Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (528)

Search Parameters:
Keywords = bio fermentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 880 KB  
Article
Bio-Enhancement of Phenolic Content and Antioxidant Capacity of Coffee (Coffea arabica L.) Cherry Husks by Solid-State Fermentation with Trichoderma Fungi
by Punyawatt Pintathong, Narit Thaochan, Benjarat Suwannawong, Sarita Sangthong and Phanuphong Chaiwut
Fermentation 2025, 11(11), 625; https://doi.org/10.3390/fermentation11110625 (registering DOI) - 1 Nov 2025
Abstract
Fermentation possesses intriguing and promising potential as a bioprocess for enhancing and/or transforming bioactive compounds derived from agricultural processing by-products. This study aimed to enhance the phenolic compounds and antioxidant properties of coffee cherry husks through the sustainable methodology of solid-state fermentation (SSF) [...] Read more.
Fermentation possesses intriguing and promising potential as a bioprocess for enhancing and/or transforming bioactive compounds derived from agricultural processing by-products. This study aimed to enhance the phenolic compounds and antioxidant properties of coffee cherry husks through the sustainable methodology of solid-state fermentation (SSF) using various Trichoderma fungi, specifically Trichoderma asperellum CB-Pin-01 and two Trichoderma isolates (NTY211 and PSUT001). The coffee cherry husks underwent fermentation at a controlled temperature of 28 ± 1 °C over a duration of 7 days. Both fermented and unfermented extracts, prepared using different solvents (water, ethanol, and acetone), were systematically evaluated concerning total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacities measured via DPPH and ABTS radical scavenging assays, as well as ferric reducing antioxidant power (FRAP). The findings indicated that SSF involving Trichoderma fungi significantly augmented the phenolic content and antioxidant activities in comparison to the unfermented samples (p < 0.05). Notably, the acetonic extract obtained from fermentation with the isolate NTY211 exhibited the highest contents of phenolic (191.48 ± 3.94 mg GAE/g extract) and flavonoid (106.61 ± 3.09 mg QE/g extract). The identification of phenolic compounds by UHPLC-QqQ-MS/MS analysis revealed a predominant increase in chlorogenic acid and quercetin through SSF. Consequently, SSF utilizing Trichoderma fungi may represent a viable strategy for enhancing the value of coffee cherry husks, rendering them into bioactive ingredients with potential applications in the cosmetic and food industries. Full article
(This article belongs to the Special Issue Application and Research of Solid State Fermentation, 2nd Edition)
24 pages, 6402 KB  
Review
Probiotics, Prebiotics and Synbiotics for Combating Antimicrobial Resistance in the Food Chain
by Slavica Vesković Moračanin, Bojana Danilović, Milan Milijašević, Jelena Babić Milijašević, Zoran Tambur and Milica Moračanin
Processes 2025, 13(11), 3483; https://doi.org/10.3390/pr13113483 - 30 Oct 2025
Viewed by 332
Abstract
The increasing prevalence of antimicrobial resistance (AMR) among foodborne pathogens has emerged as a critical global health concern, undermining the efficacy of conventional antimicrobial agents and threatening the safety and integrity of the food supply chain. In response, probiotics, prebiotics, and their combinations [...] Read more.
The increasing prevalence of antimicrobial resistance (AMR) among foodborne pathogens has emerged as a critical global health concern, undermining the efficacy of conventional antimicrobial agents and threatening the safety and integrity of the food supply chain. In response, probiotics, prebiotics, and their combinations as synbiotics are increasingly recognised as sustainable, health-oriented strategies to mitigate AMR across the food chain. Probiotics—live microorganisms that, when administered in adequate amounts, confer health benefits to the host—contribute to AMR mitigation through multiple mechanisms, including competitive exclusion of resistant pathogens, production of antimicrobial metabolites (e.g., bacteriocins and organic acids), modulation of host immunity, and restoration of gut microbial balance. Prebiotics, defined as non-digestible food ingredients, selectively stimulate the growth and/or metabolic activity of beneficial bacteria such as Lactobacillus and Bifidobacterium spp., thereby reinforcing colonisation resistance. When combined as synbiotics, these agents may exert synergistic effects, enhancing microbial resilience, promoting gut health, and reducing the colonisation and persistence of AMR-related pathogens. The integration of these bio-based approaches into food systems—particularly in the development of fermented and functional foods—supports broader One Health objectives by reducing the need for antibiotics and contributing to global AMR containment efforts. This review summarises current scientific insights, explores practical applications, and outlines future perspectives on the role of probiotics, prebiotics, and synbiotics in combating AMR throughout the food chain. Full article
Show Figures

