FENGYUN-4A Advanced Geosynchronous Radiation Imager Layered Precipitable Water Vapor Products’ Comprehensive Evaluation Based on Quality Control System
Abstract
:1. Introduction
2. Data
2.1. FY-4A AGRI LPW Product
2.2. Himawari-8 AHI LPW Data
2.3. MODIS PW Product
2.4. RAOB Data
2.5. ERA5 Reanalysis Data
2.6. NCEP Data
2.7. CMA T639 Products
3. Quality Control System of FY-4A Ground Segment
4. Method
4.1. Temporal Matching
4.2. Spatial Collocation
5. Results
5.1. Evaluation with Radiosonde Data
5.2. Evaluation with Model Data
5.3. Inter-Comparison with Other Satellite Retrieval Products
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jun, Y.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, FENGYUN-4. Bull. Am. Meteor. Soc. 2017, 98, 1637–1658. [Google Scholar]
- National Satellite Meteorological Center Home Page. Available online: http://www.nsmc.org.cn/nsmc/en/theme/FY4B.html (accessed on 29 January 2022).
- Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D.; et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
- Schmit, T.J.; Gunshor, M.M.; Menzel, W.P.; Gurka, J.; Li, J.; Bachmeier, S. Introducing the next-generation Advanced Baseline Imager (ABI) on GOES-R. Bull. Am. Meteor. Soc. 2005, 86, 1079–1096. [Google Scholar] [CrossRef]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A closer look at the ABI on the GOES-R series. Bull. Am. Meteor. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- EUMETSAT Home Page. Available online: https://www.eumetsat.int/mtg-flexible-combined-imager (accessed on 29 January 2022).
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef] [Green Version]
- Wagner, T.; Beirle, S.; Grzegorski, M.; Platt, U. Global trends (1996–2003) of total column precipitable water observed by global ozone monitoring experiment (GOME) on ERS-2 and their relation to near-surface temperature. J. Geophys. Res. Atmos. 2006, 111, 2193–2214. [Google Scholar] [CrossRef] [Green Version]
- Held, I.M.; Soden, B.J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 2000, 25, 441–475. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.; Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dyn. 2005, 24, 741–758. [Google Scholar] [CrossRef]
- Durre, I.; Vose, R.S.; Wuertz, D.B. Overview of the integrated global radiosonde archive. J. Clim. 2006, 19, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, M.D.; Schmid, B.; Turner, D.D.; Cairns, B.; Oinas, V.; Lacis, A.A.; Gutman, S.I.; Westwater, E.R.; Smirnov, A.; Eilers, J. Columnar water vapor retrievals from multifilter rotating shadow bandradiometer data. J. Geophys. Res. Atmos. 2009, 114, D02306. [Google Scholar] [CrossRef] [Green Version]
- Cadeddu, M.P.; Liljegren, J.C.; Turner, D.D. The atmospheric radiation measurement (ARM) program network of microwave radiometers: Instrumentation, data, and retrievals. Atmos. Meas. Tech. 2013, 6, 2359–2372. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.R.; Ware, R.; Zhang, W.G.; Feng, G.L.; Liao, K.W.; Liu, Y.B. Effect of offzenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy. Atmos. Res. 2014, 140, 85–94. [Google Scholar] [CrossRef]
- Sánchez, J.L.; Posada, R.; García-Ortega, E.; López, L.; Marcos, J.L. A method to improve the accuracy of continuous measuring of vertical profiles of temperature and water vapor density by means of a ground-based microwave radiometer. Atmos. Res. 2013, 122, 43–54. [Google Scholar] [CrossRef]
- Wang, M.; Fang, X.; Hu, S.X.; Hu, H.L.; Li, T.; Dou, X.K. Variation characteristics of water vapor distribution during 2000–2008 over Hefei (31.9° N, 117.2° E) observed by L625 lidar. Atmos. Res. 2015, 164, 1–8. [Google Scholar] [CrossRef]
- Whiteman, D.N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L.; Vermeesch, K.; Twigg, L.; Dirisu, A.; Dirisu, D.; Hall, E.; et al. Correction technique for Raman water vapor lidar signal-dependent bias and suitability for water vapor trend monitoring in the upper troposphere. Atmos. Meas. Tech. 2012, 5, 2893–2916. [Google Scholar] [CrossRef] [Green Version]
