Study on Comparisons of Bio-Hydrogen Yield Potential and Energy Conversion Efficiency between Stem and Leaf of Sweet Potato by Photo-Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Raw Materials
2.1.2. Strains and Medium
2.2. Experimental Procedures
2.3. Analytical Methods
2.4. Kinetic Analysis
2.5. Energy Conversion Efficiency Evaluation
2.6. One-Way Analysis of Variance Evaluation
3. Results and Discussion
3.1. Comparison of the Physicochemical Properties of Sweet Potato Stem and Leaf
3.2. Comparison of Hydrogen Production Capacity of Sweet Potato Stem and Leaf
3.3. Kinetic Analysis of PFHP
3.4. Comparison the Energy Conversion Efficiency of Stem and Leaf
3.5. One-Way Analysis of Variance of the Results of Stem and Leaf
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chandrasekhar, K.; Kumar, S.; Lee, B.D.; Kim, S.H. Waste Based Hydrogen Production for Circular Bioeconomy: Current Status and Future Directions. Bioresour. Technol. 2020, 302, 122920. [Google Scholar] [CrossRef] [PubMed]
- Quarton, C.J.; Samsatli, S. How to Incentivise Hydrogen Energy Technologies for Net Zero: Whole-System Value Chain Optimisation of Policy Scenarios. Sustain. Prod. Consum. 2021, 27, 1215–1238. [Google Scholar] [CrossRef]
- Akhlaghi, N.; Najafpour-Darzi, G. A Comprehensive Review on Biological Hydrogen Production. Int. J. Hydrogen Energy 2020, 45, 22492–22512. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Hu, J.; Wu, Q.; Zhang, Q. Influence of Mixing Method and Hydraulic Retention Time on Hydrogen Production through Photo-Fermentation with Mixed Strains. Int. J. Hydrogen Energy 2015, 40, 6521–6529. [Google Scholar] [CrossRef]
- Yukesh Kannah, R.; Kavitha, S.; Karthikeyan, O.P.; Kumar, G.; Dai-Viet, N.V.; Banu, J.R. Techno-Economic Assessment of Various Hydrogen Production Methods—A Review. Bioresour. Technol. 2021, 319, 124175. [Google Scholar] [CrossRef]
- Rezaeitavabe, F.; Saadat, S.; Talebbeydokhti, N.; Sartaj, M.; Tabatabaei, M. Enhancing Bio-Hydrogen Production from Food Waste in Single-Stage Hybrid Dark-Photo Fermentation by Addition of Two Waste Materials (Exhausted Resin and Biochar). Biomass Bioenergy 2020, 143, 105846. [Google Scholar] [CrossRef]
- Zhu, X.; Qi, S.; Guo, Y.; Chen, J.; Liu, G.; Lou, Y.; Zhao, Y. Two Dimensional Porous Ni12P5 Sheet Modified Mn0.5Cd0.5S for Efficient Photo-Catalytic Hydrogen Production. Int. J. Hydrogen Energy 2022, 47, 8275–8283. [Google Scholar] [CrossRef]
- Allakhverdiev, S.I.; Thavasi, V.; Kreslavski, V.D.; Zharmukhamedov, S.K.; Klimov, V.V.; Ramakrishna, S.; Los, D.A.; Mimuro, M.; Nishihara, H.; Carpentier, R. Photosynthetic Hydrogen Production. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 101–113. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Li, Y.; Lu, C.; Zhu, S.; He, C.; Ai, F.; Zhang, Q. Investigation of the Interaction between Lighting and Mixing Applied during the Photo-Fermentation Biohydrogen Production Process from Agricultural Waste. Bioresour. Technol. 2020, 312, 123570. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Lee, D.J.; Zhang, T.; Jiang, D.; Zhang, Z.; Zhang, Q. Effect of Enzymolysis Time on Biohydrogen Production from Photo-Fermentation by Using Various Energy Grasses as Substrates. Bioresour. Technol. 2020, 305, 123062. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Zhang, Q.; Tahir, N.; Jing, Y.; Li, Y.; Lu, C. Optimization of Photo Fermentation in Corn Stalk through Phosphate Additive. Bioresour. Technol. Rep. 2019, 7, 100278. [Google Scholar] [CrossRef]
- Nguyen Huynh Phuong, U.; Pham Thi Phuong, T.; Imamura, K.; Kitaya, Y.; Hidema, J.; Furuta, M.; Yasuaki, M. The Characterization of Tocols in Different Plants Parts of Six Japanese Rice Cultivars Relating to Their UVB-Sensitivity. Plant Physiol. Biochem. 2021, 161, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Kedari, P.; Malpathak, N. Subcellular Localization and Quantification of Camptothecin in Different Plant Parts of Chonemorpha Fragrans. Adv. Zool. Bot. 2013, 1, 34–38. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Zhang, H.; He, C.; Zhang, Q. Potential Use and the Energy Conversion Efficiency Analysis of Fermentation Effluents from Photo and Dark Fermentative Bio-Hydrogen Production. Bioresour. Technol. 