Figure 1

31 pages, 1098 KB  
Review
Valorising Whey: From Environmental Burden to Bio-Based Production of Value-Added Compounds and Food Ingredients
by Hiba Selmi, Ester Presutto, Giuseppe Spano, Vittorio Capozzi and Mariagiovanna Fragasso
Foods 2025, 14(21), 3646; https://doi.org/10.3390/foods14213646 - 25 Oct 2025
Viewed by 308
Abstract
Cheese manufacturing generates large volumes of whey with high biochemical and chemical oxygen demand, historically treated as waste. Yet, whey is rich in lactose, proteins, and minerals that can be fractionated and upgraded into foods and bio-based products. During cheese production, 80% to [...] Read more.
Cheese manufacturing generates large volumes of whey with high biochemical and chemical oxygen demand, historically treated as waste. Yet, whey is rich in lactose, proteins, and minerals that can be fractionated and upgraded into foods and bio-based products. During cheese production, 80% to 90% of the total volume is discarded as whey, which can cause severe pollution. However, milk by-products can be a natural source of high-value-added compounds and a cost-effective substrate for microbial growth and metabolites production. The current review focuses on cheese whey as a key milk by-product, highlighting its generation and composition, the challenges associated with its production, methods for fractionating whey to recover bioactive compounds, its applications in functional food development, the barriers to its broader use in the food sector, and its potential as a substrate for producing value-added compounds. Particularly, the focus was on the recent solutions to use cheese whey as a primary material for microbial fermentation and enzymatic processes, producing a diverse range of chemicals and products for applications in the pharmaceutical, food, and biotechnology industries. This review contributes to defining a framework for reducing the environmental impacts of whey through its application in designing foods and generating biomaterials. Full article
Show Figures

Figure 1

22 pages, 1099 KB  
Review
Synergistic Conversion and Catalytic Upgrading of Seaweed Biomass for Sustainable Bioenergy: Advances, Challenges, and Future Prospects
by Qing Xu, Shenwei Zhang and Shengxian Xian
Catalysts 2025, 15(11), 1008; https://doi.org/10.3390/catal15111008 - 24 Oct 2025
Viewed by 939
Abstract
Seaweed holds significant promise as a renewable feedstock for bioenergy due to its rapid growth, carbon sequestration capacity, and non-competition with terrestrial agriculture. This review examines recent progress in multi-method synergies for optimized energy conversion from seaweed biomass. Physical pre-treatments (e.g., drying, milling, [...] Read more.
Seaweed holds significant promise as a renewable feedstock for bioenergy due to its rapid growth, carbon sequestration capacity, and non-competition with terrestrial agriculture. This review examines recent progress in multi-method synergies for optimized energy conversion from seaweed biomass. Physical pre-treatments (e.g., drying, milling, ultrasound, microwave) enhance substrate accessibility but face energy intensity constraints. Chemical processes (acid/alkali, solvent extraction, catalysis) improve lipid/sugar recovery and bio-oil yields, especially via hydrodeoxygenation (HDO) and catalytic cracking over tailored catalysts (e.g., ZSM-5), though cost and byproduct management remain challenges. Biological methods (enzymatic hydrolysis, fermentation) enable eco-friendly valorization but suffer from scalability and enzymatic cost limitations. Critically, integrated approaches—such as microwave-solvent systems or hybrid thermochemical-biological cascades—demonstrate superior efficiency over singular techniques. Upgrading pathways for liquid bio-oil (e.g., HDO, catalytic pyrolysis) show considerable potential for drop-in fuel production, while solid-phase biochar and biogas offer carbon sequestration and circular economy benefits. Future priorities include developing low-cost catalysts, optimizing process economics, and scaling synergies like hydrothermal liquefaction coupled with catalytic upgrading to advance sustainable seaweed biorefineries. Full article
(This article belongs to the Topic Advanced Bioenergy and Biofuel Technologies)
Show Figures

