Impacts of Farming Layer Constructions on Cultivated Land Quality under the Cultivated Land Balance Policy
Abstract
:1. Introduction
2. Materials and Data Sources
2.1. Overview of the Test Area
2.2. Test Material and Design
2.3. Data Collection and Processing
3. Methodology
3.1. Theoretical Framework for the Evaluation System
3.2. Construction of the Evaluation Index System
3.3. Methods Used to Evaluate CLQ
3.3.1. Soil Fertility Quality Index
3.3.2. Engineering Quality Index
3.3.3. Environmental Quality Factor
3.3.4. Ecological Quality Coefficient
3.3.5. CLQ Index
3.4. Indicator Grading and Weight
3.5. Classification of the CLQ Index
4. Results
4.1. Comparison of the CLQ Evaluation Results before and after the Experimental Treatments
4.2. Comparison of the CLQ Evaluation Results for the Different Experimental Treatments
4.3. Influence of the Different Experimental Treatments on Millet Yield
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, Y.; Liu, M.; Yang, L. Calculation of ecological compensation standards for arable land based on the value flow of support services. Land 2021, 10, 719. [Google Scholar] [CrossRef]
- Liang, S.-Y.; Lehmann, A.; Wu, K.-N.; Stahr, K. Perspectives of function-based soil evaluation in land-use planning in China. J. Soils Sedim. 2014, 14, 10–22. [Google Scholar] [CrossRef]
- Heerink, N.; Qu, F.; Kuiper, M.; Shi, X.; Tan, S. Policy reforms, rice production and sustainable land use in China: A macro-micro analysis. Agric. Syst. 2007, 94, 784–800. [Google Scholar] [CrossRef]
- Su, M.; Guo, R.; Hong, W. Institutional transition transition and implementation path for cultivated land protection in highly urbanized regions: A case study of Shenzhen, China. Land Use Policy 2019, 81, 493–501. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Chengchuang, Q.; Xiaomin, C.; Jiabao, Z.; Shuyin, F.; Jun, T.; Yueyuan, R.; Yinfang, Z.; Donghe, W.; Zhaoqiang, H.; Zhilong, Z. Techniques and effects of quickly constructing high-quality tillage layers for newly- cultivated arable land in red soil and paddy field based on woody peat and organic materials. J. Soil Water Conserv. 2018, 32, 134–140. [Google Scholar] [CrossRef]
- Jin, H.; Zhong, Y.; Shi, D.; Li, J.; Lou, Y.; Li, Y.; Li, J. Quantifying the impact of tillage measures on the cultivated-layer soil quality in the red soil hilly region: Establishing the thresholds of the minimum data set. Ecol. Indic. 2021, 130, 108013. [Google Scholar] [CrossRef]
- Bing, Y.; Kening, W.; Qin, H. Study on the effect of woody peat on the dry matter accumulation and yield of millet. Soil Fertil. Sci. China 2018, 2018, 102–108. [Google Scholar]
- Tao, J.; Chen, J.; Du, S.Y.; Chen, X.; Li, S.Y.; Zhou, J. Soil organism diversity and functions in plastic shed and open field soils under different cultivation methods. Appl. Ecol. Environ. Res. 2021, 19, 2133–2150. [Google Scholar] [CrossRef]
- Ronga, D.; Mantovi, P.; Pacchioli, M.T.; Pulvirenti, A.; Bigi, F.; Allesina, G.; Pedrazzi, S.; Tava, A.; Dal Pra, A. Combined effects of dewatering, composting and pelleting to valorize and delocalize livestock manure, improving agricultural sustainability. Agronomy 2020, 10, 661. [Google Scholar] [CrossRef]
- Adhikari, K.; Smith, D.R.; Collins, H.; Haney, R.L.; Wolfe, J.E. Corn response to selected soil health indicators in a Texas drought. Ecol. Indic. 2021, 125, 107482. [Google Scholar] [CrossRef]
