Bio-Accessibility of Phenolic Compounds from Green Banana-Fortified Bread During Simulated Digestion and Colonic Fermentation
Abstract
1. Introduction
2. Results and Discussion
2.1. Changes in Phenolic Compounds and Bioactivity During In Vitro Digestion
2.1.1. Impact of In Vitro Digestion on Available Total Phenolic, Flavonoid, and Tannin Content
2.1.2. Evaluation of Antioxidant Capacity
2.1.3. Quantification of Phenolic Compounds in Wheat-Banana Bread Using High-Performance Liquid Chromatography Photodiode Array (HPLC-PDA)
2.1.4. Bio-Accessibility of Selected Phenolic Compounds in GBF-Enriched Bread
2.1.5. Estimation of Short Chain Fatty Acids (SCFAs)
3. Materials and Methods
3.1. Production of Green Banana Flour
3.2. Preparation of Banana-Enriched Bread
3.3. Phenolic Compounds’ Extraction
3.4. In Vitro Gastrointestinal Digestion
3.5. In Vitro Colonic Fermentation
3.6. Estimation of Phenolic Content and Antioxidant Capacity
3.6.1. Total Phenolic Content (TPC)
3.6.2. Total Flavonoid Content (TFC)
3.6.3. Total Tannins Content (TTC)
3.6.4. 2,2-Diphenyl-2-picryl-hydrazyl (DPPH)
3.6.5. Ferric Reducing Antioxidant Power (FRAP)
3.7. Phenolic Compounds Quantification via High-Performance Liquid Chromatography Photodiode Array (HPLC-PDA)
3.8. Gastrointestinal Digestion and Colonic Fermentation Parameters
Bio-Accessibility of Phenolic Compounds
3.9. Evaluation of Short Chain Fatty Acids (SCFAs)
3.10. Statistics Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slavin, J. Whole grains and human health. Nutr. Res. Rev. 2004, 17, 99–110. [Google Scholar] [CrossRef]
- Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M.; Hassan, F.A. Prebiotics as functional foods: A review. J. Funct. Foods 2013, 5, 1542–1553. [Google Scholar] [CrossRef]
- Bonik, S.K.; Tamanna, S.T.; Happy, T.A.; Haque, M.N.; Islam, S.; Faruque, M.O. Formulation and evaluation of cereal-based breads fortified with natural prebiotics from green banana, moringa leaves powder and soya powder. Appl. Food Res. 2024, 4, 100377. [Google Scholar] [CrossRef]
- Gomes, A.A.B.; Ferreira, M.E.; Pimentel, T.C. Bread with flour obtained from green banana with its peel as partial substitute for wheat flour: Physical, chemical and microbiological characteristics and acceptance. Int. Food Res. J. 2016, 23, 2214–2222. [Google Scholar]
- Mir, M.B.; Sablania, V.; Rajput, R.; Muzaffar, K. Understanding the Role of Additives in Gluten-Free Breads. In Gluten-Free Bread Technology; Mir, S.A., Shah, M.A., Hamdani, A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 121–154. [Google Scholar]
- Aurore, G.; Parfait, B.; Fahrasmane, L. Bananas, raw materials for making processed food products. Trends Food Sci. Technol. 2009, 20, 78–91. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Foods 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Someya, S.; Yoshiki, Y.; Okubo, K. Antioxidant compounds from bananas (Musa Cavendish). Food Chem. 2002, 79, 351–354. [Google Scholar] [CrossRef]
- Hernández-Aguirre, M.A.; Islas-Hernández, J.J.; Sánchez-Pardo, M.E.; Rodríguez-Ambriz, S.L.; Osorio-Díaz, P. Response surface methodology for optimization of gluten-free bread made with unripe banana flour. J. Food Meas. Charact. 2019, 13, 1652–1660. [Google Scholar] [CrossRef]