Graphical abstract

23 pages, 972 KB  
Review
Research on Development and Challenges of Forest Food Resources from an Industrial Perspective—Alternative Protein Food Industry as an Example
by Yaohao Guo, Cancan Peng, Junjie Deng, Xiya Hong, Bo Zhou and Jiali Ren
Foods 2025, 14(20), 3503; https://doi.org/10.3390/foods14203503 - 14 Oct 2025
Viewed by 595
Abstract
The forest food industry, as a typical low-carbon green ecological industry, holds strategic significance in addressing global food security challenges. This review takes forest protein resources as an example to analyze the current development status, opportunities, and challenges from a global industrial perspective. [...] Read more.
The forest food industry, as a typical low-carbon green ecological industry, holds strategic significance in addressing global food security challenges. This review takes forest protein resources as an example to analyze the current development status, opportunities, and challenges from a global industrial perspective. Research indicates that forests, as a vital food treasure for humanity, can provide diverse protein sources such as insects, plants, microorganisms, and bio-manufactured proteins. Currently, numerous technological innovations and market practices have emerged in fields such as insect protein (e.g., there are over 3000 edible insect species globally, with a market size of approximately USD 3.2 billion in 2023, projected to reach USD 7.6 billion by 2028), plant-based alternative protein (e.g., plant-based chicken nuggets by Impossible Foods in the United States), microbial fermentation protein (e.g., the production capacity of Solar Foods’ production base in Finland is 160 tons per year), and cell-cultured meat (e.g., cell-cultured chicken is sold in Singapore), demonstrating significant potential in alleviating food supply pressures and reducing environmental burdens. However, industrial development still faces practical challenges including insufficient resource exploration, incomplete nutritional and safety evaluation systems, low consumer acceptance, high costs of core technologies (e.g., the first cell-cultured meat burger in 2013 cost over 1 million USD/lb, and current costs need to be reduced to 17–65 USD/kg to achieve market competitiveness), and imperfect regulatory mechanisms (e.g., varying national standards lead to high compliance costs for enterprises). In the future, it is necessary to achieve efficient development and sustainable utilization of forest protein resources by strengthening resource exploration, clarifying the basis of nutrients, promoting multi-technology integration and innovation, and establishing a sound market access system, thereby providing solutions for global food security and high-quality development of the food industry. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

19 pages, 1663 KB  
Article
A Modular Mathematical Model of Fermentation in an Industrial-Scale Bioreactor
by Pavel Y. Kondrakhin, Vladislav A. Kachnov, Ilya R. Akberdin and Fedor A. Kolpakov
Processes 2025, 13(10), 3288; https://doi.org/10.3390/pr13103288 - 14 Oct 2025
Viewed by 366
Abstract
This paper presents a modular hybrid mathematical model of bacterial fermentation developed by integrating a detailed kinetic model for the central carbon metabolism of Escherichia coli with a simplified four-compartment model of a large stirred bioreactor. The model describes the growth dynamics of [...] Read more.
This paper presents a modular hybrid mathematical model of bacterial fermentation developed by integrating a detailed kinetic model for the central carbon metabolism of Escherichia coli with a simplified four-compartment model of a large stirred bioreactor. The model describes the growth dynamics of E. coli, taking into account the hydrodynamic characteristics of the cultivation environment and spatial concentration gradients. The first module simulates liquid exchange flows between neighboring reactor zones and tracks the spatial distribution of substrate, acetate, dissolved oxygen, and biomass, while the second one, which is a kinetic model, includes main metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Compared to most previous hybrid approaches relying on simplified kinetics, the present model integrates a detailed kinetic representation of E. coli central metabolism and is openly implemented on the BioUML platform, which ensures its reproducibility and extensibility. Numerical simulations reveal how mixing intensity affects concentration gradients and metabolic regimes across the reactor. Additionally, the model was used to identify an optimal mixing regime corresponding to the state where the system first enters the regime of complete aerobic substrate oxidation. The proposed model is applicable for numerical analysis of industrial-scale bioreactors and for predicting metabolic dynamics under various hydrodynamic conditions. Full article
(This article belongs to the Special Issue Multiscale Modeling and Control of Biomedical Systems)
Show Figures