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping systems in agriculture and their impact on soil health—A review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Nunes, M.R.; Veum, K.S.; Parker, P.A.; Holan, S.H.; Karlen, D.L.; Amsili, J.P.; van Es, H.M.; Wills, S.A.; Seybold, C.A.; Moorman, T.B. The soil health assessment protocol and evaluation applied to soil organic carbon. Soil Sci. Soc. Am. J. 2021, 85, 1196–1213. [Google Scholar] [CrossRef]
- Kennedy, N.; Edwards, S.; Clipson, N. Soil bacterial and fungal community structure across a range of unimproved and semi-improved upland grasslands. Microb. Ecol. 2005, 50, 463–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Shi, Z.; Yang, J.; Hao, B.; Hao, L.; Diao, F.; Wang, L.; Bao, Z.; Guo, W. A new strategy for evaluating the improvement effectiveness of degraded soil based on the synergy and diversity of microbial ecological function. Ecol. Indic. 2021, 120, 106917. [Google Scholar] [CrossRef]
- Dietrich, S.T.; MacKenzie, M.D.; Battigelli, J.P.; Enterina, J.R. Building a better soil for upland surface mine reclamation in northern Alberta: Admixing peat, subsoil, and peat biochar in a greenhouse study with aspen. Can. J. Soil Sci. 2017, 97, 592–605. [Google Scholar] [CrossRef] [Green Version]
- Edvardsson, J.; Rimkus, E.; Corona, C.; Simanauskiene, R.; Kazys, J.; Stoffel, M. Exploring the impact of regional climate and local hydrology on Pinus sylvestris L. growth variability—A comparison between pine populations growing on peat soils and mineral soils in Lithuania. Plant Soil 2015, 392, 345–356. [Google Scholar] [CrossRef]
- Wakhid, N.; Hirano, T.; Okimoto, Y.; Nurzakiah, S.; Nursyamsi, D. Soil carbon dioxide emissions from a rubber plantation on tropical peat. Sci. Total Environ. 2017, 581, 857–865. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Yamada, H.; Kyuma, K.; Hattori, T.; Kigasawa, S. Selenium in soil humic-acid. Soil Sci. Plant Nutr. 1991, 37, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Shi, D. Spatial structure characteristics of slope farmland quality in plateau mountain area: A case study of Yunnan Province, China. Sustainability 2020, 12, 7230. [Google Scholar] [CrossRef]
- Quandt, A.; Herrick, J.; Peacock, G.; Salley, S.; Buni, A.; Mkalawa, C.C.; Neff, J. A standardized land capability classification system for land evaluation using mobile phone technology. J. Soil Water Conserv. 2020, 75, 579–589. [Google Scholar] [CrossRef]
- Qian, F.; Wang, W.; Wang, Q.; Lal, R. Implementing land evaluation and site assessment (LESA system) in farmland protection: A case-study in northeastern China. Land Degrad. Dev. 2021, 32, 2437–2452. [Google Scholar] [CrossRef]
- Dumanski, J.; Pieri, C. Land quality indicators: Research plan. Agric. Ecosyst. Environ. 2000, 81, 93–102. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Li, L.; Niu, Y.; Ruan, Y.; DePauw, R.M.; Singh, A.K.; Gan, Y. Agronomic advancement in tillage, crop rotation, soil health, and genetic gain in durum wheat cultivation: A 17-year Canadian story. Agronomy 2018, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Lu, H.; Xie, H.; Lv, T.; Yao, G. Determinants of cultivated land recuperation in ecologically damaged areas in China. Land Use Policy 2019, 81, 160–166. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.; Lin, S.; Liu, Y.; Xie, Y. Soil pollution management in China: A brief introduction. Sustainability 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Qijun, Y.; Kening, W.; Zhe, F.; Rui, Z.; Xiaodan, Z.; Xiaoliang, L. Soil quality assessment on large spatial scales: Advancement and revelation. Acta Pedol. Sin. 2020, 57, 565–578. [Google Scholar]
