The Development of Boundary Layer Structure Index (BLSI) and Its Relationship with Ground Air Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Ambient Air Quality Data
2.1.2. Sounding Data
2.2. Method
2.2.1. Proposed Boundary Layer Structure Index (BLSI)
2.2.2. Calculation of BLSI
2.2.3. Back Trajectory
2.2.4. Potential Source Contribution Function (PSCF)
3. Results
3.1. Analysis of the Vertical Structure of the Boundary Layer during Seriously Polluted Days and Clean Days
3.2. Analysis of PSA
3.3. Analysis of a Heavy Pollution Period
3.4. Unconventional Case Study
3.5. The Ability of the BLSI to Describe Changes in the Ground Air Quality
3.5.1. Correlations between the BLSI and the Air Quality
3.5.2. The Ability of the BLSI to Describe the ABLS
3.6. Case Study
3.6.1. A Seriously Polluted Case
3.6.2. A Relatively Clean Case
3.6.3. A Forecast Case
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Streets, D.G.; Gupta, S.; Waldhoff, S.T.; Wang, M.Q.; Bond, T.C.; Bo, Y. Black carbon emissions in China. Atmos. Environ. 2001, 35, 4281–4296. [Google Scholar] [CrossRef]
- Wang, R.; Tao, S.; Wang, W.; Liu, J.; Shen, H.; Shen, G.; Wang, B.; Liu, X.; Li, W.; Huang, Y. Black Carbon Emissions in China from 1949 to 2050. Environ. Sci. Technol. 2012, 46, 7595–7603. [Google Scholar] [CrossRef]
- Wu, D.; Tie, X.; Li, C.; Ying, Z.; Lau, K.H.; Huang, J.; Deng, X.; Bi, X. An extremely low visibility event over the Guangzhou region: A case study. Atmos. Environ. 2005, 39, 6568–6577. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, A.; Wu, D.; Xu, X. The influence of tropical cyclone Melor on PM10 concentrations during an aerosol episode over the Pearl River Delta region of China: Numerical modeling versus observational analysis. Atmos. Environ. 2007, 41, 4349–4365. [Google Scholar] [CrossRef]
- Li, H.; Wang, B.; Fang, X.; Zhu, W.; Fan, Q.; Liao, Z.; Liu, J.; Zhang, A.; Fan, S. Combined effect of boundary layer recirculation factor and stable energy on local air quality in pearl river delta over southern China. J. Air Waste Manag. Assoc. 2018, 68, 685. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.M.; Zhang, Y.F.; Hong, S.M.; Bi, X.H.; Jiao, L.; Feng, Y.C.; Wang, Y.Q. Estimation of the main factors influencing haze, based on a long-term monitoring campaign in Hangzhou, China. Aerosol Air Qual. Res. 2011, 11, 873–882. [Google Scholar] [CrossRef]
- Chu, H.J.; Yu, H.L.; Kuo, Y.M. Identifying spatial mixture distributions of PM2.5 and PM10 in Taiwan during and after a dust storm. Atmos. Environ. 2012, 54, 728–737. [Google Scholar] [CrossRef]
- Kuo, Y.M.; Wang, S.W.; Jang, C.S.; Yeh, N.; Yu, H.L. Identifying the factors influencing PM2.5 in southern Taiwan using dynamic factor analysis. Atmos. Environ. 2011, 45, 7276–7285. [Google Scholar] [CrossRef]
- Kuo, Y.M.; Chiu, C.H.; Yu, H.L. Influences of ambient air pollutants and meteorological conditions on ozone variations in Kaohsiung, Taiwan. Stoch. Environ. Res. Risk Assess. 2015, 29, 1037–1050. [Google Scholar] [CrossRef]