Figure 1

16 pages, 2244 KB  
Article
Scalable Biosynthesis and Recovery of Poly-3-Hydroxybutyrate Produced from Cotton-Derived Glucose by Cupriavidus necator
by Ashley M. Clark, Lucia E. Gargano, Gabriella M. Fioravanti, Hannah M. Schapiro and Ronald G. Kander
Polymers 2025, 17(20), 2745; https://doi.org/10.3390/polym17202745 - 14 Oct 2025
Viewed by 364
Abstract
To combat the growing issue of petroleum plastic waste, alternative bio-based polymers are being developed. Many of these biopolymers are made from bio-derived materials, or are biodegradable, but the most promising polymers fall in both categories. Polyhydroxyalkanoates (PHAs) are one such class of [...] Read more.
To combat the growing issue of petroleum plastic waste, alternative bio-based polymers are being developed. Many of these biopolymers are made from bio-derived materials, or are biodegradable, but the most promising polymers fall in both categories. Polyhydroxyalkanoates (PHAs) are one such class of polymers, and poly-3-hydroxybutyrate (P3HB), the most popular PHA, has shown great potential. This study utilized two types of cotton-derived glucose, alongside commercial glucose, as a feedstock for the biosynthesis of P3HB by Cupriavidus necator (also known as Ralstonia eutropha). The fermentation took place in a 2-L bioreactor, showing potential for scale-up. A single-solvent extraction method was created and utilized to reduce process complexity and chemical consumption of the polymer extraction. Both cotton-derived glucoses were shown to produce more P3HB than commercial glucose. The resulting P3HB samples were compared to each other and to the literature based on polymer yield and thermal characteristics. While all samples averaged a smaller yield than seen in the literature (indicating the need for optimization of the bacterial growth and metabolism with a growth curve in our future work), the cotton-derived glucose was shown to yield more P3HB than commercial glucose. Further, cotton-derived P3HB had very similar thermal properties to the commercial glucose-derived P3HB (and to values from the literature) with onset of thermal degradation ranging from 185 °C to 263 °C, cold crystallization temperatures ranging from 24 °C to 28 °C, and melting temperatures ranging from 147 °C to 151 °C. Lastly, all samples were shown to have a similar percentage crystallinity, ranging from 38% to 45%, which is slightly lower than that reported in the literature. P3HB made from cotton-derived glucose was shown to have potential as a scalable, sustainable alternative process. Full article
(This article belongs to the Special Issue Bioplastics from Renewable Sources)
Show Figures