- Bouma, J.; Finke, P.A.; Hoosbeek, M.R.; Breeuwsma, A. Soil and water quality at different scales: Concepts, challenges, conclusions and recommendations. Nutr. Cycl. Agroecosyst. 1998, 50, 5–11. [Google Scholar] [CrossRef]
- Guanhua, W.; Kening, W.; Bing, Y.; Qijun, Y. Comparison of the evaluation methods of arable land quality in land consolidation project area—Taking Dehui as an example. Chin. J. Soil Sci. 2019, 50, 786–793. [Google Scholar] [CrossRef]
- Kening, W.; Rui, Z.; Huafu, Z. Thoughts on the investigation and evaluation of cultivated land quality in China. China Land 2018, 2018, 19–20. [Google Scholar] [CrossRef]
- Rui, Z.; Kening, W.; Tianqian, C. Optimization of cultivated land quality evaluation for land consolidation. Chin. J. Ecol. 2019, 38, 2433–2441. [Google Scholar] [CrossRef]
- Bedada, W.; Lemenih, M.; Karltun, E. Soil nutrient build-up, input interaction effects and plot level N and P balances under long-term addition of compost and NP fertilizer. Agric. Ecosyst. Environ. 2016, 218, 220–231. [Google Scholar] [CrossRef]
- Ouyang, W.; Wei, X.; Hao, F. Long-term soil nutrient dynamics comparison under smallholding land and farmland policy in northeast of China. Sci. Total Environ. 2013, 450, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wen, L.; Fu, L.; Yi, M. Total factor productivity of cultivated land use in China under environmental constraints: Temporal and spatial variations and their influencing factors. Environ. Sci. Pollut. Res. 2020, 27, 18443–18462. [Google Scholar] [CrossRef]
- Sheng, Y.; Liu, W.; Xu, H.; Gao, X. The spatial distribution characteristics of the cultivated land quality in the diluvial fan terrain of the arid region: A case study of Jimsar County, Xinjiang, China. Land 2021, 10, 896. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, H.; Lian, K.; Yu, Z. Comprehensive evaluation of cultivated land quality at county scale: A case study of Shengzhou, Zhejiang Province, China. Int. J. Environ. Res. Public Health 2020, 17, 1169. [Google Scholar] [CrossRef] [Green Version]
- Steenwerth, K.; Belina, K.M. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl. Soil Ecol. 2008, 40, 359–369. [Google Scholar] [CrossRef]
- Hargreaves, S.K.; DeJong, P.; Laing, K.; McQuail, T.; Van Eerd, L.L. Management sensitivity, repeatability, and consistency of interpretation of soil health indicators on organic farms in southwestern Ontario. Can. J. Soil Sci. 2019, 99, 508–519. [Google Scholar] [CrossRef] [Green Version]
- Qun, W. On the quality, grade and price of cultivated land. J. Shandong Agric. Eng. Univ. 2002, 2002, 73–74. [Google Scholar] [CrossRef]