- Wu, H.; Gu, J.; Amrit, B.K.; Nawaz, M.A.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Effect of processing on bioaccessibility and bioavailability of bioactive compounds in coffee beans. Food Biosci. 2022, 46, 101373. [Google Scholar] [CrossRef]
- Pavez-Guajardo, C.; Ferreira, S.R.S.; Mazzutti, S.; Guerra-Valle, M.E.; Sáez-Trautmann, G.; Moreno, J. Influence of in vitro digestion on antioxidant activity of enriched apple snacks with grape juice. Foods 2020, 9, 1681. [Google Scholar] [CrossRef]
- Ketnawa, S.; Reginio Jr, F.C.; Thuengtung, S.; Ogawa, Y. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4684–4705. [Google Scholar] [CrossRef]
- Frontela-Saseta, C.; López-Nicolás, R.; González-Bermúdez, C.A.; Peso-Echarri, P.; Ros-Berruezo, G.; Martínez-Graciá, C.; Canali, R.; Virgili, F. Evaluation of antioxidant activity and antiproliferative effect of fruit juices enriched with Pycnogenol® in colon carcinoma cells. The effect of in vitro gastrointestinal digestion. Phytother. Res. 2011, 25, 1870–1875. [Google Scholar] [CrossRef]
- Gullon, B.; Pintado, M.E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: Changes in the antioxidant potential and bioactive compounds stability. J. Funct. Foods 2015, 19, 617–628. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Schefer, S.; Oest, M.; Rohn, S. Interactions between phenolic acids, proteins, and carbohydrates—Influence on dough and bread properties. Foods 2021, 10, 2798. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Rosaria Lauro, M.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef]
- Wu, T.; Chu, X.; Cheng, Y.; Tang, S.; Zogona, D.; Pan, S.; Xu, X. Modulation of gut microbiota by lactobacillus casei fermented raspberry juice in vitro and in vivo. Foods 2021, 10, 3055. [Google Scholar] [CrossRef]
- Crascì, L.; Lauro, M.R.; Puglisi, G.; Panico, A. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs metalloproteinases inhibition. Crit. Rev. Food Sci. Nutr. 2018, 58, 893–904. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Wójtowicz, A.; Oniszczuk, T.; Matwijczuk, A.; Dib, A.; Markut-Miotła, E. Opuntia fruits as food enriching ingredient, the first step towards new functional food products. Molecules 2020, 25, 916. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Selma, M.V.; Espin, J.C.; Tomas-Barberan, F.A. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef]
- Pekkinen, J.; Rosa, N.N.; Savolainen, O.-I.; Keski-Rahkonen, P.; Mykkänen, H.; Poutanen, K.; Micard, V.; Hanhineva, K. Disintegration of wheat aleurone structure has an impact on the bioavailability of phenolic compounds and other phytochemicals as evidenced by altered urinary metabolite profile of diet-induced obese mice. Nutr. Metab. 2014, 11, 1. [Google Scholar] [CrossRef]
- Judkins, T.C.; Archer, D.L.; Kramer, D.C.; Solch, R.J. Probiotics, nutrition, and the small intestine. Curr. Gastroenterol. Rep. 2020, 22, 2. [Google Scholar] [CrossRef]
- Pico, J.; Corbin, S.; Ferruzzi, M.G.; Martinez, M.M. Banana flour phenolics inhibit trans-epithelial glucose transport from wheat cakes in a coupled in vitro digestion/Caco-2 cell intestinal model. Food Funct. 2019, 10, 6300–6311. [Google Scholar] [CrossRef]
- Koehnlein, E.A.; Koehnlein, É.M.; Corrêa, R.C.G.; Nishida, V.S.; Correa, V.G.; Bracht, A.; Peralta, R.M. Analysis of a whole diet in terms of phenolic content and antioxidant capacity: Effects of a simulated gastrointestinal digestion. Int. J. Food Sci. Nutr. 2016, 67, 614–623. [Google Scholar] [CrossRef]