Figure 1

24 pages, 346 KB  
Review
Valorization of Food Processing Wastewater for Astaxanthin Production by the Mixotrophic Fermentation of Microalgae: A Review
by Qian Lu, Limin Yang and Xiaowei Zhang
Fermentation 2025, 11(10), 580; https://doi.org/10.3390/fermentation11100580 - 9 Oct 2025
Viewed by 652
Abstract
Food processing wastewater (FPW) poses significant environmental risks due to its high nutrient load yet offers untapped potential as a low-cost feedstock for high-value compound production. This review critically evaluates the valorization of FPW for astaxanthin production through the mixotrophic fermentation of microalgae. [...] Read more.
Food processing wastewater (FPW) poses significant environmental risks due to its high nutrient load yet offers untapped potential as a low-cost feedstock for high-value compound production. This review critically evaluates the valorization of FPW for astaxanthin production through the mixotrophic fermentation of microalgae. Key microalgal species (e.g., Haematococcus pluvialis and Chromochloris zofingiensis) effectively remediate nutrients (nutrients removal of up to 100%) while synthesizing astaxanthin under stress-inducing conditions, such as nutrient starvation, salinity, and oxidative stress. Advanced strategies, such as two-stage cultivation, nutrient profile adjustment, and microbial co-cultivation, which could enhance astaxanthin yields and wastewater treatment efficiency were reviewed comprehensively. The resulting astaxanthin-rich biomass demonstrates multifunctional benefits in animal feed, improving meat quality, immunity, growth, and shelf life. However, this review identifies some challenges, including wastewater management risks, low digestibility of microalgae biomass, and astaxanthin instability during feed processing, which should be addressed properly in real-world applications. This integrated approach aligns with circular bio-economy principles, transforming FPW from an environmental liability into a resource for sustainable biotechnology. Full article
17 pages, 6472 KB  
Article
High-Mountain Tuber Products Improve Selectively the Development and Detoxifying Capacity of Lactobacilli Strains as an Innovative Culture Strategy
by Cecilia Hebe Orphèe, María Inés Mercado, Fernando Eloy Argañaraz Martínez, Mario Eduardo Arena and Elena Cartagena
Fermentation 2025, 11(10), 576; https://doi.org/10.3390/fermentation11100576 - 6 Oct 2025
Viewed by 568
Abstract
The study provides valuable insights into the sustainable utilization of edible tuber peels from the high mountains of the Argentinian Puna, which constitutes promising reserves of bioactive phenolic compounds with the potential to enhance the biofunctional properties of lactic acid bacteria. Thirty-two extracts [...] Read more.
The study provides valuable insights into the sustainable utilization of edible tuber peels from the high mountains of the Argentinian Puna, which constitutes promising reserves of bioactive phenolic compounds with the potential to enhance the biofunctional properties of lactic acid bacteria. Thirty-two extracts derived from peels of different varieties of tubers, such as Oxalis tuberosa Mol., Ullucus tuberosus Caldas, and Solanum tuberosum L. were incorporated into lactobacilli cultures and individually evaluated. These selectively enhance the development of the probiotic strain Lactiplantibacillus plantarum ATCC 10241 and of Lacticaseibacillus paracasei CO1-LVP105 from ovine origin, without promoting the growth of a pathogenic bacteria set (Escherichia coli O157:H12 and ATCC 35218, Salmonella enterica serovar Typhimurium ATCC 14028, and S. corvalis SF2 and S. cerro SF16), in small amounts. To determine the main phenolic group concentrated in the phytoextracts, a bio-guided study was conducted. The most significant results were obtained by O. tuberosa phytochemicals added to the culture medium at 50 µg/mL, yielding promising increases in biofilm formation (78% for Lp. plantarum and 43% for L. paracasei) and biosurfactant activity (112% for CO1-LVP105 strain). These adaptive strategies developed by bacteria possess key biotechnological significance. Furthermore, the bio-detoxification capacity of phenol and o-phenyl phenol, particularly of the novel strain CO1-LVP105, along with its mode of action and genetic identification, is described for the first time to our knowledge. In conclusion, lactobacilli strains have potential as fermentation starters and natural products, recovered from O. tuberosa peels, and added into culture media contribute to multiple bacterial biotechnological applications in both health and the environment. Full article
Show Figures