- Bouma, J.; Batjes, N.H.; Groot, J.J.R. Exploring land quality effects on world food supply. Geoderma 1998, 86, 43–59. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Y.; Jiang, J.; Xiao, P.; Wu, H. Spatial characteristics of cultivated land quality accounting for ecological environmental condition: A case study in hilly area of northern Hubei province, China. Sci. Total Environ. 2021, 774, 145765. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, X.; Gan, Y.; Chen, J.; Yu, R. Spatio-temporal differentiation and driving mechanism of the “resource curse” of the cultivated land in main agricultural production regions: A case study of Jianghan Plain, Central China. Int. J. Environ. Res. Public Health 2021, 18, 858. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Vogel, H.-J.; Bartke, S.; Daedlow, K.; Helming, K.; Koegel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stoessel, B.; Weller, U.; et al. A systemic approach for modeling soil functions. Soil 2018, 4, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Greiner, L.; Nussbaum, M.; Papritz, A.; Fraefel, M.; Zimmermann, S.; Schwab, P.; Gret-Regamey, A.; Keller, A. Assessment of soil multi-functionality to support the sustainable use of soil resources on the Swiss Plateau. Geoderma Reg. 2018, 14, e00181. [Google Scholar] [CrossRef]
- Vrebos, D.; Jones, A.; Lugato, E.; O’Sullivan, L.; Schulte, R.; Staes, J.; Meire, P. Spatial evaluation and trade-off analysis of soil functions through Bayesian networks. Eur. J. Soil Sci. 2021, 72, 1575–1589. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Y. Farmers’ cognition and behavioral response towards cultivated land quality protection in Northeast China. Sustainability 2018, 10, 1905. [Google Scholar] [CrossRef] [Green Version]
- Brevik, E.C.; Steffan, J.J.; Rodrigo-Comino, J.; Neubert, D.; Burgess, L.C.; Cerda, A. Connecting the public with soil to improve human health. Eur. J. Soil Sci. 2019, 70, 898–910. [Google Scholar] [CrossRef]
- Minami, K. Soil and humanity: Culture, civilization, livelihood and health. Soil Sci. Plant Nutr. 2009, 55, 603–615. [Google Scholar] [CrossRef]
- Ruf, T.; Makselon, J.; Udelhoven, T.; Emmerling, C. Soil quality indicator response to land-use change from annual to perennial bioenergy cropping systems in Germany. Glob. Chang. Biol. Bioenergy 2018, 10, 444–459. [Google Scholar] [CrossRef]
- Belcher, K.W.; Boehm, M.M.; Zentner, R.P. The economic value of soil quality under alternative management in the Canadian prairies. Can. J. Agric. Econ. 2003, 51, 175–196. [Google Scholar] [CrossRef]
- Lin, L.; Ye, Z.; Gan, M.; Shahtahmassebi, A.R.; Weston, M.; Deng, J.; Lu, S.; Wang, K. Quality perspective on the dynamic balance of cultivated land in Wenzhou, China. Sustainability 2017, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, W.; Zhu, C.; Tang, X. Analysis of heavy metal pollution in cultivated land of different quality grades in Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2021, 18, 9876. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, K.; Li, X.; Gao, N.; Yu, M. Discussion on the unified survey and evaluation of cultivated land quality at county scale for China’s 3rd national land survey: A case study of Wen County, Henan Province. Sustainability 2021, 13, 2513. [Google Scholar] [CrossRef]
- Mamehpour, N.; Rezapour, S.; Ghaemian, N. Quantitative assessment of soil quality indices for urban croplands in a calcareous semi-arid ecosystem. Geoderma 2021, 382, 114781. [Google Scholar] [CrossRef]