- Bashmil, Y.M.; Dunshea, F.R.; Appels, R.; Suleria, H.A.R. Bioaccessibility of Phenolic Compounds, Resistant Starch, and Dietary Fibers from Australian Green Banana during In Vitro Digestion and Colonic Fermentation. Molecules 2024, 29, 1535. [Google Scholar] [CrossRef]
- Chait, Y.A.; Gunenc, A.; Bendali, F.; Hosseinian, F. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and bioactivity. Lwt 2020, 117, 108623. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Lu, P.; Barrow, C.; Dunshea, F.R.; Suleria, H.A.R. Bioaccessibility and bioactivities of phenolic compounds from roasted coffee beans during in vitro digestion and colonic fermentation. Food Chem. 2022, 386, 132794. [Google Scholar] [CrossRef]
- Ortega, N.; Macià, A.; Romero, M.-P.; Reguant, J.; Motilva, M.-J. Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chem. 2011, 124, 65–71. [Google Scholar] [CrossRef]
- González-Sarrías, A.; García-Villalba, R.; Núñez-Sánchez, M.Á.; Tomé-Carneiro, J.; Zafrilla, P.; Mulero, J.; Tomás-Barberán, F.A.; Espín, J.C. Identifying the limits for ellagic acid bioavailability: A crossover pharmacokinetic study in healthy volunteers after consumption of pomegranate extracts. J. Funct. Foods 2015, 19, 225–235. [Google Scholar] [CrossRef]
- Fabbrini, M.; D’Amico, F.; Barone, M.; Conti, G.; Mengoli, M.; Brigidi, P.; Turroni, S. Polyphenol and tannin nutraceuticals and their metabolites: How the human gut microbiota influences their properties. Biomolecules 2022, 12, 875. [Google Scholar] [CrossRef]
- Quatrin, A.; Rampelotto, C.; Pauletto, R.; Maurer, L.H.; Nichelle, S.M.; Klein, B.; Rodrigues, R.F.; Junior, M.R.M.; de Souza Fonseca, B.; de Menezes, C.R. Bioaccessibility and catabolism of phenolic compounds from jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. J. Funct. Foods 2020, 65, 103714. [Google Scholar] [CrossRef]
- Spencer, J.P.E.; Chaudry, F.; Pannala, A.S.; Srai, S.K.; Debnam, E.; Rice-Evans, C. Decomposition of cocoa procyanidins in the gastric milieu. Biochem. Biophys. Res. Commun. 2000, 272, 236–241. [Google Scholar] [CrossRef]
- Hollman, P.C.H. Absorption, bioavailability, and metabolism of flavonoids. Pharm. Biol. 2004, 42, 74–83. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Luo, X.; Tian, M.; Cheng, Y.; Ji, C.; Hu, S.; Liu, H.; Lu, J.; Ren, J. Effects of simulated in vitro gastrointestinal digestion on antioxidant activities and potential bioaccessibility of phenolic compounds from K. coccinea fruits. Front. Nutr. 2022, 9, 1024651. [Google Scholar] [CrossRef]
- Farzana, T.; Abedin, M.J.; Abdullah, A.T.M.; Reaz, A.H.; Bhuiyan, M.N.I.; Afrin, S.; Satter, M.A. Enhancing prebiotic, antioxidant, and nutritional qualities of noodles: A collaborative strategy with foxtail millet and green banana flour. PLoS ONE 2024, 19, e0307909. [Google Scholar] [CrossRef]
- Zhang, G.; Zhong, Y.; Zhang, X.; Wang, Y.; Sun, Y.; Li, X.; Liu, Z.; Liang, J. Flavor Characteristics, Antioxidant Activity and In Vitro Digestion Properties of Bread with Large-Leaf Yellow Tea Powder. Foods 2024, 13, 715. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D.; Baraniak, B.; Tomiło, J.; Czyż, J. Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chem. 2013, 138, 1621–1628. [Google Scholar] [CrossRef]