Figure 1

49 pages, 1522 KB  
Review
Advancements in Microbial Applications for Sustainable Food Production
by Alane Beatriz Vermelho, Verônica da Silva Cardoso, Levy Tenório Sousa Domingos, Ingrid Teixeira Akamine, Bright Amenu, Bernard Kwaku Osei and Athayde Neves Junior
Foods 2025, 14(19), 3427; https://doi.org/10.3390/foods14193427 - 5 Oct 2025
Cited by 1 | Viewed by 1482
Abstract
This review consolidates recent advancements in microbial biotechnology for sustainable food systems. It focuses on the fermentation processes used in this sector, emphasizing precision fermentation as a source of innovation for alternative proteins, fermented foods, and applications of microorganisms and microbial bioproducts in [...] Read more.
This review consolidates recent advancements in microbial biotechnology for sustainable food systems. It focuses on the fermentation processes used in this sector, emphasizing precision fermentation as a source of innovation for alternative proteins, fermented foods, and applications of microorganisms and microbial bioproducts in the food industry. Additionally, it explores food preservation strategies and methods for controlling microbial contamination. These biotechnological approaches are increasingly replacing synthetic additives, contributing to enhanced food safety, nutritional functionality, and product shelf stability. Examples include bacteriocins from lactic acid bacteria, biodegradable microbial pigments, and exopolysaccharide-based biopolymers, such as pullulan and xanthan gum, which are used in edible coatings and films. A comprehensive literature search was conducted across Scopus, PubMed, ScienceDirect, and Google Scholar, covering publications from 2014 to 2025. A structured Boolean search strategy was applied, targeting core concepts in microbial fermentation, bio-based food additives, and contamination control. The initial search retrieved 5677 articles, from which 370 studies were ultimately selected after applying criteria such as duplication removal, relevance to food systems, full-text accessibility, and scientific quality. This review highlights microbial biotransformation as a route to minimize reliance on synthetic inputs, valorize agri-food byproducts, and support circular bioeconomy principles. It also discusses emerging antimicrobial delivery systems and regulatory challenges. Overall, microbial innovations offer viable and scalable pathways for enhancing food system resilience, functionality, and environmental stewardship. Full article
Show Figures

Graphical abstract

17 pages, 2088 KB  
Review
Rolling Circle Amplification as a Molecular Tool for Spatially Resolved Signal Amplification in Single Molecule Counting Assay
by Juhwan Park
Biosensors 2025, 15(9), 628; https://doi.org/10.3390/bios15090628 - 21 Sep 2025
Viewed by 928
Abstract
There have been rising interests in ultra-sensitive biosensing technologies for early diagnosis and prognosis monitoring of infectious diseases, cancers, and neurodegenerative diseases. Digital signal readout strategy represented by digital ELISA or digital PCR, advanced biosensing field enormously, which enables detection of biomolecules under [...] Read more.
There have been rising interests in ultra-sensitive biosensing technologies for early diagnosis and prognosis monitoring of infectious diseases, cancers, and neurodegenerative diseases. Digital signal readout strategy represented by digital ELISA or digital PCR, advanced biosensing field enormously, which enables detection of biomolecules under the detection limit of conventional biosensing methods. However, due to the need for compartmentalization and limited multiplex capability, it has been hurdled for utilization in applications requiring hierarchical resolution analysis such as sub-cellular molecules or molecular cargo of single cells or single extracellular vesicles (EVs). Rolling circle amplification (RCA), an isothermal DNA amplification method enabling localization of an amplified signal, can eliminate the need for compartmentalization and increase multiplex capability. It also has potential to expand applications of single molecule counting assay for understanding hierarchy of biological systems. In this review, recent advances in RCA-based single molecule counting assay are overviewed and their applications in single cells and single EVs quantitative analysis are discussed. Furthermore, the limitations and outlook of RCA-based single molecule counting assay are highlighted. Full article
(This article belongs to the Special Issue Point-of-Care Testing: Advances and Perspectives)
Show Figures

