- Article
SkySeg-Net: Sky Segmentation-Based Row-Terminal Recognition in Trellised Orchards
- Haiyang Gu,
- Yong Wang and
- Yun Shi
- + 3 authors
Perception in trellised orchards is often challenged by dense canopy occlusion and overhead plastic coverings, which cause pronounced variations in sky visibility at row terminals. Accurately recognizing row terminals, including both row head and row tail positions, is therefore essential for understanding orchard row structures. This study presents SkySeg-Net, a sky segmentation-based framework for row-terminal recognition in trellised orchards. SkySeg-Net is built on an enhanced multi-scale U-Net architecture and employs ResNeSt residual split-attention blocks as the backbone. To improve feature discrimination under complex illumination and occlusion conditions, the Convolutional Block Attention Module (CBAM) is integrated into the downsampling path, while a Pyramid Pooling Module (PPM) is introduced during upsampling to strengthen multi-scale contextual representation. Sky regions are segmented from both front-view and rear-view camera images, and a hierarchical threshold-based pixel-sum analysis is applied to infer row-terminal locations based on sky-region distribution patterns. To support a comprehensive evaluation, a dedicated trellised vineyard dataset was constructed, featuring front-view and rear-view images and covering three representative grapevine growth stages (BBCH 69–71, 73–77, and 79–89). Experimental results show that SkySeg-Net achieves an mIoU of 91.21% and an mPA of 94.82% for sky segmentation, with a row-terminal recognition accuracy exceeding 98.17% across all growth stages. These results demonstrate that SkySeg-Net provides a robust and reliable visual perception approach for row-terminal recognition in trellised orchard environments.
13 February 2026