- Sarkar, T.; Salauddin, M.; Hazra, S.K.; Chakraborty, R. Effect of cutting edge drying technology on the physicochemical and bioactive components of mango (Langra variety) leather. J. Agric. Food Res. 2020, 2, 100074. [Google Scholar] [CrossRef]
- Ribeiro, M.; de Sousa, T.; Poeta, P.; Bagulho, A.S.; Igrejas, G. Review of structural features and binding capacity of polyphenols to gluten proteins and peptides in vitro: Relevance to celiac disease. Antioxidants 2020, 9, 463. [Google Scholar] [CrossRef]
- Kan, L.; Oliviero, T.; Verkerk, R.; Fogliano, V.; Capuano, E. Interaction of bread and berry polyphenols affects starch digestibility and polyphenols bio-accessibility. J. Funct. Foods 2020, 68, 103924. [Google Scholar] [CrossRef]
- Arjmand, S.; Mollakhalili-Meybodi, N.; Akrami Mohajeri, F.; Madadizadeh, F.; Khalili Sadrabad, E. Quinoa dough fermentation by Saccharomyces cerevisiae and lactic acid bacteria: Changes in saponin, phytic acid content, and antioxidant capacity. Food Sci. Nutr. 2023, 11, 7594–7604. [Google Scholar] [CrossRef]
- Meral, R.; Köse, Y.E. The effect of bread-making process on the antioxidant activity and phenolic profile of enriched breads. Qual. Assur. Saf. Crop. Foods 2019, 11, 171–181. [Google Scholar] [CrossRef]
- Bashmil, Y.M.; Ali, A.; Bk, A.; Dunshea, F.R.; Suleria, H.A.R. Screening and characterization of phenolic compounds from australian grown bananas and their antioxidant capacity. Antioxidants 2021, 10, 1521. [Google Scholar] [CrossRef]
- Arfaoui, L. Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef]
- Zabad, O.M.; Samra, Y.A.; Eissa, L.A. Syringic acid ameliorates experimental diabetic nephropathy in rats through its antiinflammatory, antioxidant and anti-fibrotic effects by suppressing Toll like receptor-4 pathway. Metab.-Clin. Exp. 2022, 128, 154966. [Google Scholar] [CrossRef]
- Cho, J.-Y.; Moon, J.-H.; Seong, K.-Y.; Park, K.-H. Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Biosci. Biotechnol. Biochem. 1998, 62, 2273–2276. [Google Scholar] [CrossRef] [PubMed]
- Castada, H.Z.; Sun, Z.; Barringer, S.A.; Huang, X. Thermal degradation of p-hydroxybenzoic acid in macadamia nut oil, olive oil, and corn oil. J. Am. Oil Chem. Soc. 2020, 97, 289–300. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Assessment of the antioxidant activity of catechin in nutraceuticals: Comparison between a newly developed electrochemical method and spectrophotometric methods. Int. J. Mol. Sci. 2022, 23, 8110. [Google Scholar] [CrossRef] [PubMed]
- Aghababaei, F.; Hadidi, M. Recent advances in potential health benefits of quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Kamisah, Y.; Jalil, J.; Yunos, N.M.; Zainalabidin, S. Cardioprotective properties of kaempferol: A review. Plants 2023, 12, 2096. [Google Scholar] [CrossRef]
- Karami, A.; Fakhri, S.; Kooshki, L.; Khan, H. Polydatin: Pharmacological mechanisms, therapeutic targets, biological activities, and health benefits. Molecules 2022, 27, 6474. [Google Scholar] [CrossRef]
- Bashmil, Y.M.; Bekes, F.; Ruderman, M.; Suleria, H.A.R.; Appels, R.; Dunshea, F.R. The Physicochemical and Rheological Properties of Green Banana Flour–Wheat Flour Bread Substitutions. Plants 2025, 14, 207. [Google Scholar] [CrossRef]