2017, 245, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Yue, T.; Jiang, D.; Zhang, Z.; Zhang, Y.; Li, Y.; Zhang, T.; Zhang, Q. Recycling of Shrub Landscaping Waste: Exploration of Bio-Hydrogen Production Potential and Optimization of Photo-Fermentation Bio-Hydrogen Production Process. Bioresour. Technol. 2021, 331, 125048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Jiang, D.; Zhang, H.; Lee, D.J.; Zhang, Z.; Zhang, Q.; Jing, Y.; Zhang, Y.; Xia, C. Effects of Different Pretreatment Methods on the Structural Characteristics, Enzymatic Saccharification and Photo-Fermentative Bio-Hydrogen Production Performance of Corn Straw. Bioresour. Technol. 2020, 304, 122999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, C.; Zhang, Y.; Lu, S.; Guo, L.; Zhang, Y.; Li, Y.; Hu, B.; He, C.; Zhang, Q. Cohesive Strategy and Energy Conversion Efficiency Analysis of Bio-Hythane Production from Corncob Powder by Two-Stage Anaerobic Digestion Process. Bioresour. Technol. 2020, 300, 122746. [Google Scholar] [CrossRef]
- Sivagurunathan, P.; Kumar, G.; Mudhoo, A.; Rene, E.R.; Saratale, G.D.; Kobayashi, T.; Xu, K.; Kim, S.H.; Kim, D.H. Fermentative Hydrogen Production Using Lignocellulose Biomass: An Overview of Pre-Treatment Methods, Inhibitor Effects and Detoxification Experiences. Renew. Sustain. Energy Rev. 2017, 77, 28–42. [Google Scholar] [CrossRef]
- Yoshida, M.; Liu, Y.; Uchida, S.; Kawarada, K.; Ukagami, Y.; Ichinose, H.; Kaneko, S.; Fukuda, K. Effects of Cellulose Crystallinity, Hemicellulose, and Lignin on the Enzymatic Hydrolysis of Miscanthus Sinensis to Monosaccharides. Biosci. Biotechnol. Biochem. 2008, 72, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Willison, J.C.; Jouanneau, Y.; Biochimie, L. De Hydrogen Metabolism in the Photosynthetic Bacteria. Cell 1985, 26, 155–234. [Google Scholar]
- Vesga-Baron, A.; Etchebehere, C.; Schiappacasse, M.C.; Chamy, R.; Tapia-Venegas, E. Controlled Oxidation-Reduction Potential on Dark Fermentative Hydrogen Production from Glycerol: Impacts on Metabolic Pathways and Microbial Diversity of an Acidogenic Sludge. Int. J. Hydrogen Energy 2021, 46, 5074–5084. [Google Scholar] [CrossRef]
- Fan, X.; Li, Y.; Zhu, S.; Zhang, H.; Ai, F.; Zhang, Q.; Zhang, Z. Role of Surfactant in Affecting Photo-Fermentative Bio-Hydrogen Production Performance from Corncob. Bioresour. Technol. 2021, 333, 125173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Fan, X.; Li, Y.; Jin, P.; Jiao, Y.; Ai, F.; Zhang, H.; Zhang, Q. Photo-Fermentative Biohydrogen Production from Corncob Treated by Microwave Irradiation. Bioresour. Technol. 2021, 340, 125460. [Google Scholar] [CrossRef] [PubMed]
Plant Part | C | H | N | S | Cellulose | Hemicellulose | Lignin | CrI |
---|---|---|---|---|---|---|---|---|
Stem | 3.39% | 38.01% | 4.95% | 0 | 23.4% | 21.2% | 11.4% | 29.67% |
Leaf | 4.01% | 41.71% | 5.25% | 0 | 22.2% | 16.9% | 13.4% | 21.95% |
Group | Pmax (mL/g TS) | Rmax (mL/(g TS·h)) | λ | R2 |
---|---|---|---|---|
Stem | 65.28 | 4.08 | 32.66 | 0.9988 |
Leaf | 18.42 | 1.51 | 31.88 | 0.9998 |
Factors | Cumulative Hydrogen Production | Energy Conversion Efficiency | Pm | CrI | ||||
---|---|---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
Stem and leaf | 2.923 | 0.229 | 8.845 | 0.097 | 2.964 | 0.227 | 6.133 | 0.132 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Lei, T.; Lu, S.; Zhu, S.; Li, Y.; Zhang, Q.; Zhang, Z. Study on Comparisons of Bio-Hydrogen Yield Potential and Energy Conversion Efficiency between Stem and Leaf of Sweet Potato by Photo-Fermentation. Fermentation 2022, 8, 165. https://doi.org/10.3390/fermentation8040165
Zhang H, Lei T, Lu S, Zhu S, Li Y, Zhang Q, Zhang Z. Study on Comparisons of Bio-Hydrogen Yield Potential and Energy Conversion Efficiency between Stem and Leaf of Sweet Potato by Photo-Fermentation. Fermentation. 2022; 8(4):165. https://doi.org/10.3390/fermentation8040165
Chicago/Turabian StyleZhang, Haorui, Tingzhou Lei, Shijie Lu, Shengnan Zhu, Yameng Li, Quanguo Zhang, and Zhiping Zhang. 2022. "Study on Comparisons of Bio-Hydrogen Yield Potential and Energy Conversion Efficiency between Stem and Leaf of Sweet Potato by Photo-Fermentation" Fermentation 8, no. 4: 165. https://doi.org/10.3390/fermentation8040165
APA StyleZhang, H., Lei, T., Lu, S., Zhu, S., Li, Y., Zhang, Q., & Zhang, Z. (2022). Study on Comparisons of Bio-Hydrogen Yield Potential and Energy Conversion Efficiency between Stem and Leaf of Sweet Potato by Photo-Fermentation. Fermentation, 8(4), 165. https://doi.org/10.3390/fermentation8040165