- Wu, M.; Wu, D.; Fan, Q.; Wang, B.M.; Li, H.W.; Fan, S.J. Observational studies of the meteorological characteristics associated with poor air quality over the Pearl River Delta in China. Atmos. Chem. Phys. 2013, 13, 10755–10766. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.M.; Ma, Z.Q.; Lin, W.; Zhang, H.; Hu, J.; Wang, Y.; Xu, X.; Fuentes, J.D.; Xue, M. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study. Sci. Total Environ. 2014, 499, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Wang, J.; Zhang, X.; Wang, Y.; Gao, S.; Zhao, C.; Sun, L.; Zhou, Y.; Wang, W.; Liu, X. Effect of weakened diurnal evolution of atmospheric boundary layer to air pollution over eastern China associated to aerosol, cloud—ABL feedback. Atmos. Environ. 2018, 185, 168–179. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, X.W.; Yang, X.; Wang, S.G.; Cheng, Y.F.; Yang, L.; Xiao, D.H. Characteristics of air pollution and its relationship with meteorological parameters in typical representative cities of China. J. Meteorol. Environ. 2017, 33, 70–79. [Google Scholar]
- Mbululo, Y.; Qin, J.; Yuan, Z.X. Evolution of atmospheric boundary layer structure and its relationship with air quality in Wuhan, China. Arab. J. Geosci. 2017, 10, 477. [Google Scholar] [CrossRef]
- Quan, J.; Tie, X.; Zhang, Q.; Liu, Q.; Li, X.; Gao, Y.; Zhao, D. Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmos. Environ. 2014, 88, 83–89. [Google Scholar] [CrossRef]
- Fan, S.J.; Fan, Q.; Yu, W.; Luo, X.Y.; Wang, B.M.; Song, L.L.; Leong, K.L. Atmospheric boundary layer characteristics over the Pearl River Delta, China, during the summer of 2006: Measurement and model results. Atmos. Chem. Phys. Discuss. 2011, 11, 681–687. [Google Scholar] [CrossRef]
- Qiang, Z.; Hongyu, L.I. A Study of the Relationship between Air Pollutants and Inversion in the ABL over the City of Lanzhou. Adv. Atmos. Sci. 2011, 28, 879–886. [Google Scholar]
- Bruine, M.D.; Apituley, A.; Donovan, D.P.; Baltink, H.K.; Haij, M.J. De Pathfinder: Applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar. Atmos. Meas. Tech. 2017, 10, 1–26. [Google Scholar] [CrossRef]
- Wei, J.; Tang, G.; Zhu, X.; Wang, L.; Liu, Z.; Cheng, M.; Münkel, C.; Li, X.; Wang, Y. Thermal internal boundary layer and its effects on air pollutants during summer in a coastal city in North China. J. Environ. Sci. 2017, 70, 37–44. [Google Scholar] [CrossRef]
- Dong, X.; Fu, J.S.; Zhu, Q.; Sun, J.; Tan, J.; Keating, T.; Sekiya, T.; Sudo, K.; Emmons, L.; Tilmes, S.; et al. Long-range Transport Impacts on Surface Aerosol Concentrations and the Contributions to Haze Events in China: An HTAP2 Multi-Model Study. Atmos. Chem. Phys. 2018, 1–33. [Google Scholar]
- Desaubies, Y.; Smith, W.K. Statistics of Richardson Number and Instability in Oceanic Internal Waves. J. Phys. Oceanogr. 1982, 12, 1245–1259. [Google Scholar] [CrossRef] [Green Version]
- Grachev, A.A.; Andreas, E.L.; Fairall, C.W.; Guest, P.S.; Persson, P.O.G. The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer. Bound.-Layer Meteorol. 2013, 147, 51–82. [Google Scholar] [CrossRef]
- Molinari, J.; Duran, P.; Vollaro, D. Low Richardson Number in the Tropical Cyclone Outflow Layer. J. Atmos. Sci. 2014, 71, 3164–3179. [Google Scholar] [CrossRef]
