-
Enhancement of PHA Production by a Mixed Microbial Culture Using VFA Obtained from the Fermentation of Wastewater from Yeast Industry
-
Biodegradation of Methylene Blue Using a Novel Lignin Peroxidase Enzyme Producing Bacteria, Named Bacillus sp. React3, as a Promising Candidate for Dye-Contaminated Wastewater Treatment
-
Correlation Analysis of Microbiota and Volatile Flavor Compounds of Caishiji Soybean Paste
-
Fermentation Quality and Bacterial Ecology of Grass Silage Modulated by Additive Treatments, Extent of Compaction and Soil Contamination
-
Towards a Complete Exploitation of Brewers’ Spent Grain from a Circular Economy Perspective
Journal Description
Fermentation
Fermentation
is an international, scientific, peer-reviewed, open access journal on fermentation process and technology published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubAg, FSTA, Inspec, CAPlus / SciFinder, and many other databases.
- Journal Rank: JCR - Q2 (Biotechnology & Applied Microbiology) / CiteScore - Q1 (Plant Science)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 14.6 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
5.123 (2021)
Latest Articles
Isolation and Characterization of Flavonoids from Fermented Dandelion (Taraxacum mongolicum Hand.-Mazz.), and Assessment of Its Antioxidant Actions In Vitro and In Vivo
Fermentation 2022, 8(7), 306; https://doi.org/10.3390/fermentation8070306 (registering DOI) - 28 Jun 2022
Abstract
Flavonoids are famous for their diverse sources, strong biological activity, and low toxicity and could be used as a natural antioxidant in animal husbandry. In this study, the purification process and antioxidant activity of flavonoids from fermented dandelion were investigated. The adsorption and
[...] Read more.
Flavonoids are famous for their diverse sources, strong biological activity, and low toxicity and could be used as a natural antioxidant in animal husbandry. In this study, the purification process and antioxidant activity of flavonoids from fermented dandelion were investigated. The adsorption and desorption characterizations of AB-8 macroporous resin for flavonoids from fermented dandelion (FD) were determined and purification parameters were optimized. Qualitative analysis using UPLC-MS/MS analysis was explored to identify the components of the purified flavonoids of FD (PFDF). The antioxidant activity of PFDF in vitro and in vivo was analyzed. The optimum purification parameters were as follows: a sample concentration of 2 mg/mL, 120 mL of the sample volume, a pH of 2.0, and eluted with 90 mL of 70% ethanol (pH 5). After purification, the concentration of the flavonoids in PFDF was 356.08 mg/mL. By comparison with reference standards or the literature data, 135 kinds of flavonoids in PFDF were identified. Furthermore, PFDF had a strong reducing power and scavenging ability against 8-hydroxy radical and DPPH radical. PFDF can effectively reduce the oxidative stress of zebrafish embryos and IPCE-J2 cells by modulating antioxidant enzyme activities. In summary, the purified flavonoids from fermented dandelion have good antioxidant activity and display superior potential as a natural antioxidant in animal husbandry.
Full article
(This article belongs to the Section Industrial Fermentation)
Open AccessArticle
Kefir Enriched with Carob (Ceratonia siliqua L.) Leaves Extract as a New Ingredient during a Gluten-Free Bread-Making Process
by
, , , , , , , and
Fermentation 2022, 8(7), 305; https://doi.org/10.3390/fermentation8070305 (registering DOI) - 28 Jun 2022
Abstract
This work is focused on the preparation of an innovative gluten-free (GF) bread with remarkable softness and antioxidant features over time. To overcome the technological inconveniences related to the removal of gluten from bread, the kefir beverage fortified with antioxidant vegetable extracts is
[...] Read more.
This work is focused on the preparation of an innovative gluten-free (GF) bread with remarkable softness and antioxidant features over time. To overcome the technological inconveniences related to the removal of gluten from bread, the kefir beverage fortified with antioxidant vegetable extracts is employed as a functional ingredient in the bread-making process. In this context, carob (Ceratonia siliqua L.) leaves represent an outstanding source of active molecules and are proposed to enrich milk-based beverages. Different extraction strategies were evaluated, and the process was improved to select a solvent (water, ethanol, or hydroalcoholic solution) and methodology (Soxhlet or ultrasound-assisted extraction) able to guarantee the best performances in terms of yield and antioxidant capacity. For kefir addition, two varieties of carob leaves (Selvatica and Amele) are employed. Functional GF bread, obtained by partially replacing the water with the enriched kefir, is prepared, and the final product is characterized in terms of its antioxidant and rheological properties. The final product shows improved compositional and technological parameters over time.