- Deng, Z.; Zhao, Q.; Bao, H.X.H. The impact of urbanization on farmland productivity: Implications for China’s requisition-compensation balance of farmland policy. Land 2020, 9, 311. [Google Scholar] [CrossRef]
- Thoumazeau, A.; Bessou, C.; Renevier, M.-S.; Trap, J.; Marichal, R.; Mareschal, L.; Decaens, T.; Bottinelli, N.; Jaillard, B.; Chevallier, T.; et al. Biofunctool (R): A new framework to assess the impact of land management on soil quality. Part A: Concept and validation of the set of indicators. Ecol. Indic. 2019, 97, 100–110. [Google Scholar] [CrossRef]
- Wilson, G.A. The spatiality of multifunctional agriculture: A human geography perspective. Geoforum 2009, 40, 269–280. [Google Scholar] [CrossRef]
- Haydu-Houdeshell, C.-A.; Graham, R.C.; Hendrix, P.F.; Peterson, A.C. Soil aggregate stability under chaparral species in southern California. Geoderma 2018, 310, 201–208. [Google Scholar] [CrossRef]
- Reinhart, K.O.; Vermeire, L.T. Soil aggregate stability and grassland productivity associations in a northern mixed-grass prairie. PLoS ONE 2016, 11, e0160262. [Google Scholar] [CrossRef] [PubMed]
- Tung Gia, P.; Hung Trong, N.; Kappas, M. Assessment of soil quality indicators under different agricultural land uses and topographic aspects in Central Vietnam. Int. Soil Water Conserv. Res. 2018, 6, 280–288. [Google Scholar] [CrossRef]
- Kuscu, I.S.K.; Cetin, M.; Yigit, N.; Savaci, G.; Sevik, H. Relationship between enzyme activity (urease-catalase) and nutrient element in soil use. Pol. J. Environ. Stud. 2018, 27, 2107–2112. [Google Scholar] [CrossRef]
- Palojarvi, A.; Nuutinen, V. The soil quality concept and its importance in the study of Finnish arable soils. Agric. Food Sci. Finl. 2002, 11, 329–342. [Google Scholar] [CrossRef]
- Tyler, M.; Hunter, L.; Steiner, F. use of agricultural land evaluation and site assessment in Whitman County, Washington, USA. Environ. Manag. 1987, 11, 407–412. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.P.; Suo, C.; Liu, Y.R. Impacts of irrigation efficiency on agricultural water-land nexus system management under multiple uncertainties-A case study in Amu Darya River basin, Central Asia. Agric. Water Manag. 2019, 216, 76–88. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, J.; Gui, D.; Lei, J.; Sun, H.; Lv, G.; Zhang, Z. Agricultural oasis expansion and its impact on oasis landscape patterns in the southern margin of Tarim basin, Northwest China. Sustainability 2018, 10, 1957. [Google Scholar] [CrossRef] [Green Version]
- Castella, J.C.; Manh, P.H.; Kam, S.P.; Villano, L.; Tronche, N.R. Analysis of village accessibility and its impact on land use dynamics in a mountainous province of northern Vietnam. Appl. Geogr. 2005, 25, 308–326. [Google Scholar] [CrossRef]
- Wang, X.; Xin, L.; Tan, M.; Li, X.; Wang, J. Impact of spatiotemporal change of cultivated land on food-water relations in China during 1990–2015. Sci. Total Environ. 2020, 716, 137119. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Wood, S.A.; de Mesquita, C.P.B. How microbes can, and cannot, be used to assess soil health. Soil Biol. Biochem. 2021, 153, 108111. [Google Scholar] [CrossRef]
- Chen, H.; Yao, J.; Wang, F.; Gyula, Z. Study of the Influence of different diphenol compounds on soil microbial activity by microcalorimetry. Chin. J. Chem. 2009, 27, 2125–2129. [Google Scholar] [CrossRef]
