski silicon single crystal (Cz-SSC) growth. However, the inability to measure it in real time forces reliance on offline feedback for process regulation, leading to imprecise control and compromised crystal quality. To overcome this limitation, this paper proposes a novel soft sensor modeling framework that integrates both mechanism-based knowledge and data-driven learning for the real-time prediction of the crystal quality parameter, specifically the V/G value (the ratio of growth rate to axial temperature gradient). The proposed approach constructs a hybrid prediction model by combining a data-driven sub-model with a physics-informed mechanism sub-model. The data-driven component is developed using an attention-based dynamic stacked enhanced autoencoder (AD-SEAE) network, where the SEAE structure introduces layer-wise reconstruction operations to mitigate information loss during hierarchical feature extraction. Furthermore, an attention mechanism is incorporated to dynamically weigh historical and current samples, thereby enhancing the temporal representation of process dynamics. In addition, a robust ensemble approach is achieved by fusing the outputs of two subsidiary models using an adaptive weighting strategy based on prediction accuracy, thereby enabling more reliable V/G predictions under varying operational conditions. Experimental validation using actual industrial Cz-SSC production data demonstrates that the proposed method achieves high-prediction accuracy and effectively supports real-time process optimization and quality monitoring. Full article
(This article belongs to the Section Industrial Crystallization)
Show Figures

Figure 1

26 pages, 2600 KB  
Article
Influence of the Amount of Mineral Additive on the Rheological Properties and the Carbon Footprint of 3D-Printed Concrete Mixtures
by Modestas Kligys, Giedrius Girskas and Daiva Baltuškienė
Buildings 2026, 16(3), 490; https://doi.org/10.3390/buildings16030490 - 25 Jan 2026
Viewed by 46
Abstract
Rheology plays an important role in the 3D concrete printing technology, because it directly governs the flowability and shape retention of the material, impacting both the printing process and the final quality of the obtained structure. Local raw materials such as Portland cement, [...] Read more.
Rheology plays an important role in the 3D concrete printing technology, because it directly governs the flowability and shape retention of the material, impacting both the printing process and the final quality of the obtained structure. Local raw materials such as Portland cement, washed sand, and tap water were used for the preparation of 3D-printed concrete mixtures. The solid-state polycarboxylate ether with an anti-foaming agent was used as superplasticizer. The Portland cement was partially replaced (by volume) with a natural zeolite additive in amounts ranging from 0% to 9% in 3D-printed concrete mixtures. A rotational rheometer with coaxial cylinders was used in this research for the determination of rheological characteristics of prepared 3D-printed concrete mixtures. The Herschel–Buckley model was used to approximate experimental flow curves and assess rheological parameters such as yield stress, plastic viscosity, and shear-thinning/thickening index. The additional experiments and calculations, such as water bleeding test and evaluation of the carbon footprint of 3D-printed concrete mixtures, were performed in this work. The replacement of Portland cement with natural zeolite additive positively influenced rheological and stability-related properties of 3D-printed concrete mixtures. Natural zeolite additive consistently reduced water bleeding, enhanced yield stress under increasing shear rates, and lowered plastic viscosity, thereby improving flowability and mixture transportation during the 3D printing process. As the shear-thinning/thickening index remained stable (indicating non-thixotropic behavior in most cases), higher amounts of natural zeolite additive introduced slight thixotropy (especially under decreased shear rates). These changes contributed to better shape retention, layer stability, and the ability to print taller and narrower structures without collapse, making natural zeolite additive suitable for use in the optimized processes of 3D concrete printing. A significant decrease in total carbon footprint (from 3% to 19%) was observed in 3D-printed concrete mixtures with an increase in the mentioned amounts of natural zeolite additive, compared to the mixture without this additive. Full article
(This article belongs to the Special Issue Advances and Applications of Recycled Concrete in Green Building)
Show Figures