Full article
(This article belongs to the Collection Food Waste Valorization)
►▼
Show Figures

Figure 1
Open AccessArticle
Hydrogen and Methane Production from Anaerobic Co-Digestion of Sorghum and Cow Manure: Effect of pH and Hydraulic Retention Time
Fermentation 2022, 8(7), 304; https://doi.org/10.3390/fermentation8070304 - 27 Jun 2022
Abstract
The need for alternative energy sources is constantly growing worldwide, while the focus has shifted to the valorization of biomass. The aim of the present study was to determine the optimal pH and hydraulic retention time (HRT) values for treating a mixture of
[...] Read more.
The need for alternative energy sources is constantly growing worldwide, while the focus has shifted to the valorization of biomass. The aim of the present study was to determine the optimal pH and hydraulic retention time (HRT) values for treating a mixture of sorghum biomass solution with liquid cow manure (in a ratio 95:5 v/v) through anaerobic digestion, in a two-stage system. Batch tests were initially carried out for the investigation of the pH effect on bio-hydrogen and volatile fatty acids (VFA) production. The highest hydrogen yield of 0.92 mol H2/mol carbohydratesconsumed was obtained at pH 5.0, whereas the maximum degradation of carbohydrates and VFA productivity was observed at pH 6.0. Further investigation of the effect of HRT on hydrogen and methane production was carried out. The maximum yield of 1.68 mol H2/mol carbohydratesconsumed was observed at an HRT of 5 d, with H2 productivity of 0.13 L/LR·d. On the other hand, the highest CH4 production rate of 0.44 L/LR·d was achieved at an HRT of 25 d, with a methane yield of 295.3 mL/g VSadded, whereas at a reduced HRT of 20 d the process exhibited inhibition and/or overload, as indicated by an accumulation of VFAs and decline in CH4 productivity.
Full article
(This article belongs to the Special Issue Biological Conversion of Biomass Residues and Waste Streams for the Sustainable Production of Biofuels and Bio-Based Products)
Open AccessReview
Probiotics, Prebiotics, Synbiotics, and Fermented Foods as Potential Biotics in Nutrition Improving Health via Microbiome-Gut-Brain Axis
by
and
Fermentation 2022, 8(7), 303; https://doi.org/10.3390/fermentation8070303 - 27 Jun 2022
Abstract
Biological, social, and psychological practices greatly affect the dietary intake of people; as a result, health-related complexities occur. Functional food and supplements have become popular due to their nutraceutical benefits, which make different choices of fermented food and beverages available to people. This
[...] Read more.
Biological, social, and psychological practices greatly affect the dietary intake of people; as a result, health-related complexities occur. Functional food and supplements have become popular due to their nutraceutical benefits, which make different choices of fermented food and beverages available to people. This review describes the characteristics of probiotics, prebiotics, post- and paraprobiotics, and their role in nutrition and in the sustainability of health. Currently, several synbiotic supplements have attracted consumers in the nutraceutical market to offer a number of health benefits, which are complementary mixtures of selected characterized probiotic cultures and prebiotic substrates. Traditional fermented foods consumed in different cultures are different than probiotics and symbiotic preparations, though these could be considered potential biotics in nutrition. Fermented foods are part of a staple diet in several countries and are cost-effective due to their preparation using seasonal raw materials available from local agriculture practices. Intake of all biotics discussed in this article is intended to improve the population of beneficial microbiota in the gut, which has proved important for the microbiome–gut–brain axis, influencing the activity of vagus nerve.
Full article
(This article belongs to the Special Issue Nutrition and Health of Fermented Foods)
►▼
Show Figures

Graphical abstract
Open AccessReview
Recent Progress in Electronic Noses for Fermented Foods and Beverages Applications
Fermentation 2022, 8(7), 302; https://doi.org/10.3390/fermentation8070302 - 26 Jun 2022
Abstract
Fermented foods and beverages have become a part of daily diets in several societies around the world. Emitted volatile organic compounds play an important role in the determination of the chemical composition and other information of fermented foods and beverages. Electronic nose (E-nose)
[...] Read more.
Fermented foods and beverages have become a part of daily diets in several societies around the world. Emitted volatile organic compounds play an important role in the determination of the chemical composition and other information of fermented foods and beverages. Electronic nose (E-nose) technologies enable non-destructive measurement and fast analysis, have low operating costs and simplicity, and have been employed for this purpose over the past decades. In this work, a comprehensive review of the recent progress in E-noses is presented according to the end products of the main fermentation types, including alcohol fermentation, lactic acid fermentation, acetic acid fermentation and alkaline fermentation. The benefits, research directions, limitations and challenges of current E-nose systems are investigated and highlighted for fermented foods and beverage applications.