- Li, Z.; Li, D.; Ma, L.; Yu, Y.; Zhao, B.; Zhang, J. Effects of straw management and nitrogen application rate on soil organic matter fractions and microbial properties in North China Plain. J. Soils Sedim. 2019, 19, 618–628. [Google Scholar] [CrossRef]
- Upton, R.N.; Bach, E.M.; Hofmockel, K.S. Spatio-temporal microbial community dynamics within soil aggregates. Soil Biol. Biochem. 2019, 132, 58–68. [Google Scholar] [CrossRef]
- Lixia, Z.; Mingmao, D. Soil microbial characteristics as bioindicators of soil health. Biodivers. Sci. 2007, 15, 162–171. [Google Scholar] [CrossRef]
- Susic, M. Replenishing humic acids in agricultural soils. Agronomy 2016, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Fan, J.; Wang, S.; Wang, H.; Dai, Z.; Zhao, X.; Hao, M. Woody peat addition increases soil organic matter but its mineralization is affected by soil clay in the four degenerated erodible soils. Agric. Ecosyst. Environ. 2021, 318, 107495. [Google Scholar] [CrossRef]
- Cui, T.; Li, Z.; Wang, S. Effects of in-situ straw decomposition on composition of humus and structure of humic acid at different soil depths. J. Soils Sedim. 2017, 17, 2391–2399. [Google Scholar] [CrossRef]
- Liang, B.; Yang, X.; He, X.; Zhou, J. Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth. Biol. Fertil. Soils 2011, 47, 121–128. [Google Scholar] [CrossRef]
- Shi, Y.; Lalande, R.; Ziadi, N.; Sheng, M.; Hu, Z. An assessment of the soil microbial status after 17 years of tillage and mineral P fertilization management. Appl. Soil Ecol. 2012, 62, 14–23. [Google Scholar] [CrossRef]
Quality Dimensions | First-Level Indicators | Weight | Second-Level Indicators | Weight | |
---|---|---|---|---|---|
CLQ | Soil fertility quality | Topographic feature | 0.08 | Field slope | 1 |
Soil property | 0.6 | Effective soil thickness | 0.17 | ||
Organic content | 0.16 | ||||
Topsoil texture | 0.14 | ||||
Soil profile pattern | 0.14 | ||||
Gravel content | 0.12 | ||||
Soil nutrient element (N, P, K) | 0.11 | ||||
Soil pH | 0.09 | ||||
Soil agglomeration | 0.07 | ||||
Construction Quality | Tillage condition | 0.32 | The degree of Irrigation guarantee | 0.27 | |
Drainage condition | 0.25 | ||||
Field uniformity | 0.19 | ||||
Accessibility of field roads | 0.17 | ||||
Soil and water conservation function | 0.12 | ||||
Environmental quality | Pollution Status | —— | Soil heavy mental elements | —— | |
Ecological quality | Biological nature | —— | Soil microbial biomass carbon | —— |
Average Level | Average Index | Soil Fertility Quality Average Index | Engineering Quality Average Index | Environmental Quality Average Coefficient | Ecological Quality Average Coefficient | |
---|---|---|---|---|---|---|
CLQ in the test area before the test | 3.00 | 27.8 | 39.11 | 30.39 | 1.00 | 0.40 |
CLQ in the test area after the test | 2.37 | 58.43 | 45.51 | 30.39 | 1.00 | 0.78 |
FN | SFQI (B) | SFQI (A) | EQI (A/B) | EQC (A/B) | EMC (B) | EMC (A) | CLQ Index (B) | CLQ Index (A) | The CLQ (B) Level | The CLQ (A) Level |
---|---|---|---|---|---|---|---|---|---|---|
A11 | 39.02 | 49.04 | 30.53 | 1.00 | 0.40 | 0.90 | 27.82 | 71.62 | Medium | Good |
A12 | 39.02 | 48.74 | 30.48 | 1.00 | 0.40 | 0.90 | 27.80 | 71.30 | Medium | Good |
