The Effects of Feeding a Whole-in-Shell Peanut-Containing Diet on Layer Performance and the Quality and Chemistry of Eggs Produced †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animal Husbandry, and Dietary Treatments
2.2. Egg Quality and Grading
2.3. β-Carotene, Lipid, and Fatty Acid Analysis
2.4. Statistical Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Peanut Board. Peanut Country, U.S.A. 2021. Available online: https://www.nationalpeanutboard.org/peanut-info/peanut-country-usa.htm (accessed on 2 November 2021).
- American Peanut Council. The Peanut Industry. 2020. Available online: https://www.peanutsusa.com/about-apc/the-peanut-industry/13-peanut-shelling-grading.html (accessed on 13 September 2021).
- Toomer, O.T.; Vu, T.C.; Wysocky, R.; Moraes, V.; Malheiros, R.; Anderson, K.E. The effect of feeding egg-producing hens a peanut skin-containing diet on performance, shell egg quality and lipid chemistry. Agriculture 2021, 11, 894. [Google Scholar] [CrossRef]
- Hill, G.M. Peanut by-products fed to cattle. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 295–315. [Google Scholar] [CrossRef]
- Sobolev, V.S.; Cole, R.J. Note on utilization of peanut seed testa. J. Sci. Food Agric. 2004, 84, 105–111. [Google Scholar] [CrossRef]
- Toomer, O.T.; Hulse-Kemp, A.M.; Dean, L.L.; Boykin, D.L.; Malheiros, R.; Anderson, K.E. Feeding high-oleic peanuts to layer hens enhances egg yolk color and oleic fatty acid content in shell eggs. Poult. Sci. 2019, 98, 1732–1748. [Google Scholar] [CrossRef]
- Toomer, O.T.; Livingston, M.; Wall, B.; Sanders, E.; Vu, T.; Malheiros, R.D.; Livingston, K.A.; Carvalho, L.V.; Ferket, P.R.; Dean, L.L. Feeding high-oleic peanuts to meat-type broiler chickens enhances the fatty acid profile of the meat produced. Poult. Sci. 2020, 99, 2236–2245. [Google Scholar] [CrossRef] [PubMed]
- Toomer, O.T.; Sanders, E.; Vu, T.C.; Malheiros, R.D.; Redhead, A.K.; Livingston, M.L.; Livingston, K.A.; Carvalho, L.V.; Ferket, P.R. The effects of high-oleic peanuts as an alternative feed ingredient on broiler performance, ileal digestibility, apparent metabolizable energy, and histology of the intestine. Transl. Anim. Sci. 2020, 4, txaa137. [Google Scholar] [CrossRef]
- Redhead, A.K.; Sanders, E.; Vu, T.C.; Malheiros, R.D.; Anderson, K.E.; Toomer, O.T. The effects of high-oleic peanuts as an alternate feed ingredient on performance, ileal digestibility, apparent metabolizable energy, and histology of the small intestine in laying hens. Transl. Anim. Sci. 2021, 5, txab015. [Google Scholar] [CrossRef] [PubMed]
- Toomer, O.T.; Vu, T.C.; Sanders, E.; Redhead, A.K.; Malheiros, R.; Anderson, K.E. Feeding Laying Hens, a Diet Containing High-Oleic Peanuts or Oleic Acid Enriches Yolk Color and Beta-Carotene While Reducing the Saturated Fatty Acid Content in Eggs. Agriculture 2021, 11, 771. [Google Scholar] [CrossRef]
- NC Poultry Federation. Poultry Facts. 2021. Available online: https://www.ncpoultry.org/facts/facts.cfm (accessed on 13 September 2021).
- Crop Prophet. Top 10 Soybean Producing Countries. 2019. Available online: https://www.cropprophet.com/top-10-global-soybean-producers/ (accessed on 13 September 2021).