- Shang, K.; Cun, D.A.; You, F.U.; Yang, D. The Stable Energy in Lanzhou City and the Relations between Air Pollution and It. Plateau Meteorol. 2001, 20, 76–81. [Google Scholar]
- Murugavel, P.; Pawar, S.D.; Gopalakrishnan, V. Trends of Convective Available Potential Energy over the Indian region and its effect on rainfall. Int. J. Climatol. 2012, 32, 1362–1372. [Google Scholar] [CrossRef]
- Wang, S.; Qi, B. The Characteristics of Wind and Its Influence on the Air Pollution in the Atmospheric Boundary Layer of the Urban Districts of Lanzhou in Cold Half Year. J. Lanzhou Univ. 1997, 33, 97–105. [Google Scholar]
- Xu, Y.; Zhang, C.; Wang, Q.; Centre, H.C. An Analysis of Relationship between Surface Layer Wind Characteristics and Atmospheric Pollution. Shanghai Environ. Sci. 2013, 5, 216–220. [Google Scholar]
- Ashrafi, K.; Shafie-Pour, M.; Kamalan, H. Estimating Temporal and Seasonal Variation of Ventilation Coefficients. Int. J. Environ. Res. 2009, 3, 637–644. [Google Scholar]
- Iyer, U.S.; Raj, P.E. Ventilation coefficient trends in the recent decades over four major Indian metropolitan cities. Proc. Indian Acad. Sci. Earth Planet. Sci. 2013, 122, 537–549. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Liu, H.; Yang, Y.; Zhang, X.; Li, Y.; Zhang, Y.; Deng, G. Diagnostic identification of the impact of meteorological conditions on PM2.5 concentrations in Beijing. Atmos. Environ. 2013, 81, 158–165. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Gong, S.; Zhang, X.; Wang, H.; Wang, Y.; Wang, J.; Li, D.; Guo, J. PLAM—A meteorological pollution index for air quality and its applications in fog-haze forecasts in north China. Atmos. Chem. Phys. 2016, 15, 9077–9106. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, J.Z.; Wang, Y.Q.; Liu, H.L.; Sun, J.Y.; Zhang, Y.M. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors. Atmos. Chem. Phys. 2015, 15, 12935–12952. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Zhang, X.; Wang, Y.; Sun, J.; Zhang, Y.; Wang, J.; Tan, K.; Shen, X.; Che, H.; Zhang, L.; et al. Relative Contributions of Boundary-Layer Meteorological Factors to the Explosive Growth of PM2.5 during the Red-Alert Heavy Pollution Episodes in Beijing in December 2016. J. Meteorol. Res. 2017, 31, 809–819. [Google Scholar] [CrossRef]
- Qu, Y.; Han, Y.; Wu, Y.; Gao, P.; Wang, T. Study of PBLH and Its Correlation with Particulate Matter from One-Year Observation over Nanjing, Southeast China. Remote Sens. 2017, 9, 668. [Google Scholar] [CrossRef]
- Dupont, E.; Menut, L.; Carissimo, B.; Pelon, J.; Flamant, P. Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment. Atmos. Environ. 1999, 33, 979–994. [Google Scholar] [CrossRef]
- Pasch, A.N.; Macdonald, C.P.; Gilliam, R.C.; Knoderer, C.A.; Roberts, P.T. Meteorological characteristics associated with PM2.5 air pollution in Cleveland, Ohio, during the 2009–2010 Cleveland Multiple Air Pollutants Study. Atmos. Environ. 2011, 45, 7026–7035. [Google Scholar] [CrossRef]
- Zhao, S.H. Understanding of the method for calculating the density of dry and wet air. Hebei Coal. 1999, 3, 57–58. [Google Scholar]
- Picard, R.S. Revised formula for the density of moist air CIPM-2007. Metrologia 2008, 45, 149. [Google Scholar] [CrossRef]