Figure 1

15 pages, 5618 KB  
Article
Proximity-Assisted Synthesis of Large Area MoS2 on Different Target Substrates by Chemical Vapor Deposition Using a Mo Nanofilm Substrate
by Muhammad Tariq, William Poston, Norah Aldosari, Gregory Jensen, Maryam Bizhani and Eric Stinaff
Nanomaterials 2026, 16(3), 159; https://doi.org/10.3390/nano16030159 - 24 Jan 2026
Viewed by 99
Abstract
Despite efforts to produce scalable, substrate-independent, low-defect-density, and high-quality MoS2, this continues to be a critical challenge for industrial-scale applications. This work aims to present a chemical vapor deposition (CVD) method for growing high-quality and potentially large-area mono- to few-layer MoS [...] Read more.
Despite efforts to produce scalable, substrate-independent, low-defect-density, and high-quality MoS2, this continues to be a critical challenge for industrial-scale applications. This work aims to present a chemical vapor deposition (CVD) method for growing high-quality and potentially large-area mono- to few-layer MoS2 films via proximity between the Mo nanofilm substrate and the target substrates. By using stoichiometry-guided knowledge of Mo-S and Mo-O-S phase diagrams, Mo nanofilms are oxidized and then sulfurized under optimized conditions to grow high-quality, millimeter-scale mono- to few-layer MoS2 films in proximity to the target substrate. We have achieved millimeter-scale continuous growth of MoS2 revealed via optical microscopy. Two-dimensional Raman maps of Full Width at Half Maximum show high-quality growth, and photoluminescence-based B/A exciton amplitude ratio shows high crystalline and optical quality with low defect density. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
23 pages, 5269 KB  
Article
Sustainable Functionalization of Natural Fibers Using Biochar: Structural and Evaporation Studies
by Juan José Quiroz Ramírez, Reinier Abreu-Naranjo, Oscar M. Rodriguez-Narvaez, Sergio Alonso Romero and Alejandro Suarez Toriello
Processes 2026, 14(3), 415; https://doi.org/10.3390/pr14030415 - 24 Jan 2026
Viewed by 90
Abstract
The sustainable valorization of lignocellulosic biomass offers a promising route for developing low-cost photothermal materials for solar water purification. This study investigates natural fibers from Opuntia ficus-indica, Agave sisalana, and cellulose sponge, which were chemically purified through alkaline–peroxide pretreatment and subsequently functionalized with [...] Read more.
The sustainable valorization of lignocellulosic biomass offers a promising route for developing low-cost photothermal materials for solar water purification. This study investigates natural fibers from Opuntia ficus-indica, Agave sisalana, and cellulose sponge, which were chemically purified through alkaline–peroxide pretreatment and subsequently functionalized with biochar via immersion and crosslinking-assisted deposition. Structural analyses (SEM, FTIR, XRD, CHNS/O) confirmed the transition from heterogeneous lignocellulosic matrices to cellulose-rich scaffolds and finally to hierarchical composites in which crystalline cellulose cores are coated with amorphous carbon structures containing aromatic domains typically formed during biomass carbonization. The NaOH/urea/citric acid crosslinking system significantly improved biochar adhesion, producing uniform and mechanically stable photothermal layers. Under 500 W m−2 illumination, the biochar-modified fibers exhibited rapid thermal response and enhanced surface heating, resulting in increased water evaporation rates, with cellulose sponge achieving the highest performance (1.12–1.25 kg m−2 h−1). Water-quality analysis of the condensate showed >97% TDS removal, complete rejection of hardness, fluoride, nitrates, arsenic, and barium, and turbidity <0.2 NTU, meeting NOM-127-SSA1-2021 standards. Overall, the findings demonstrate that biochar-functionalized natural fibers constitute a scalable, environmentally benign strategy for efficient solar-driven purification, supporting their potential for sustainable clean-water technologies in resource-limited settings. Full article
(This article belongs to the Special Issue Advances in Biochar and Biobased Carbonaceous Materials)
Show Figures