- Baron, G.; Ferrario, G.; Marinello, C.; Carini, M.; Morazzoni, P.; Aldini, G. Effect of extraction solvent and temperature on polyphenol profiles, antioxidant and anti-inflammatory effects of red grape skin by-product. Molecules 2021, 26, 5454. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Effect of different cooking methods on polyphenols, carotenoids and antioxidant activities of selected edible leaves. Antioxidants 2018, 7, 117. [Google Scholar] [CrossRef]
- Blanch, G.P.; Ruiz del Castillo, M.L. Effect of baking temperature on the phenolic content and antioxidant activity of black corn (Zea mays L.) bread. Foods 2021, 10, 1202. [Google Scholar] [CrossRef]
- de Almeida, S.S.; da Costa, G.B.M.; Barreto, M.S.; Freire, D.M.G.; Lobo, L.A.; Domingues, R.M.C.P.; Moura-Nunes, N.; Monteiro, M.; Perrone, D. Bioaccessibility and gut metabolism of phenolic compounds of breads added with green coffee infusion and enzymatically bioprocessed. Food Chem. 2020, 333, 127473. [Google Scholar] [CrossRef] [PubMed]
- Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef]
- Konishi, Y.; Zhao, Z.; Shimizu, M. Phenolic acids are absorbed from the rat stomach with different absorption rates. J. Agric. Food Chem. 2006, 54, 7539–7543. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A. Influence of food matrix on the bioaccessibility of fruit polyphenolic compounds. J. Agric. Food Chem. 2020, 68, 1315–1325. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; de Ancos, B.; Sánchez-Moreno, C.; Cano, M.P.; Elez-Martínez, P.; Martín-Belloso, O. Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. J. Funct. Foods 2015, 14, 33–43. [Google Scholar] [CrossRef]
- Alves, G.; Lobo, L.A.; Domingues, R.M.C.P.; Monteiro, M.; Perrone, D. Bioaccessibility and gut metabolism of free and melanoidin-bound phenolic compounds from coffee and bread. Front. Nutr. 2021, 8, 708928. [Google Scholar] [CrossRef]
- Crozier, A.; Del Rio, D.; Clifford, M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Asp. Med. 2010, 31, 446–467. [Google Scholar] [CrossRef]
- Olthof, M.R.; Hollman, P.C.H.; Katan, M.B. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. 2001, 131, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez-Díaz, J.L.; Moreno-Ortega, A.; Roldán-Guerra, F.J.; Ortíz-Somovilla, V.; Moreno-Rojas, J.M.; Pereira-Caro, G. In vitro gastrointestinal digestion and colonic catabolism of mango (Mangifera indica L.) pulp polyphenols. Foods 2020, 9, 1836. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T. Dietary factors affecting polyphenol bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef]
- Lucas-González, R.; Viuda-Martos, M.; Álvarez, J.A.P.; Fernández-López, J. Changes in bioaccessibility, polyphenol profile and antioxidant potential of flours obtained from persimmon fruit (Diospyros kaki) co-products during in vitro gastrointestinal digestion. Food Chem. 2018, 256, 252–258. [Google Scholar] [CrossRef]
- Herrera-Cazares, L.A.; Luzardo-Ocampo, I.; Ramírez-Jiménez, A.K.; Gutiérrez-Uribe, J.A.; Campos-Vega, R.; Gaytán-Martínez, M. Influence of extrusion process on the release of phenolic compounds from mango (Mangifera indica L.) bagasse-added confections and evaluation of their bioaccessibility, intestinal permeability, and antioxidant capacity. Food Res. Int. 2021, 148, 110591. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Gonçalves, S.; Hernanz, D.; Heredia, F.J.; Romano, A. Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Res. Int. 2018, 109, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Patán, F.; Monagas, M.; Moreno-Arribas, M.V.; Bartolome, B. Determination of microbial phenolic acids in human faeces by UPLC-ESI-TQ MS. J. Agric. Food Chem. 2011, 59, 2241–2247. [Google Scholar] [CrossRef]