- Toomer, O.T. Nutritional chemistry of the peanut (Arachis hypogaea). Crit. Rev. Food Sci. Nutr. 2018, 58, 3042–3053. [Google Scholar] [CrossRef]
- Toomer, O.T. A comprehensive review of the value-added uses of peanut (Arachis hypogaea) skins and by-products. Crit. Rev. Food Sci. Nutr. 2020, 60, 341–350. [Google Scholar] [CrossRef]
- Aka, R.; Zulkarnain, D.; Abadi, M.; Salido, W.; Hidayah. Effect of fermented peanut shells in ration on production performance of super local chicken aged 7 to 10 weeks. IOP Conf. Ser. Earth Environ. Sci. 2020, 465, 012049. [Google Scholar] [CrossRef]
- Armayanti, A.K.; Jamilah, J.; Kurniawan, M.E.; Danial, D. Broiler performance with utilization of various levels of fermented peanut shells meal. IOP Conf. Ser. Earth Environ. Sci. 2021, 788, 012068. [Google Scholar] [CrossRef]
- AOAC International. AOAC Official Method 948.22. Fat (Crude) in Nuts and Nut Products; AOAC International: Rockville, MD, USA, 1998. [Google Scholar]
- AOAC International. AOAC Official Method 950.48. Protein (Crude) in Nuts and Nut Products; AOAC International: Rockville, MD, USA, 1998. [Google Scholar]
- AOAC International. AOAC Official Method 991.43. Total, Soluble, and Insoluble Dietary Fiber in Foods; AOAC International: Rockville, MD, USA, 1998. [Google Scholar]
- Nematinia, E.; Mehdizadeh, A.S. Assessment of egg freshness by prediction of Haugh unit and albumen pH using an artificial neural network. J. Food Meas. Charact. 2018, 12, 1449–1459. [Google Scholar] [CrossRef]
- Vuilleumier, J.P. The ‘Roche Yolk Colour Fan-An Instrument for Measuring Yolk Color. Poult. Sci. 1969, 48, 767–779. [Google Scholar] [CrossRef]
- AOAC International. AOAC Official Method 958.05. Chemical Analysis Methods for Egg and Egg Products; AOAC International: Rockville, MD, USA, 1990. [Google Scholar]
- AOAC International. AOAC Official Method 954.02 Method. Fat (Crude) or Ether Extract in Pet Food; AOAC International: Rockville, MD, USA, 1990. [Google Scholar]
- De Souza, C.O.; Vannice, G.K.; Rosa Neto, J.C.; Calder, P.C. Is Palmitoleic Acid a Plausible Nonpharmacological Strategy to Prevent or Control Chronic Metabolic and Inflammatory Disorders? Mol. Nutr. Food Res. 2018, 62, 1700504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergeant, S.; Rahbar, E.; Chilton, F.H. Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Rev. Eur. J. Pharmacol. 2016, 785, 77–86. [Google Scholar] [CrossRef] [Green Version]
- USDA, Agricultural Marketing Service. Specifications for Shell Eggs. A “How To” Guide for Food Service Suppliers and Volume Food Buyers. 2017. Available online: https://www.ams.usda.gov/sites/default/files/media/S01ShellEggSpecGuideforVolumeBuyers.pdf (accessed on 21 September 2021).
- Mertens, K.; Kemps, B.; Perianu, C.; De Baerdemaeker, J.; Decuypere, E.; DeKetelaere, B. Advances in egg defect detection, quality assessment. In Improving the Safety and Quality of Eggs and Egg Products-Egg Chemistry, Production and Consumption; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2011; Chapter 10; pp. 209–241. [Google Scholar]
- Jones, D.R.; Musgrove, M.T. Effects of extended storage on egg quality factors. Poult. Sci. 2005, 84, 1774–1777. [Google Scholar] [CrossRef]
- Jones, D.R.; Tharrington, J.B.; Curtis, P.A.; Anderson, K.E.; Keener, K.M.; Jones, F.T. Effects of cryogenic cooling of shell eggs on egg quality. Poult. Sci. 2002, 81, 727–733. [Google Scholar] [CrossRef]
- Silversides, F.G.; Budgell, K. The relationships among measures of egg albumen height, pH, and whipping volume. Poult Sci. 2004, 83, 1619–1623. [Google Scholar] [CrossRef]
- Haugh, R.R. The Haugh unit for measuring egg quality. US Egg Poult. Mag. 1937, 43, 552–555. [Google Scholar]
- Suksombat, W.; Samitayotin, S.; Lounglawan, P. Effects of conjugated linoleic acid supplementation in layer diet on fatty acid compositions of egg yolk and layer performances. Poult. Sci. 2006, 85, 1603–1609. [Google Scholar] [CrossRef]
- Leeson, S.; Caston, L. Enrichment of eggs with lutein. Poult. Sci. 2004, 83, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Karadas, F.; Grammenidis, E.; Surai, P.F.; Acamovic, T.; Sparks, N.H.C. Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. Br. Poult. Sci. 2006, 47, 561–566. [Google Scholar] [CrossRef]
- Harvard School of Public Health. Dietary Linoleic Acid and Risk of Coronary Heart Disease. 2017. Available online: https://www.hsph.harvard.edu/nutritionsource/2014/11/05/dietary-linoleic-acid-and-risk-of-coronary-heart-disease/ (accessed on 21 September 2021).