A13 | 39.02 | 44.18 | 30.43 | 1.00 | 0.40 | 0.70 | 27.78 | 52.22 | Medium | Good |
A21 | 39.02 | 50.36 | 30.59 | 1.00 | 0.40 | 0.90 | 27.84 | 72.85 | Medium | Good |
A22 | 39.02 | 53.36 | 29.93 | 1.00 | 0.40 | 0.90 | 27.58 | 74.96 | Medium | Good |
A23 | 39.56 | 50.84 | 30.43 | 1.00 | 0.40 | 0.70 | 27.99 | 56.89 | Medium | Good |
B11 | 39.02 | 48.20 | 30.59 | 1.00 | 0.40 | 0.90 | 27.84 | 70.91 | Medium | Good |
B12 | 39.02 | 45.14 | 30.43 | 1.00 | 0.40 | 0.70 | 27.78 | 49.90 | Medium | Medium |
B13 | 39.02 | 43.22 | 30.59 | 1.00 | 0.40 | 0.90 | 27.84 | 66.43 | Medium | Good |
B21 | 39.02 | 43.22 | 30.43 | 1.00 | 0.40 | 0.70 | 27.78 | 48.55 | Medium | Medium |
B22 | 39.02 | 43.22 | 29.93 | 1.00 | 0.40 | 0.70 | 27.58 | 48.20 | Medium | Medium |
B23 | 39.02 | 44.06 | 29.93 | 1.00 | 0.40 | 0.90 | 27.58 | 66.59 | Medium | Good |
B31 | 39.02 | 45.14 | 30.59 | 1.00 | 0.40 | 0.70 | 27.84 | 53.01 | Medium | Good |
B32 | 39.02 | 44.18 | 30.53 | 1.00 | 0.40 | 0.70 | 27.82 | 49.30 | Medium | Medium |
B33 | 39.02 | 48.20 | 30.59 | 1.00 | 0.40 | 0.90 | 27.84 | 70.91 | Medium | Good |
B41 | 39.56 | 45.08 | 30.48 | 1.00 | 0.40 | 0.70 | 28.02 | 49.89 | Medium | Medium |
B42 | 39.56 | 46.82 | 29.87 | 1.00 | 0.40 | 0.70 | 27.77 | 53.68 | Medium | Good |
B43 | 39.02 | 45.38 | 30.48 | 1.00 | 0.40 | 0.70 | 27.80 | 53.10 | Medium | Good |
B51 | 39.56 | 41.30 | 30.48 | 1.00 | 0.40 | 0.70 | 28.02 | 47.25 | Medium | Medium |
B52 | 39.02 | 42.14 | 30.53 | 1.00 | 0.40 | 0.90 | 27.82 | 65.41 | Medium | Good |
B53 | 39.02 | 40.70 | 29.87 | 1.00 | 0.40 | 0.90 | 27.56 | 63.51 | Medium | Good |
C11 | 39.02 | 44.06 | 29.87 | 1.00 | 0.40 | 0.70 | 27.56 | 48.75 | Medium | Medium |
C12 | 39.56 | 43.22 | 29.98 | 1.00 | 0.40 | 0.70 | 27.82 | 48.24 | Medium | Medium |
C13 | 39.02 | 44.06 | 30.64 | 1.00 | 0.40 | 0.70 | 27.87 | 49.29 | Medium | Medium |
ET | Average Level of CLQ | Average CLQ Index | ASFQI | AEQI | AEQC1 | AEQC2 |
---|---|---|---|---|---|---|
A1 | 2.00 | 64.72 | 47.24 | 30.48 | 1.00 | 0.83 |
A2 | 2.00 | 67.91 | 51.48 | 30.32 | 1.00 | 0.83 |
B1 | 2.31 | 62.80 | 45.48 | 30.54 | 1.00 | 0.83 |
B2 | 2.65 | 54.80 | 43.52 | 30.08 | 1.00 | 0.77 |
B3 | 2.33 | 57.69 | 45.83 | 30.57 | 1.00 | 0.77 |
B4 | 2.34 | 52.18 | 45.73 | 30.29 | 1.00 | 0.70 |
B5 | 2.32 | 58.93 | 41.38 | 30.29 | 1.00 | 0.83 |
C1 | 3.00 | 48.77 | 43.80 | 30.16 | 1.00 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, L.; Zhao, R.; Wu, K.; Huang, Q.; Zhang, S. Impacts of Farming Layer Constructions on Cultivated Land Quality under the Cultivated Land Balance Policy. Agronomy 2021, 11, 2403. https://doi.org/10.3390/agronomy11122403
Kang L, Zhao R, Wu K, Huang Q, Zhang S. Impacts of Farming Layer Constructions on Cultivated Land Quality under the Cultivated Land Balance Policy. Agronomy. 2021; 11(12):2403. https://doi.org/10.3390/agronomy11122403
Chicago/Turabian StyleKang, Long, Rui Zhao, Kening Wu, Qin Huang, and Sicheng Zhang. 2021. "Impacts of Farming Layer Constructions on Cultivated Land Quality under the Cultivated Land Balance Policy" Agronomy 11, no. 12: 2403. https://doi.org/10.3390/agronomy11122403
APA StyleKang, L., Zhao, R., Wu, K., Huang, Q., & Zhang, S. (2021). Impacts of Farming Layer Constructions on Cultivated Land Quality under the Cultivated Land Balance Policy. Agronomy, 11(12), 2403. https://doi.org/10.3390/agronomy11122403