Full article
(This article belongs to the Special Issue Smart Production and Assessment of Fermented Foods Using Digital Technologies)
►▼
Show Figures

Figure 1
Open AccessArticle
Technoeconomic Evaluation of Microalgae Oil Production: Effect of Cell Disruption Method
by
, , , , and
Fermentation 2022, 8(7), 301; https://doi.org/10.3390/fermentation8070301 - 26 Jun 2022
Abstract
Microalgae have a high capacity to capture CO2. Additionally, biomass contains lipids that can be used to produce biofuels, biolubricants, and other compounds of commercial interest. This study analyzed various scenarios for microalgae lipid production by simulation. These scenarios include cultivation
[...] Read more.
Microalgae have a high capacity to capture CO2. Additionally, biomass contains lipids that can be used to produce biofuels, biolubricants, and other compounds of commercial interest. This study analyzed various scenarios for microalgae lipid production by simulation. These scenarios include cultivation in raceway ponds, primary harvest with three flocculants, secondary harvest with pressure filter (and drying if necessary), and three different technologies for the cell disruption step, which facilitates lipid extraction. The impact on energy consumption and production cost was analyzed. Both energy consumption and operating cost are higher in the scenarios that consider bead milling (8.79–8.88 kWh/kg and USD 41.06–41.41/kg), followed by those that consider high-pressure homogenization (HPH, 5.39–5.46 kWh/kg and USD 34.26–34.71/kg). For the scenarios that consider pressing, the energy consumption is 5.80–5.88 kWh/kg and the operating cost is USD 27.27–27.88/kg. The consumption of CO2 in scenarios that consider pressing have a greater capture (11.23 kg of CO2/kg of lipids). Meanwhile, scenarios that consider HPH are the lowest consumers of fresh water (5.3 m3 of water/kg of lipids). This study allowed us to develop a base of multiple comparative scenarios, evaluate different aspects involved in Chlorella vulgaris lipid production, and determine the impact of various technologies in the cell disruption stage.
Full article
(This article belongs to the Special Issue Algal Biomass: From Bioproducts to Biofuels)
►▼
Show Figures

Figure 1
Open AccessArticle
Identification, Quantification and Kinetic Study of Carotenoids and Lipids in Rhodotorula toruloides CBS 14 Cultivated on Wheat Straw Hydrolysate
by
, , , , , , , and
Fermentation 2022, 8(7), 300; https://doi.org/10.3390/fermentation8070300 - 25 Jun 2022
Abstract
Production of carotenoids and lipids by Rhodotorula toruloides CBS 14 cultivated on wheat straw hydrolysate was investigated. An ultra-high-performance liquid chromatography (UHPLC) method for carotenoid quantification was developed and validated. Saponification effects on individual carotenoid quantification were identified, and lipid and carotenoid
[...] Read more.
Production of carotenoids and lipids by Rhodotorula toruloides CBS 14 cultivated on wheat straw hydrolysate was investigated. An ultra-high-performance liquid chromatography (UHPLC) method for carotenoid quantification was developed and validated. Saponification effects on individual carotenoid quantification were identified, and lipid and carotenoid kinetics during cultivation were determined. The carotenoids β-carotene, γ-carotene, torularhodin, and torulene were identified; β-carotene was the major carotenoid, reaching a maximum of 1.48 mg/100 g dry weight. Recoveries of the carotenoids were between 66 and 76%, except torulene and torularhodin, which had lower recoveries due to saponification effects. Total carotenoid content in saponified and unsaponified yeast extract, respectively, determined by UHPLC or photometer, respectively, was 1.99 mg/100 g and 4.02 mg β-EQ/100 g dry weight. Growth kinetics showed a positive correlation between carotenoid content and lipid accumulation. β-carotene was the major carotenoid at all time points. At the end of the cultivation, triacylglycerols (TAGs) were the major lipid class, with 58.1 ± 3.32% of total lipids. There was also a high proportion of free fatty acids, reaching from 20.5 to 41.8% of total lipids. Oleic acid (C18:1) was the major fatty acid. The lipid yield at the end of the cultivation was 0.13 g/g of sugar consumed.