- Liu, C.; He, W.; Chen, S.; Chen, J.; Zeng, M.; Qin, F.; He, Z. Interactions of digestive enzymes and milk proteins with tea catechins at gastric and intestinal pH. Int. J. Food Sci. Technol. 2017, 52, 247–257. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci. 2011, 76, R6–R15. [Google Scholar] [CrossRef]
- Sharma, K.P.; John, P.J.; Goswami, P.; Soni, M. Enzymatic synthesis of gallic acid from tannic acid with an inducible hydrolase of Enterobacter spp. Biocatal. Biotransform. 2017, 35, 177–184. [Google Scholar] [CrossRef]
- Shi, M.; Wu, H.; Li, M.; Liu, Z.; Duan, X.; Barrow, C.; Dunshea, F.; Suleria, H.A.R. Assessment of the bioaccessibility of phenolics from Australian grown lettuces by in vitro simulated gastrointestinal digestion and colonic fermentation. Food Biosci. 2022, 48, 101754. [Google Scholar] [CrossRef]
- Zhao, J.; Bai, Y.; Tao, S.; Zhang, G.; Wang, J.; Liu, L.; Zhang, S. Fiber-rich foods affected gut bacterial community and short-chain fatty acids production in pig model. J. Funct. Foods 2019, 57, 266–274. [Google Scholar] [CrossRef]
- Welli, Y.; Agnes, M.; Yudi, P.; Yustinus, M. The effect of application of cavendish Jepara 30 banana pseudostem flour on the production of short-chain fatty acids and cholesterol in caecum digesta of hypercholesterolemic mice. Int. J. Sci. Technol. Res. 2019, 8, 1882–1888. [Google Scholar]
- Danneskiold-Samsøe, N.B.; Barros, H.D.d.F.Q.; Santos, R.; Bicas, J.L.; Cazarin, C.B.B.; Madsen, L.; Kristiansen, K.; Pastore, G.M.; Brix, S.; Júnior, M.R.M. Interplay between food and gut microbiota in health and disease. Food Res. Int. 2019, 115, 23–31. [Google Scholar] [CrossRef]
- Molino, S.; Fernández-Miyakawa, M.; Giovando, S.; Rufián-Henares, J.Á. Study of antioxidant capacity and metabolization of quebracho and chestnut tannins through in vitro gastrointestinal digestion-fermentation. J. Funct. Foods 2018, 49, 188–195. [Google Scholar] [CrossRef]
- Gu, C.; Suleria, H.A.R.; Dunshea, F.R.; Howell, K. Dietary lipids influence bioaccessibility of polyphenols from black carrots and affect microbial diversity under simulated gastrointestinal digestion. Antioxidants 2020, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; White, P.J. In vitro fermentation of oat flours from typical and high β-glucan oat lines. J. Agric. Food Chem. 2009, 57, 7529–7536. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.M.W.; De Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef]
- Salonen, A.; Lahti, L.; Salojärvi, J.; Holtrop, G.; Korpela, K.; Duncan, S.H.; Farquharson, F.; Johnstone, A.M.; Lobley, G.E.; Louis, P. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014, 8, 2218–2230. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.H.; Sperandio, M.; Di Ciaula, A. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists; AACC: St. Paul, MN, USA, 2000. [Google Scholar]