- Champollion, C.; Masson, F.; Bouin, M.N.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J. GPS water vapour tomography: Preliminary results from the ESCOMPTE field experiment. Atmos. Res. 2005, 74, 253–274. [Google Scholar] [CrossRef] [Green Version]
- Elgered, G.; Johansson, J.M.; Rönnäng, B.O.; Davis, J.L. Measuring regional atmospheric water vapor using the Swedish permanent GPS network. Geophys. Res. Lett. 1997, 24, 2663–2666. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, L.; Dai, A.; Van Hove, T.; Van Baelen, J. A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res. Atmos. 2007, 112, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.C.; Kaufman, Y.J. Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res. Atmos. 2003, 108, 4389. [Google Scholar] [CrossRef]
- Nelson, R.R.; Crisp, D.; Ott, L.E.; O’Dell, C.W. High-accuracy measurements of total column water vapor from the orbiting carbon observatory-2. Geophys. Res. Lett. 2016, 43, 12261–12269. [Google Scholar] [CrossRef] [Green Version]
- Niell, A.E.; Coster, A.J.; Solheim, F.S.; Mendes, V.B.; Toor, P.C.; Langley, R.B.; Upham, C.A. Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J. Atmos. Ocean. Technol. 2001, 18, 830–850. [Google Scholar] [CrossRef] [Green Version]
- Adeyemi, B.; Joerg, S. Analysis of water vapor over Nigeria using radiosonde and satellite data. J. Appl. Meteorol. Climatol. 2012, 51, 1855–1866. [Google Scholar] [CrossRef]
- Seemann, S.W.; Li, J.; Menzel, W.P.; Gumley, L.E. Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteorol. 2003, 42, 1072–1091. [Google Scholar] [CrossRef]
- King, M.D.; Kaufman, Y.J.; Menzel, W.P.; Tanre, D. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens. 1992, 30, 2–27. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Gao, B.C. Remote sensing of water vapor in the near IR from EOS/MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 871–884. [Google Scholar] [CrossRef]
- Gao, B.C.; Chan, P.K.; Li, R.R. A global water vapor data set obtained by merging the SSMI and MODIS data. Geophys. Res. Lett. 2004, 31, L18103. [Google Scholar] [CrossRef]
- McAtee, B.K.; Maier, S.W. A comparison of algorithms for near-real time water vapour retrieval from MODIS. Int. J. Remote Sens. 2006, 27, 5145–5163. [Google Scholar] [CrossRef]
- Liu, J.; Liang, H.; Sun, Z.; Zhou, X. Validation of the moderate-resolution imaging spectroradiometer precipitable water vapor product using measurements from GPS on the Tibetan Plateau. J. Geophys. Res. Atmos. 2006, 111, 1–5. [Google Scholar] [CrossRef]
- Liu, Z.; Wong, M.S.; Nichol, J.; Chan, P.W. A multi-sensor study of water vapour from radiosonde, MODIS and AERONET: A case study of Hong Kong. Int. J. Climatol. 2013, 33, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Tang, S.; Zhang, S.; Hu, J. Evaluation of MODIS water vapour products over China using radiosonde data. Int. J. Remote Sens. 2015, 36, 680–690. [Google Scholar] [CrossRef]
- Prasad, A.K.; Singh, R.P. Validation of MODIS Terra, AIRS, NCEP/DOE AMIP-II reanalysis-2, and AERONET sun photometer derived integrated precipitable water vapor using ground-based GPS receivers over India. J. Geophys. Res. Atmos. 2009, 114, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, K.; Pan, Z.Y.; Qin, J.; Chen, D.L.; Lin, C.G.; Chen, Y.Y.; La, Z.; Tang, W.J.; Han, M.L.; et al. Evaluation of precipitable water vapor from four satellite products and four reanalysis datasets against GPS measurements on the Southern Tibetan Plateau. J. Clim. 2017, 30, 5699–5713. [Google Scholar] [CrossRef]
- Menzel, W.P.; Schmit, T.J.; Zhang, P.; Li, J. Satellite-based atmospheric infrared sounder development and applications. Bull. Am. Meteorol. Soc. 2018, 99, 583–603. [Google Scholar] [CrossRef]