Figure 1

26 pages, 7633 KB  
Review
Compound Meta-Optics for Advanced Optical Engineering
by Hak-Ryeol Lee, Dohyeon Kim and Sun-Je Kim
Sensors 2026, 26(3), 792; https://doi.org/10.3390/s26030792 - 24 Jan 2026
Viewed by 300
Abstract
Compound meta-optics, characterized by the unprecedented complex optical architectures containing single or multiple meta-optics elements, has emerged as a powerful paradigm for overcoming the physical limitations of single-layer metasurfaces. This review systematically examines the recent progress in this burgeoning field, primarily focusing on [...] Read more.
Compound meta-optics, characterized by the unprecedented complex optical architectures containing single or multiple meta-optics elements, has emerged as a powerful paradigm for overcoming the physical limitations of single-layer metasurfaces. This review systematically examines the recent progress in this burgeoning field, primarily focusing on the development of high-performance optical systems for imaging, display, sensing, and computing. We first focus on the design of compound metalens architectures that integrate metalenses with additional elements such as iris, refractive optics, or other meta-optics elements. These configurations effectively succeed in providing multiple high-quality image quality metrics simultaneously by correcting monochromatic and chromatic aberrations, expanding the field of view, enhancing overall efficiency, and so on. Thus, the compound approach enables practical applications in next-generation cameras and sensors. Furthermore, we explore the advancement of cascaded metasurfaces in the realm of wave-optics, specifically for advanced meta-holography and optical computing. These multi-layered systems facilitate complex wavefront engineering, leading to significant increases in information capacity and functionality for security and analog optical computing applications. By providing a comprehensive overview of fundamental principles, design strategies, and emerging applications, this review aims to offer a clear perspective on the pivotal role of compound meta-optics in devising and optimizing compact, multifunctional optical systems to optics engineers with a variety of professional knowledge backgrounds and techniques. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 12345 KB  
Article
Reversed Fabrication Approach for Exfoliated Hybrid Systems EnablingMagnetoresistance and Current-Voltage Characterisation
by Piotr Kałuziak, Jan Raczyński, Semir El-Ahmar, Katarzyna Kwiecień, Marta Przychodnia, Wiktoria Reddig, Agnieszka Żebrowska and Wojciech Koczorowski
Physchem 2026, 6(1), 7; https://doi.org/10.3390/physchem6010007 - 24 Jan 2026
Viewed by 64
Abstract
Studies on two-dimensional materials (such as topological insulators or transition metal dichalcogenides) have shown that they exhibit unique properties, including high charge carrier mobility and tunable bandgaps, making them attractive for next-generation electronics. Some of these materials (e.g., HfSe2) also offer [...] Read more.
Studies on two-dimensional materials (such as topological insulators or transition metal dichalcogenides) have shown that they exhibit unique properties, including high charge carrier mobility and tunable bandgaps, making them attractive for next-generation electronics. Some of these materials (e.g., HfSe2) also offer thickness-dependent bandgap engineering. However, the standard device fabrication techniques often introduce processing contamination, which reduces device efficiency. In this paper, we present a modified mechanical exfoliation technique, the Reversed Structuring Procedure, which enables the fabrication of hybrid systems based on 2D microflakes with improved interface cleanness and contact quality. Hall effect measurements on Bi2Se3 and HfSe2 devices confirm enhanced electrical performance, including the decrease in the measured total resistance. We also introduce a novel Star-Shaped Electrode Structure, which allows for accurate Hall measurements and the exploration of geometric magnetoresistance effects within the same device. This dual-purpose geometry enhances the flexibility and demonstrates broader functionality of the proposed fabrication method. The presented results validate the Reversed Structuring Procedure method as a robust and versatile approach for laboratory test-platforms for electronic applications of new types of layered materials whose fabrication technology is not yet compatible with CMOS. Full article
(This article belongs to the Section Surface Science)
Show Figures

Graphical abstract

16 pages, 4352 KB  
Article
Impacts of Forest-to-Pasture Conversion on Soil Water Retention in the Amazon Biome
by Moacir Tuzzin de Moraes, Luiz Henrique Quecine Grande, Geane Alves de Moura, Wanderlei Bieluczyk, Dasiel Obregón Alvarez, Leandro Fonseca de Souza, Siu Mui Tsai and Plínio Barbosa de Camargo
Forests 2026, 17(2), 157; https://doi.org/10.3390/f17020157 - 24 Jan 2026
Viewed by 78
Abstract
Land-use conversion from forest-to-pasture in the Amazon can affect soil physical quality and hydraulic functioning. The study evaluates the effects of land use (forest and pasture) and soil texture (fine and coarse) on soil structure and hydraulic properties, using the soil water retention [...] Read more.
Land-use conversion from forest-to-pasture in the Amazon can affect soil physical quality and hydraulic functioning. The study evaluates the effects of land use (forest and pasture) and soil texture (fine and coarse) on soil structure and hydraulic properties, using the soil water retention curve as an integrative indicator. The study was conducted with soil samples from the Tapajós National Forest region, Pará State, Brazil, with eight sites (four forest and four pasture), balanced by texture. Undisturbed samples were collected from five profile layers (0–10, 10–20, 20–30, and 30–40 cm) for each site, totaling 160 samples. Samples were saturated and measured at soil water matric potentials from −0.1 to −15,000 hPa to obtain the soil water retention curve, which was fitted using the van Genuchten–Mualem model. Pore size distribution was derived from the relationship between soil water matric potential and equivalent pore diameter. Results are reported for the 0–40 cm soil profile (integrating the four sampled layers). Forest-to-pasture conversion altered soil pore structure and water retention in a texture-dependent manner. For fine-textured soils, bulk density increased from 1.03 to 1.31 Mg m−3 (+27%) from forest to pasture. In coarse-textured soils, the drainable pore volume up to −15,000 hPa, equivalent diameter > 0.2 µm) decreased from 0.296 to 0.147 m3 m−3 (−50%) from forest to pasture. Plant-available water across the 0–40 cm profile ranged from 0.107 m3 m−3 (pasture, fine-textured) to 0.137 m3 m−3 (forest, coarse-textured). Coarse-textured soils showed a marked reduction in macroporosity, water retention, and plant-available water, whereas fine-texture soils showed smaller changes in water availability but reduced aeration associated with macropore reduction. These results indicate higher physical quality vulnerability of coarse-textured soils following forest-to-pasture conversion. Full article
(This article belongs to the Special Issue Forest Soil Stability in Response to Global Change Scenarios)
Show Figures

Figure 1

Back to TopTop