- Peng, D.; Zahid, H.F.; Ajlouni, S.; Dunshea, F.R.; Suleria, H.A.R. Lc-esi-qtof/ms profiling of australian mango peel by-product polyphenols and their potential antioxidant activities. Processes 2019, 7, 764. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep. Purif. Technol. 2011, 83, 173–179. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
Bread Samples | Substitution % | Phenolic Compounds (µg/g Dry Weight) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gallic Acid | Protocatechuic Acid | Caftaric Acid | p-hydroxybenzoic Acid | Catechin | Chlorogenic Acid | Caffeic Acid | Syringic Acid | Epicatechin | Coumaric Acid | Polydatin | Diosmin | Resveratrol | Quercetin | Kaempferol | Total Phenolics | ||
Control | 0 | 109 ± 1.1 f | 332 ± 0.4 i | 56.9 ± 1.0 h | 77.7 ± 1.2 h | 92.7 ± 2.0 j | 11.1 ± 1.1 h | 5.3 ± 0.3 g | 23.1 ± 0.2 i | 81.0 ± 0.5 j | 6.1 ± 0.1 e | 0.8 ± 0.1 e | 2.3 ± 0.3 g | 3.4 ± 0.7 g | 17.5 ± 0.6 g | 10.5 ± 0.6 | 829 ± 2.5 j |
Cavendish | 5 | 123 ± 0.8 d | 453 ± 0.5 e | 123 ± 1.5 e | 94.4 ± 1.2 c | 150 ± 0.8 g | 111 ± 1.1 e | 6.7 ± 0.8 g | 33.7 ± 0.3 g | 160 ± 0.4 e | 18.0 ± 0.6 cd | 2.3 ± 0.3 b-d | 7.0 ± 0.1 de | 12.2 ± 0.4 cd | 21.0 ± 1.0 ef | 11.9 ± 0.2 | 1327 ± 5.3 g |
Ladyfinger | 5 | 98.3 ± 2.1 g | 414 ± 0.8 g | 106 ± 0.3 g | 97.1 ± 1.5 i | 122 ± 1.7 i | 76.0 ± 0.3 g | 13.4 ± 0.3 f | 29.1 ± 0.4 h | 106 ± 0.4 i | 12.0 ± 0.1 cd | 1.2 ± 0.4 de | 4.4 ± 0.2 f | 4.7 ± 1.4 g | 19.8 ± 0.9 fg | 12.6 ± 0.1 | 1115 ± 3.8 i |
Ducasse | 5 | 93.5 ± 1.0 h | 473 ± 0.9 d | 183 ± 1.2 c | 467 ± 1.8 j | 266 ± 0.9 d | 128 ± 1.7 d | 25.7 ± 0.9 c | 39.8 ± 0.3 e | 153 ± 0.5 f | 17.4 ± 0.7 cd | 3.5 ± 0.1 b | 5.6 ± 0.2 ef | 12.7 ± 0.9 c | 22.3 ± 0.3 ef | 12.3 ± 0.4 | 1902 ± 1.3 c |
Cavendish | 10 | 120 ± 0.3 d | 450 ± 0.9 f | 142 ± 1.0 d | 215 ± 1.1 b | 174 ± 0.9 f | 130 ± 0.6 d | 20.1 ± 0.6 de | 43.6 ± 0.4 d | 171 ± 1.0 d | 21.0 ± 1.0 cd | 2.9 ± 0.1 bc | 7.8 ± 0.4 cd | 12.4 ± 0.2 c | 23.2 ± 0.7 de | 18.3 ± 1.0 | 1551 ± 6.9 e |
Ladyfinger | 10 | 116 ± 0.2 e | 498 ± 0.4 c | 194 ± 1.1 b | 118 ± 1.2 f | 190 ± 0.6 e | 177 ± 0.4 c | 27.9 ± 0.1 b | 110 ± 1.1 b | 143 ± 0.6 g | 20.2 ± 0.4 c | 1.5 ± 0.4 ce | 8.8 ± 1.0 c | 7.0 ± 0.2 f | 23.6 ± 1.0 de | 24.6 ± 1.5 | 1660 ± 3.6 d |
Ducasse | 10 | 83.0 ± 0.2 i | 392 ± 1.1 h | 112 ± 1.7 f | 143 ± 1.0 g | 135 ± 1.0 h | 104 ± 2.2 f | 18.5 ± 0.7 e | 36.6 ± 0.2 f | 123 ± 0.9 h | 14.5 ± 0.9 d | 2.8 ± 0.4 bc | 5.3 ± 1.2 ef | 9.4 ± 1.2 e | 25.9 ± 0.1 d | 13.9 ± 1.3 | 1219 ± 2.2 h |
Cavendish | 15 | 165 ± 0.9 c | 2462 ± 0.8 a | 187 ± 2.0 c | 1536 ± 0.3 a | 2148 ± 2.0 a | 252 ± 0.8 b | 39.2 ± 0.1 a | 62.5 ± 0.5 c | 387 ± 0.9 a | 246 ± 0.6 a | 6.6 ± 0.3 a | 15.5 ± 0.4 a | 32.6 ± 1.0 a | 71.0 ± 0.2 a | 91.6 ± 1.0 | 7699 ± 7.3 a |
Ladyfinger | 15 | 456 ± 1.0 a | 1160 ± 0.8 b | 389 ± 1.2 a | 233 ± 2.1 d | 379 ± 0.1 b | 645 ± 2.1 a | 38.8 ± 0.3 a | 119 ± 0.2 a | 209 ± 1.1 c | 26.2 ± 1.2 b | 3.2 ± 0.2 b | 13.5 ± 0.8 b | 18.7 ± 0.6 b | 41.4 ± 0.6 b | 60.3 ± 1.0 | 3460 ± 0.6 b |
Ducasse | 15 | 239 ± 0.5 b | 225 ± 2.4 j | 109 ± 2.2 fg | 122 ± 2.4 e | 327 ± 1.1 c | 112 ± 0.2 e | 20.8 ± 1.6 d | 32.4 ± 0.4 g | 265 ± 2.2 b | 15.1 ± 1.1 cd | 2.6 ± 1.2 b–d | 5.1 ± 0.1 f | 10.2 ± 0.7 de | 29.5 ± 1.2 c | 17.6 ± 2.0 | 1528 ± 7.7 f |
No | Compound | Oral BIA (%) | Gastric BIA (%) | Intestinal BIA (%) | Colonic BIA (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0% | 10% C | 10% L | 10% D | 0% | 10% C | 10% L | 10% D | 0% | 10% C | 10% L | 10% D | 0% | 10% C | 10% L | 10% D | ||