- Ningombam, S.S.; Song, H.J.; Mugil, S.K.; Dumka, U.C.; Larson, E.J.L.; Kumar, B.; Sagar, R. Evaluation of fractional clear sky over potential astronomical sites. Mon. Not. R. Astron. Soc. 2021, 507, 3745–3760. [Google Scholar] [CrossRef]
- Di, D.; Li, J.; Li, Z.; Li, J.; Schmit, T.J.; Menzel, W.P. Can current hyperspectral infrared sounders capture the small scale atmospheric water vapor spatial variations? Geophys. Res. Lett. 2021, 48, e2021GL095825. [Google Scholar] [CrossRef]
- Menzel, W.P.; Purdom, J.F. Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites. Bull. Am. Meteorol. Soc. 1994, 75, 757–782. [Google Scholar] [CrossRef] [Green Version]
- Menzel, W.P.; Holt, F.C.; Schmit, T.J.; Aune, R.M.; Schreiner, A.J.; Wade, G.S.; Gray, D.G. Application of GOES-8/9 Soundings to Weather Forecasting and Nowcasting. Bull. Am. Meteorol. Soc. 1998, 79, 2059–2078. [Google Scholar] [CrossRef]
- Schmit, T.J.; Li, J.; Lee, S.J.; Li, Z.; Dworak, R.; Lee, Y.K.; Bowlan, M.; Gerth, J.; Martin, G.D.; Straka, W.; et al. Legacy atmospheric profiles and derived products from GOES-16: Validation and applications. Earth Space Sci. 2019, 6, 1730–1748. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.L.; Li, J. A preliminary layer perceptible water vapor retrieval algorithm for FengYun-4 advanced geosynchronous radiation imager. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 7564–7566. [Google Scholar]
- Li, Z.; Li, J.; Menzel, W.P.; Schmit, T.J.; Nelson, J.P., III; Daniels, J.; Ackerman, S.A. GOES sounding improvement and applications to severe storm nowcasting. Geophys. Res. Lett. 2008, 35, L03806. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wolf, W.W.; Menzel, W.P.; Zhang, W.; Huang, H.-L.; Achtor, T.H. Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteorol. 2000, 39, 1248–1268. [Google Scholar] [CrossRef]
- You, Y.; Zhao, T.; Xie, Y.; Zheng, Y.; Zhu, J.; Xia, J.; Cao, L.; Wang, C.; Che, H.; Liao, Y.; et al. Variation of the aerosol optical properties and validation of MODIS AOD products over the eastern edge of the Tibetan Plateau based on ground-based remote sensing in 2017. Atmos. Env. 2020, 223, 117257. [Google Scholar] [CrossRef]
- Jin, X.; Li, J.; Schmit, T.J.; Li, J.; Goldberg, M.D.; Gurka, J.J. Retrieving clear-sky atmospheric parameters from SEVIRI and ABI infrared radiances. J. Geophys. Res. 2008, 113, 1–19. [Google Scholar] [CrossRef]
- Seemann, S.W.; Borbas, E.E.; Knuteson, R.O.; Stephenson, G.R.; Huang, H.-L. Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteorol. Climatol. 2008, 47, 108–123. [Google Scholar] [CrossRef]
- NOAA Center for Satellite Applications and Research Home Page. Available online: https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_Sounding_LAP_v3.0_July2012.pdf (accessed on 29 January 2022).
- Lee, Y.K.; Li, Z.; Li, J.; Schmit, T.J. Evaluation of the GOES-R ABI LAP Retrieval Algorithm Using theGOES-13Sounder. J. Atmos. Ocean. Technol. 2014, 31, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Li, J.; Li, Z.; Schmit, T. Atmospheric temporal variations in the pre-landfall environment of Typhoon Nangka (2015) observed by the Himawari-8 AHI. Asia-Pac. J. Atmos. Sci. 2017, 53, 431–443. [Google Scholar] [CrossRef]
- University of Wyoming Home Page. Available online: http://weather.uwyo.edu/upperair/sounding.html (accessed on 29 January 2022).
- CMA (China Meteorological Administration). Specification of Routine Upper-Air Observation; China Meteorological Press: Beijing, China, 2010; p. 58. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Leetmaa, A.; Reynolds, R.; Jenne, R.; Josepht, D. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–470. [Google Scholar]
- FENGYUN Satellite Data Center Home Page. Available online: http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx (accessed on 29 January 2022).