- Jandacek, R.J. Linoleic Acid: A Nutritional Quandary-Review. Healthcare 2017, 59, 25. [Google Scholar] [CrossRef] [Green Version]
- Berry, S.E.E. Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: An overview and implications for cardiovascular disease-Review. Nutr. Res. Rev. 2009, 22, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Senyilmaz-Tiebe, D.; Pfaff, D.H.; Virtue, S.; Schwarz, K.V.; Fleming, T.; Altamura, S.; Muckenthaler, M.U.; Okun, J.G.; Vidal-Puig, A.; Nawroth, P.; et al. Dietary stearic acid regulates mitochondria in vivo in humans. Nat. Commun. 2018, 9, 3129. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Yu, X.; Gao, J.M. A mini review of nervonic acid: Source, production, and biological functions—Review. Food Chem. 2019, 301, 125286. [Google Scholar] [CrossRef]
- Rafalowski, F.; Zofia, Z.; Kuncewicz, A. Fatty acid composition of tocopherols, and beta-carotene, in Polish Commercial Vegetable Oils. Pak. J. Nutr. 2008, 7, 278–282. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Özcan, M.M.; Ghafoor, K.; Babiker, E.E.; Hussain, S. Comparison of cold-pressing and soxhlet extraction systems for bioactive compounds, antioxidant properties, polyphenols, fatty acids and tocopherols in eight nut oils. J. Food Sci. Technol. 2018, 55, 3163–3173. [Google Scholar] [CrossRef]
- Pattee, H.E.; Purcell, A.E. Carotenoid Pigments of Peanut Oil. J. Am. Oil Chem. Soc. 1967, 44, 328–330. [Google Scholar] [CrossRef]
Treatments 1 | ||||
---|---|---|---|---|
Control-1 | HOPN | WPN | Control-2 | |
Feed Ingredients | g/kg DM | |||
Corn (yellow) | 518.4 | 518.0 | 512.5 | 542.0 |
Soybean Meal | 322.4 | 277.9 | 301.6 | 288.3 |
Calcium Carbonate | 95.5 | 88.9 | 95.0 | 95.8 |
Dicalcium Phosphate | 18.1 | 26.0 | 18.6 | 18.1 |
Whole In-Shell Peanut | 0.0 | 0.0 | 40.0 | 0.0 |
High-Oleic Peanut | 0.0 | 80.0 | 0.0 | 0.0 |
Sodium Chloride | 2.5 | 2.5 | 2.5 | 2.5 |
L-Lysine | 0.0 | 0.8 | 1.4 | 0.16 |
DL-Methionine | 1.8 | 2.0 | 1.9 | 1.7 |
2 ADM Soy Protein | 0.0 | 0.0 | 0.0 | 16.0 |
Soybean Oil | 37.3 | 0.0 | 22.6 | 31.4 |
3 Santoquin® | 0.5 | 0.5 | 0.5 | 0.5 |
Choline Chloride | 0.5 | 0.5 | 0.5 | 0.5 |
4 Mineral Premix | 2.0 | 2.0 | 2.0 | 2.0 |
5 Vitamin Premix | 0.5 | 0.5 | 0.5 | 0.5 |
6 Selenium Premix | 0.5 | 0.5 | 0.5 | 0.5 |
ME (kcal/kg) | 2928 | 2928 | 2928 | 2928 |
Treatments 1 | ||||
---|---|---|---|---|