1 | Gallic acid | 92.8 | 101 | 95.7 | 84.2 | 103 | 111 | 104 | 97.4 | 101 | 98.3 | 91.4 | 95.2 | 19.0 | 87.4 | 86.2 | 78.5 |
2 | Protocatechuic acid | 87.8 | 93.5 | 90.4 | 77.0 | 58.2 | 95.8 | 97.2 | 87.2 | 95.0 | 98.0 | 98.4 | 91.0 | 29.1 | 46.9 | 76.5 | 56.4 |
3 | Caftaric acid | 19.2 | 11.3 | 26.8 | 15.2 | 49.2 | 63.7 | 58.4 | 74.0 | 61.4 | 101 | 86.2 | 96.3 | 17.0 | 56.9 | 49.5 | 62.3 |
4 | p-hydroxybenzoic acid | 93.8 | 100 | 93.6 | 98.4 | 68.1 | 105 | 90.1 | 97.0 | 93.3 | 99.9 | 93.5 | 90.1 | 25.8 | 37.5 | 42.5 | 31.8 |
5 | Catechin | 28.0 | 34.6 | 23.8 | 31.8 | 46.1 | 57.9 | 48.2 | 53.1 | 96.4 | 92.3 | 64.1 | 75.3 | 3.91 | 16.2 | 34.4 | 26.0 |
6 | Chlorogenic acid | 13.5 | 32.7 | 35.3 | 40.0 | 20.7 | 69.8 | 71.4 | 59.3 | 49.6 | 88.8 | 78.7 | 72.7 | 32.5 | 12.0 | 27.4 | 15.0 |
7 | Caffeic acid | 30.5 | 25.5 | 29.2 | 22.4 | 39.9 | 77.2 | 64.9 | 54.7 | 72.1 | 90.2 | 71.4 | 81.7 | 21.8 | 20.7 | 36.5 | 49.5 |
8 | Syringic acid | 90.5 | 82.4 | 75.2 | 59.9 | 86.2 | 92.0 | 81.5 | 87.2 | 99.2 | 96.2 | 88.8 | 92.7 | 24.1 | 27.5 | 33.5 | 24.5 |
9 | Epicatechin | 11.6 | 15.1 | 12.4 | 19.0 | 16.4 | 59.2 | 47.0 | 32.9 | 51.0 | 80.0 | 86.8 | 90.7 | 4.34 | 8.51 | 14.3 | 10.2 |
10 | Coumaric acid | 81.0 | 71.2 | 49.2 | 61.7 | 97.4 | 82.4 | 54.2 | 61.7 | 81.0 | 85.5 | 74.0 | 75.5 | 32.2 | 33.2 | 40.4 | 27.3 |
11 | polydatin | 0.00 | 13.7 | 8.44 | 17.7 | 24.6 | 32.6 | 26.5 | 42.7 | 32.0 | 68.9 | 59.8 | 53.5 | 7.43 | 17.2 | 21.3 | 14.3 |
12 | Diosmin | 7.17 | 27.5 | 24.5 | 19.7 | 9.36 | 35.9 | 17.6 | 38.6 | 54.1 | 76.2 | 67.6 | 72.6 | 0.00 | 3.26 | 6.31 | 1.07 |
13 | Resveratrol | 5.30 | 16.0 | 9.74 | 21.1 | 17.1 | 40.7 | 28.3 | 21.1 | 58.2 | 56.3 | 42.6 | 44.5 | 2.67 | 16.1 | 11.4 | 21.2 |
14 | Quercetin | 0.00 | 19.9 | 15.3 | 7.34 | 26.3 | 38.7 | 40.7 | 52.5 | 37.7 | 58.7 | 66.1 | 60.3 | 0.00 | 37.3 | 28.2 | 45.0 |
15 | Kaempferol | 2.36 | 28.2 | 16.9 | 22.7 | 30.0 | 58.0 | 37.2 | 51.5 | 39.5 | 71.9 | 81.9 | 65.8 | 0.00 | 50.1 | 39.0 | 66.0 |
Total phenolic compounds | 64.7 | 62.7 | 57.9 | 55.9 | 58.0 | 82.2 | 75.4 | 73.4 | 86.2 | 93.4 | 86.6 | 86.6 | 20.1 | 37.3 | 50.3 | 41.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashmil, Y.M.; Dunshea, F.R.; Appels, R.; Suleria, H.A.R. Bio-Accessibility of Phenolic Compounds from Green Banana-Fortified Bread During Simulated Digestion and Colonic Fermentation. Molecules 2025, 30, 3743. https://doi.org/10.3390/molecules30183743
Bashmil YM, Dunshea FR, Appels R, Suleria HAR. Bio-Accessibility of Phenolic Compounds from Green Banana-Fortified Bread During Simulated Digestion and Colonic Fermentation. Molecules. 2025; 30(18):3743. https://doi.org/10.3390/molecules30183743
Chicago/Turabian StyleBashmil, Yasmeen M., Frank R. Dunshea, Rudi Appels, and Hafiz A. R. Suleria. 2025. "Bio-Accessibility of Phenolic Compounds from Green Banana-Fortified Bread During Simulated Digestion and Colonic Fermentation" Molecules 30, no. 18: 3743. https://doi.org/10.3390/molecules30183743
APA StyleBashmil, Y. M., Dunshea, F. R., Appels, R., & Suleria, H. A. R. (2025). Bio-Accessibility of Phenolic Compounds from Green Banana-Fortified Bread During Simulated Digestion and Colonic Fermentation. Molecules, 30(18), 3743. https://doi.org/10.3390/molecules30183743