Figure 1

29 pages, 1718 KB  
Review
Bacillus Pectinases as Key Biocatalysts for a Circular Bioeconomy: From Green Extraction to Process Optimization and Industrial Scale-Up
by Fatima Zohra Kaissar, Khelifa Bouacem, Mohammed Lamine Benine, Sondes Mechri, Shubha Rani Sharma, Vishal Kumar Singh, Mahfoud Bakli, Seif El Islam Lebouachera and Giovanni Emiliani
BioTech 2025, 14(3), 74; https://doi.org/10.3390/biotech14030074 - 19 Sep 2025
Viewed by 1053
Abstract
Pectins are high-value plant cell-wall polysaccharides with extensive applications in the food, pharmaceutical, textile, paper, and environmental sectors. Traditional extraction and processing methodologies rely heavily on harsh acids, high temperatures, and non-renewable solvents, generating substantial environmental and economic costs. This review consolidates recent [...] Read more.
Pectins are high-value plant cell-wall polysaccharides with extensive applications in the food, pharmaceutical, textile, paper, and environmental sectors. Traditional extraction and processing methodologies rely heavily on harsh acids, high temperatures, and non-renewable solvents, generating substantial environmental and economic costs. This review consolidates recent advances across the entire Bacillus–pectinase value chain, from green pectin extraction and upstream substrate characterization, through process and statistical optimization of enzyme production, to industrial biocatalysis applications. We propose a practical roadmap for developing high-efficiency, low-environmental-footprint enzyme systems that support circular bioeconomy objectives. Critical evaluation of optimization strategies, including submerged versus solid-state fermentation, response surface methodology, artificial neural networks, and design of experiments, is supported by comparative data on strain performance, fermentation parameters, and industrial titers. Sector-specific case studies demonstrate the efficacy of Bacillus pectinases in fruit-juice clarification, textile bio-scouring, paper bio-bleaching, bio-based detergents, coffee and tea processing, oil extraction, animal feed enhancement, wastewater treatment, and plant-virus purification. Remaining challenges, including enzyme stability in complex matrices, techno-economic scale-up, and structure-guided protein engineering, are identified. Future directions are charted toward CRISPR-driven enzyme design and fully integrated circular-economy bioprocessing platforms. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Graphical abstract

24 pages, 1317 KB  
Article
Bio-Accessibility of Phenolic Compounds from Green Banana-Fortified Bread During Simulated Digestion and Colonic Fermentation
by Yasmeen M. Bashmil, Frank R. Dunshea, Rudi Appels and Hafiz A. R. Suleria
Molecules 2025, 30(18), 3743; https://doi.org/10.3390/molecules30183743 - 15 Sep 2025
Viewed by 816
Abstract
Functional foods are gaining heightened popularity in diet modifications. Green bananas contain a significant quantity of resistant starch, dietary fibre, and phytochemicals that demonstrate strong antioxidant properties, particularly due to the high concentration of polyphenols. The community demand for incorporating these essential components [...] Read more.
Functional foods are gaining heightened popularity in diet modifications. Green bananas contain a significant quantity of resistant starch, dietary fibre, and phytochemicals that demonstrate strong antioxidant properties, particularly due to the high concentration of polyphenols. The community demand for incorporating these essential components into food products, such as bread, has increased. Therefore, the aim of this study was to evaluate the differences in the content and bio-accessibility of phenolic compounds in bread enriched with 5, 10, and 15% of Australian green banana powder (GBF) from (Cavendish “Musa acuminata”, Ladyfinger “Musa paradisiaca L.”, and Ducasse “Musa balbisiana”), as well as their antioxidant capabilities and the generation of short-chain fatty acids (SCFAs) after in vitro gastrointestinal digestion and colonic fermentation. The 15% Cavendish bread exhibited significant TPC and TFC at 1.31 mg GAE/g and 0.05 mg QE/g, respectively, along with substantial antioxidant activity (DPPH, 0.40 mg TE/g), observed following stomach and intestinal phases. However, the 15% Ladyfinger bread exhibited the highest TTC following the stomach digestion, with 17.4 mg CE/g. The bio-accessibility of most phenolic components from 10% GBF-bread was elevated following the gastric and intestinal phases. Nonetheless, a substantial total phenolic content (50.3% in Ladyfinger bread) was still observable in the residue during colonic fermentation. The highest SCFAs production occurred in Cavendish and Ducasse bread after 24 h of fermentation. Overall, the consumption of GBF bread can positively influence intestinal health and provide antioxidant properties, facilitating future advancements in the creation of nutrient-dense and health-enhancing bakery products. Full article
Show Figures