Control-1 | HOPN | WPN | Control-2 | |
Nutrient | g/kg DM | |||
Crude fat 2 | 56.4 | 80.7 | 65.7 | 52.2 |
Calcium | 28.2 | 33.4 | 35.0 | 33.8 |
Phosphorus | 6.30 | 7.60 | 6.80 | 6.70 |
Palmitic (16:0) * | 123 | 95.0 | 95.6 | 109 |
Palmitoleic (16:1) * | 7.50 | 6.90 | 1.60 | 3.50 |
Stearic (18:0) * | 43.4 | 30.7 | 34.90 | 38.50 |
Oleic (18:1) * | 230 | 593 | 394.0 | 219.0 |
Elaidic (C18:1 trans) * | 0.50 | 0.80 | 0.40 | 0.90 |
Linoleic (18:2) * | 510 | 198 | 390 | 533 |
Linolenic (18:3) * | 62.1 | 12.8 | 44.6 | 63.4 |
Total Omega 3 | 63.2 | 15.1 | 46.1 | 65.3 |
Homo-ɣ-linolenic (18:3n − 6) * | 0.40 | 0.70 | 0.60 | 0.60 |
Treatments 1 | ||||||
---|---|---|---|---|---|---|
Control-1 | HOPN | WPN | Control-2 | SEM | p-Value * | |
(kg) | ||||||
Week 0 | 1.64 | 1.64 | 1.67 | 1.66 | 0.02 | 0.07 |
Week 2 | 1.57 | 1.58 | 1.60 | 1.57 | 0.02 | 0.42 |
Week 4 | 1.58 | 1.66 | 1.65 | 1.62 | 0.04 | 0.32 |
Week 6 | 1.61 | 1.64 | 1.66 | 1.64 | 0.03 | 0.46 |
Treatments | Total Dozen Eggs Produced | Total Amt Feed Consumed (kg) | Total Amt Feed Consumed/Bird (kg/hen) | FCR (kg Total Feed Consumed/Total Dozen Eggs Produced) 2 | Egg Wt.(g) 3 |
---|---|---|---|---|---|
Control-1 | 120 b | 152 b | 4.23 b | 1.26 b | 57.1 |
HOPN | 126 a,b | 169 a | 4.70 a | 1.34 a | 57.1 |
WPN | 122 a,b | 163 a | 4.52 a | 1.26 b | 57.3 |
Control-2 | 128 a | 161 a | 4.48 a | 1.33 a | 57.9 |
SEM | 1.40 | 2.10 | 0.06 | 0.009 | 0.29 |
p-value * | 0.01 | 0.0008 | 0.0008 | <0.0001 | 0.2061 |
Treatments 1 | ||||||
---|---|---|---|---|---|---|
Control-1 | HOPN | WPN | Control-2 | |||
(%) * | SEM | p-Value | ||||
Grade A | 96.50 | 96.30 | 97.90 | 98.10 | 1.58 | 0.77 |
Grade B | 1.88 | 3.13 | 0.00 | 0.00 | 1.58 | 0.45 |
Cracks | 1.67 | 0.63 | 2.08 | 1.88 | 0.62 | 0.39 |
Mechanical Loss | 0.00 | 0.00 | 0.21 | 0.00 | 0.10 | 0.43 |
Extra-Large | 5.83 | 4.17 | 8.96 | 5.00 | 2.07 | 0.42 |
Large | 89.00 | 90.00 | 86.04 | 90.83 | 1.24 | 0.08 |
Medium | 4.38 | 5.42 | 3.96 | 3.96 | 1.52 | 0.89 |
Small | 0.83 | 0.42 | 0.83 | 0.21 | 0.53 | 0.80 |
Treatments 1 | |||||||
---|---|---|---|---|---|---|---|
Control-1 | HOPN | WPN | Control-2 | SEM | p-Value * | ||
Wk0 | |||||||
Shell Sth. (g force) | 5298 | 5011 | 5346 | 5442 | 238 | 0.308 | |
SD (mm) | 0.29 a | 0.27 a,b | 0.25 b | 0.26 a,b | 0.01 | 0.001 | |
VMS (g) | 2.18 | 1.94 | 2.22 | 2.12 | 0.15 | 0.247 | |
VME (mm) | 1.70 | 1.41 | 1.78 | 1.68 | 0.18 | 0.205 | |