- Dong, S. Analysis of calculating formula and improvement of empirical formula for saturation vapour pressure. Q. J. Appl. Meteorol. 1992, 3, 501–508. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2016, 96, 2059–2077. [Google Scholar] [CrossRef]
- Zeng, Y.; Hopke, P.K. A study of the sources of acid precipitation in Ontario, Canada. Atmos. Environ. 1989, 23, 1499–1509. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Hu, X.M. Boundary Layer (Atmospheric) and Air Pollution|Air Pollution Meteorology. Encycl. Atmos. Sci. 2015, 1, 227–236. [Google Scholar]
- Lyu, X.P.; Wang, Z.W.; Cheng, H.R.; Zhang, F.; Zhang, G.; Wang, X.M.; Ling, Z.H.; Wang, N. Chemical characteristics of submicron particulates (PM1.0) in Wuhan, Central China. Atmos. Res. 2015, 161, 169–178. [Google Scholar] [CrossRef]
- Zheng, X.; Qin, J.; Liang, S.W. Effects of easterly small winds onheavy pollution periodsin autumn-winter in Wuhan, China. J. Nanjing Univ. Inf. Sci. Technol. 2018, 5, 536–546. [Google Scholar]
- Bian, L.G. Observational Study of Wind and Temperature Profiles of Urban Boundary Layer in Beijing Winter. Q. J. Appl. Meteorlolgy 2002, 13, 13–25. [Google Scholar]
- Zhang, Y.; Liu, S.; Ju, L.I.; Wang, Y. Relationship between PM10 Mass Concentration and Bulk Richardson Number in Beijing. Acta Sci. Nat. Univ. Pekin. 2009, 46, 192–198. [Google Scholar]
Air Quality Index (AQI) | Air Quality Index Level | Air Quality Index Category |
---|---|---|
0–50 | Level 1 | Excellent |
51–100 | Level 2 | Good |
101–150 | Level 3 | Slightly polluted |
151–200 | Level 4 | Moderate polluted |
201–300 | Level 5 | Heavily polluted |
>300 | Level 6 | Seriously polluted |
Items | Relative Humidity | Wind Velocity (m/s) | Frequency of Calm Wind Cases | |
---|---|---|---|---|
Seriously polluted days | 3.23 | 92% | 1.48 | 21.7% |
Clean days | 3.56 | 87% | 1.87 | 4.9% |
H | Number of Samples | R |
---|---|---|
10 m | 279 | 0.125 ** |
50 m | 308 | 0.133 ** |
100 m | 357 | 0.143 *** |
150 m | 357 | 0.226 *** |
200 m | 358 | 0.231 *** |
250 m | 358 | 0.312 *** |
300 m | 359 | 0.198 *** |
350 m | 360 | 0.113 ** |
400 m | 360 | 0.111 ** |
450 m | 360 | 0.093 * |
500 m | 360 | 0.085 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Qin, J.; Liang, S.; Yuan, Z.; Mbululo, Y. The Development of Boundary Layer Structure Index (BLSI) and Its Relationship with Ground Air Quality. Atmosphere 2019, 10, 3. https://doi.org/10.3390/atmos10010003
Zheng X, Qin J, Liang S, Yuan Z, Mbululo Y. The Development of Boundary Layer Structure Index (BLSI) and Its Relationship with Ground Air Quality. Atmosphere. 2019; 10(1):3. https://doi.org/10.3390/atmos10010003
Chicago/Turabian StyleZheng, Xiang, Jun Qin, Shengwen Liang, Zhengxuan Yuan, and Yassin Mbululo. 2019. "The Development of Boundary Layer Structure Index (BLSI) and Its Relationship with Ground Air Quality" Atmosphere 10, no. 1: 3. https://doi.org/10.3390/atmos10010003
APA StyleZheng, X., Qin, J., Liang, S., Yuan, Z., & Mbululo, Y. (2019). The Development of Boundary Layer Structure Index (BLSI) and Its Relationship with Ground Air Quality. Atmosphere, 10(1), 3. https://doi.org/10.3390/atmos10010003