Graphical abstract

22 pages, 3206 KB  
Article
Comparison of Odor Mitigation in Squid Cartilage Fermented by Saccharomyces cerevisiae and Lactobacillus plantarum
by Tingting Zhang, Rongbin Zhong, Feifei Shi, Qian Yang, Peng Liang and Jiacong Deng
Foods 2025, 14(17), 3117; https://doi.org/10.3390/foods14173117 - 6 Sep 2025
Viewed by 629
Abstract
This study established a biological fermentation process using Saccharomyces cerevisiae and Lactobacillus plantarum to deodorize squid cartilage homogenate. The optimal fermentation conditions for S. cerevisiae were determined as follows: fermentation time 105 min, temperature 34 °C, and inoculum size 0.85%. For L. plantarum [...] Read more.
This study established a biological fermentation process using Saccharomyces cerevisiae and Lactobacillus plantarum to deodorize squid cartilage homogenate. The optimal fermentation conditions for S. cerevisiae were determined as follows: fermentation time 105 min, temperature 34 °C, and inoculum size 0.85%. For L. plantarum, the optimum conditions were 79 min, 34.5 °C, and 4.5% inoculum. Based on electronic nose and HS-SPME-GC-MS analyses, S. cerevisiae outperformed L. plantarum in eliminating key offensive odor compounds, especially sulfur-containing compounds and aldehydes, while promoting the formation of pleasant aroma compounds such as esters and ketones (e.g., carvone and δ-pentenol). Mechanistic insights suggest that the enhanced deodorization efficiency of S. cerevisiae may be attributed to its multi-pathway synergistic metabolism, involving enzymes like dioxygenases and sulfide oxidases that facilitate the conversion of malodorous substances into odorless or pleasantly aromatic compounds. These findings provide a valuable theoretical and practical foundation for the high-value utilization of squid processing by-products and propose a promising bio-deodorization strategy for aquatic products. Full article
Show Figures

Figure 1

20 pages, 2868 KB  
Article
Research on Algae Enhancing Biogenic Methane Production from Coal
by Liu Zhu, Wangjie Diao, Yi Liu, Peilin Zhu and Chenyao Gong
Sustainability 2025, 17(17), 7960; https://doi.org/10.3390/su17177960 - 3 Sep 2025
Viewed by 832
Abstract
The low efficiency of the microbial gasification of coal limits the application of bio-coal bed methane technology. The co-fermentation of coal and biomass provides a new approach for improving the degradation rate of coal. In this study, a co-fermentation system comprising five different [...] Read more.
The low efficiency of the microbial gasification of coal limits the application of bio-coal bed methane technology. The co-fermentation of coal and biomass provides a new approach for improving the degradation rate of coal. In this study, a co-fermentation system comprising five different coal orders with five microalgae was constructed in the laboratory, and the methanogenic characteristics of coal–algae co-fermentation and its microbiological mechanism were systematically investigated in terms of gas production, soluble organic matter, and microbial community characteristics. The results showed that the combination of lignite and Nannochloropsis exhibited optimal methane production, with a methane yield of 26.43 mL/g coal. Biogenic methane yields for lignite–Porphyra and anthracite–Porphyra were 23.43 mL and 21.28 mL, respectively, demonstrating the potential for algae to enhance gas production even in high-rank coals. pH monitoring revealed that algal species played a critical role in the acidification process. Dunaliella caused a continuous pH decrease, reaching 3.76 by day 30, while Nannochloropsis maintained a neutral pH of 6.95, optimizing the fermentation environment. Significant differences in soluble organic matter were observed between the lignite and anthracite fermentation systems, with lignite systems producing more volatile fatty acids, including acetic and butyric acids. Microbial community analysis revealed that Methanosarcina, an acetic acid-utilizing methanogen, was dominant in lignite and anthracite systems, while Syntrophomonas played a key role in lignite–Nannochloropsis co-fermentation. These findings provide valuable insights into optimizing coal microbial gasification and selecting appropriate algal species to enhance methane production efficiency. Full article
Show Figures

Figure 1

Back to TopTop