Shell Color (%) | 82.3 | 83.3 | 83.8 | 84.7 | 1.0 | 0.149 | |
Albumen Ht. (mm) | 8.15 | 8.49 | 8.22 | 8.45 | 0.29 | 0.593 | |
Haugh Unit (HU) | 90.9 | 92.5 | 91.0 | 92.3 | 1.6 | 0.614 | |
Yolk Color (1–15) | 1.88 | 2.17 | 2.21 | 2.21 | 0.21 | 0.335 | |
Shell Thick (mm) | 0.37 c | 0.38 c | 0.45 a | 0.44 b | 0.11 | <0.0001 | |
Wk2 | |||||||
Shell Sth. (g force) | 5473 | 5350 | 5440 | 5432 | 247 | 0.97 | |
SD (mm) | 0.235 | 0.232 | 0.241 | 0.241 | 0.01 | 0.34 | |
VMS (g) | 2.45 | 2.40 | 2.45 | 2.22 | 0.18 | 0.18 | |
VME (mm) | 1.96 | 1.94 | 2.0 | 1.75 | 0.21 | 0.64 | |
Shell Color (%) | 83.3 | 81.6 | 83.9 | 83.2 | 0.86 | 0.06 | |
Albumen Ht. (mm) | 8,85 | 8.47 | 8.44 | 8.73 | 0.32 | 0.46 | |
Haugh Unit (HU) | 94.7 | 92.6 | 91.1 | 94.4 | 2.2 | 0.36 | |
Yolk Color (1–15) | 2.83 | 2.50 | 2.83 | 2.88 | 0.17 | 0.10 | |
Shell Thick (mm) | 0.39 a | 0.37 b | 0.39 a | 0.39 a | 0.01 | 0.03 | |
Wk4 | |||||||
Shell Sth. (g force) | 5466 | 5582 | 5428 | 5554 | 236 | 0.90 | |
SD (mm) | 0.217 | 0.222 | 0.217 | 0.226 | 0.01 | 0.55 | |
VMS (g) | 2.31 | 2.48 | 2.32 | 2.32 | 0.15 | 0.62 | |
VME (mm) | 1.91 | 2.09 | 1.92 | 1.91 | 0.19 | 0.69 | |
Shell Color (%) | 84.7 | 85.0 | 84.4 | 85.5 | 0.75 | 0.49 | |
Albumen Ht. (mm) | 8.71 | 8.61 | 8.56 | 8.43 | 0.21 | 0.60 | |
Haugh Unit (HU) | 93.5 | 93.0 | 92.6 | 92.0 | 1.10 | 0.58 | |
Yolk Color (1–15) | 2.96 a | 2.67 b | 2.79 b | 3.08 a | 0.13 | 0.01 | |
Shell Thick (mm) | 0.40 | 0.40 | 0.40 | 0.39 | 0.01 | 0.33 | |
W6 | |||||||
Shell Sth. (g force) | 5252 | 5164 | 5675 | 5282 | 251 | 0.18 | |
SD (mm) | 0.214 | 0.226 | 0.226 | 0.217 | 0.01 | 0.56 | |
VMS (g) | 2.29 | 2.40 | 2.17 | 2.20 | 0.14 | 0.39 | |
VME (mm) | 1.89 | 2.02 | 1.75 | 1.77 | 0.18 | 0.42 | |
Shell Color (%) | 83.7 | 84.1 | 83.4 | 84.3 | 0.72 | 0.56 | |
Albumen Ht. (mm) | 8.34 | 8.26 | 8.50 | 8.33 | 0.24 | 0.79 | |
Haugh Unit (HU) | 91.5 | 90.9 | 91.5 | 91.5 | 1.20 | 0.94 | |
Yolk Color (1–15) | 2.92 | 2.50 | 2.54 | 2.79 | 0.17 | 0.046 | |
Shell Thick (mm) | 0.39 | 0.38 | 0.40 | 0.39 | 0.01 | 0.22 |
Treatments 1 | |||||||
---|---|---|---|---|---|---|---|
Control | HOPN | WPN | Control-2 | SEM | p-Value * | ||
Wk0 | |||||||
Crude Fat | 5.23 | 4.33 | 5.28 | 6.36 | 0.70 | 0.061 | |
Palmitic (16:0) | 22.9 | 23.2 | 23.3 | 22.2 | 0.36 | 0.28 | |
Stearic (18:0) | 9.24 b | 9.58 a,b | 9.95 a | 9.33 b | 019 | 0.007 | |