Spectral Coverage | Spectral Band (μm) | Spatial Resolution (km) | Sensitivity | Main Applications |
---|---|---|---|---|
VIS/NIR | 0.45–0.49 | 1 | S/N * ≥ 90 (ρ ** = 100%) | Aerosol, visibility |
0.55–0.75 | 0.5 | S/N ≥ 150 (ρ = 100%) | Fog, clouds | |
0.75–0.90 | 1 | S/N ≥ 200 (ρ = 100%) | Aerosol, vegetation | |
1.36–1.39 | 2 | S/N ≥ 150 (ρ = 100%) | Cirrus | |
1.58–1.64 | 2 | S/N ≥ 200 (ρ = 100%) | Cloud, snow | |
2.10–2.35 | 2 | S/N ≥ 200 (ρ = 100%) | Cloud phase, aerosol, vegetation | |
3.50–4.00 | 2 | NEΔT *** ≤ 0.7 K (300 K) | Clouds, fire, moisture, snow | |
3.50–4.00 | 4 | NEΔT ≤ 0.2 K (300 K) | Land surface | |
Midwave IR | 5.8–6.7 | 4 | NEΔT ≤ 0.3 K (260 K) | Upper-level WV |
6.9–7.3 | 4 | NEΔT ≤ 0.3 K (260 K) | Midlevel WV | |
Longwave IR | 8.0–9.0 | 4 | NEΔT ≤ 0.2 K (300 K) | Volcanic ash, cloud-top phase |
10.3–11.3 | 4 | NEΔT ≤ 0.2 K (300 K) | SST, LST | |
11.5–12.5 | 4 | NEΔT ≤ 0.2 K (300 K) | Clouds, low-level WV | |
13.2–13.8 | 4 | NEΔT ≤ 0.5 K (300 K) | Clouds, air temperature |
LPWs | Evaluating Data Source | Mean Bias | Absolute Bias | RMSE | Median Bias | Maximum Bias | Minimum Bias | Correlation Coefficient |
---|---|---|---|---|---|---|---|---|
TPW | TK | –0.0140 | 0.2819 | 0.5090 | –0.0277 | 4.2240 | –3.7420 | 0.9145 |
soundings | –0.0145 | 0.2474 | 0.4494 | –0.0301 | 4.6010 | –2.8780 | 0.8955 | |
LOW | TK | 0.1531 | 0.1812 | 0.2594 | 0.1194 | 1.4990 | –0.7780 | 0.8746 |
soundings | 0.1688 | 0.1828 | 0.2347 | 0.1518 | 1.5890 | –0.3737 | 0.8876 |
LPWs | Evaluating Data Source | Mean Bias | Absolute Bias | RMSE | Median Bias | Maximum Bias | Minimum Bias | Correlation Coefficient |
---|---|---|---|---|---|---|---|---|
LOW | NCEP | 0.1470 | 0.2725 | 0.3425 | 0.1610 | 1.3220 | –0.7801 | 0.8452 |
T639 | –0.0073 | 0.0470 | 0.0800 | –0.0076 | 0.3518 | –0.6536 | 0.9905 | |
MID | NCEP | –0.1803 | 0.3521 | 0.4808 | –0.1287 | 1.2840 | –2.0070 | 0.8081 |
T639 | –0.0207 | 0.0909 | 0.1682 | –0.0095 | 0.8221 | –1.5060 | 0.9781 | |
HIGH | NCEP | –0.0324 | 0.2293 | 0.3041 | –0.0493 | 0.9520 | –0.8207 | 0.7495 |
T639 | –0.0130 | 0.0639 | 0.1186 | –0.0041 | 1.2210 | –1.2650 | 0.9651 |
Evaluating Data Source | Mean Deviation | Absolute Deviation | RMSE | Median Deviation | Maximum Deviation | Minimum Deviation | Correlation Coefficient |
---|---|---|---|---|---|---|---|
MOD05 | 0.3583 | 0.4369 | 0.5670 | 0.2934 | 3.2110 | –4.2960 | 0.9667 |
AHI | –0.0006 | 0.0070 | 0.0204 | –0.0003 | 1.2220 | –1.1270 | 0.9999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, J.; Li, Z.; Zheng, J.; Wu, D.; Zhao, H. FENGYUN-4A Advanced Geosynchronous Radiation Imager Layered Precipitable Water Vapor Products’ Comprehensive Evaluation Based on Quality Control System. Atmosphere 2022, 13, 290. https://doi.org/10.3390/atmos13020290
Zhang Y, Li J, Li Z, Zheng J, Wu D, Zhao H. FENGYUN-4A Advanced Geosynchronous Radiation Imager Layered Precipitable Water Vapor Products’ Comprehensive Evaluation Based on Quality Control System. Atmosphere. 2022; 13(2):290. https://doi.org/10.3390/atmos13020290
Chicago/Turabian StyleZhang, Yong, Jun Li, Zhenglong Li, Jing Zheng, Danqing Wu, and Hongyu Zhao. 2022. "FENGYUN-4A Advanced Geosynchronous Radiation Imager Layered Precipitable Water Vapor Products’ Comprehensive Evaluation Based on Quality Control System" Atmosphere 13, no. 2: 290. https://doi.org/10.3390/atmos13020290
APA StyleZhang, Y., Li, J., Li, Z., Zheng, J., Wu, D., & Zhao, H. (2022). FENGYUN-4A Advanced Geosynchronous Radiation Imager Layered Precipitable Water Vapor Products’ Comprehensive Evaluation Based on Quality Control System. Atmosphere, 13(2), 290. https://doi.org/10.3390/atmos13020290