Oleic (18:1) | 28.4 b | 29.6 a | 29.8 a | 29.8 a | 0.48 | 0.030 | |
Elaidic (C18:1trans) | 0.18 a | 0.09 a,b | 0.06 b | 0.10 a,b | 0.03 | 0.032 | |
Linoleic (18:2) | 24.3 | 24.5 | 25.3 | 23.9 | 0.49 | 0.08 | |
Nervonic (24:1, n − 9) | 1.03 b | 1.06 b | 1.12 a | 1.16 a | 0.03 | 0.002 | |
Omega 3 (18:3) | 1.84 a | 1.55 b | 1.58 a,b | 1.71 a,b | 0.10 | 0.03 | |
Cholesterol | 192 | 175 | 221 | 253 | 40 | 0.23 | |
β-carotene | 2.02 | 1.99 | 2.19 | 2.03 | 0.22 | 0.69 | |
Wk6 | |||||||
Crude Fat | 6.09 | 7.08 | 7.31 | 5.80 | 0.94 | 0.32 | |
Palmitic (16:0) | 21.4 | 21.2 | 21.3 | 21.8 | 0.50 | 0.64 | |
Stearic (18:0) | 8.63 a | 7.03 b | 8.13 a | 8.36 a | 0.30 | <0.0001 | |
Oleic (18:1) | 30.3 | 37.6 | 35.4 | 37.2 | 5.80 | 0.56 | |
Elaidic (C18:1 trans) | 0.16 | 6.84 | 0.14 | 0.11 | 5.30 | 0.46 | |
Linoleic (18:2) | 20.4 a | 11.8 b | 18.2 a | 17.4 a | 1.50 | <0.0001 | |
Nervonic (24:1, n − 9) | 1.08 a | 0.73 b | 0.97 a | 0.88 a,b | 0.51 | <0.0001 | |
Omega 3 (18:3) | 1.76 | 1.04 | 1.35 | 1.19 | 0.26 | 0.051 | |
Cholesterol | 264 | 244 | 326 | 252 | 39 | 0.189 | |
β-carotene | 2.41 b | 2.49 b | 3.82 a | 2.17 b | 0.57 | 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harding, K.L.; Vu, T.; Wysocky, R.; Malheiros, R.; Anderson, K.E.; Toomer, O.T. The Effects of Feeding a Whole-in-Shell Peanut-Containing Diet on Layer Performance and the Quality and Chemistry of Eggs Produced. Agriculture 2021, 11, 1176. https://doi.org/10.3390/agriculture11111176
Harding KL, Vu T, Wysocky R, Malheiros R, Anderson KE, Toomer OT. The Effects of Feeding a Whole-in-Shell Peanut-Containing Diet on Layer Performance and the Quality and Chemistry of Eggs Produced. Agriculture. 2021; 11(11):1176. https://doi.org/10.3390/agriculture11111176
Chicago/Turabian StyleHarding, Kari L., Thien Vu, Rebecca Wysocky, Ramon Malheiros, Kenneth E. Anderson, and Ondulla T. Toomer. 2021. "The Effects of Feeding a Whole-in-Shell Peanut-Containing Diet on Layer Performance and the Quality and Chemistry of Eggs Produced" Agriculture 11, no. 11: 1176. https://doi.org/10.3390/agriculture11111176
APA StyleHarding, K. L., Vu, T., Wysocky, R., Malheiros, R., Anderson, K. E., & Toomer, O. T. (2021). The Effects of Feeding a Whole-in-Shell Peanut-Containing Diet on Layer Performance and the Quality and Chemistry of Eggs Produced. Agriculture, 11(11), 1176. https://doi.org/10.3390/agriculture11111176