Full article
(This article belongs to the Special Issue Bioconversion of Lignocellulosic Materials to Value-Added Products)
Open AccessArticle
Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli
by
, , , , , , , , and
Fermentation 2022, 8(7), 299; https://doi.org/10.3390/fermentation8070299 - 25 Jun 2022
Abstract
l-Cysteine is an important sulfur-containing amino acid with numerous applications in the pharmaceutical and cosmetic industries. The microbial production of l-cysteine has received substantial attention, and the supply of the precursor l-serine is important in l-cysteine biosynthesis. In this
[...] Read more.
l-Cysteine is an important sulfur-containing amino acid with numerous applications in the pharmaceutical and cosmetic industries. The microbial production of l-cysteine has received substantial attention, and the supply of the precursor l-serine is important in l-cysteine biosynthesis. In this study, to achieve l-cysteine overproduction, we first increased l-serine production by deleting genes involved in the pathway of l-serine degradation to glycine (serine hydroxymethyl transferase, SHMT, encoded by glyA genes) in strain 4W (with l-serine titer of 1.1 g/L), thus resulting in strain 4WG with l-serine titer of 2.01 g/L. Second, the serine-biosensor based on the transcriptional regulator NCgl0581 of C. glutamicum was constructed in E. coli, and the validity and sensitivity of the biosensor were demonstrated in E. coli. Then 4WG was further evolved through adaptive laboratory evolution (ALE) combined with serine-biosensor, thus yielding the strain 4WGX with 4.13 g/L l-serine production. Moreover, the whole genome of the evolved strain 4WGX was sequenced, and ten non-synonymous mutations were found in the genome of strain 4WGX compared with strain 4W. Finally, 4WGX was used as the starting strain, and deletion of the l-cysteine desulfhydrases (encoded by tnaA), overexpression of serine acetyltransferase (encoded by cysE) and the key enzyme of transport pathway (encoded by ydeD) were performed in strain 4WGX. The recombinant strain 4WGX-∆tnaA-cysE-ydeD can produce 313.4 mg/L of l-cysteine using glycerol as the carbon source. This work provides an efficient method for the biosynthesis of value-added commodity products associated with glycerol conversion.
Full article
(This article belongs to the Special Issue Applied Microorganisms and Industrial/Food Enzymes)
►▼
Show Figures

Figure 1
Open AccessArticle
Antibacterial Mechanism of Dellaglioa algida against Pseudomonas fluorescens and Pseudomonas fragi
Fermentation 2022, 8(7), 298; https://doi.org/10.3390/fermentation8070298 - 24 Jun 2022
Abstract
Pseudomonas fluorescens (P. fluorescens) and Pseudomonas fragi (P. fragi), two kinds of psychrotrophic Pseudomonas species with pathogenicity, are likely to contaminate foods and cause diseases even in fairly cold environments, an outcome which should be suppressed. This paper investigates the antibacterial mechanisms
[...] Read more.
Pseudomonas fluorescens (P. fluorescens) and Pseudomonas fragi (P. fragi), two kinds of psychrotrophic Pseudomonas species with pathogenicity, are likely to contaminate foods and cause diseases even in fairly cold environments, an outcome which should be suppressed. This paper investigates the antibacterial mechanisms of Dellaglioa algida (D. algida), a new type of low-temperature-resistant Lactobacillus, on two such Pseudomonas. By the enzyme treatment approach, the antibacterial substance existing in the cell-free supernatant (CFS) of D. algida is preliminarily determined as organic acid or protein; then, its inhibition effects are assessed under various culture environments, including pH value, salinity, and culture time, where the best antibacterial performance is achieved at pH = 6.00, S = 0%, and culture time = 48 h. A series of experiments on biofilms indicate that D. algida is not only able to inhibit the generation or damage the integrality of the biofilm of the two mentioned Pseudomonas, but also can reduce the motility, including swarming and swimming, of P. fragi and restrain the swarming of P. fluorescens. The aformentioned developed antibacterial mechanisms show the possibility of using D. algida in applications as an inhibitor for psychrotrophic Pseudomonas in the food industry, by virtue of its strong suppression capability, especially in cold environments.
Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Open AccessArticle
Application of Ultrafiltration and Ion Exchange Separation Technology for Lysozyme Separation and Extraction
Fermentation 2022, 8(7), 297; https://doi.org/10.3390/fermentation8070297 - 24 Jun 2022
Abstract
In this study, the fermentation broth of the recombinant Pichia pastoris strain ncy-2 was studied. After pretreatment, separation, and purification, lysozyme was optimized using biofilm and ion exchange separation. Finally, lysozyme dry enzyme powder was prepared by concentrating and vacuum drying. The removal
[...] Read more.
In this study, the fermentation broth of the recombinant Pichia pastoris strain ncy-2 was studied. After pretreatment, separation, and purification, lysozyme was optimized using biofilm and ion exchange separation. Finally, lysozyme dry enzyme powder was prepared by concentrating and vacuum drying. The removal rate of bacterial cells was 99.99% when the fermentation broth was centrifuged at low temperature. The optimum conditions were: transmembrane pressure of 0.20 MPa, pH 6.5, 96.6% yield of lysozyme, enzyme activity of 2612.1 u/mg, which was 1.78 times higher than that of the original enzyme; D152 resin was used for adsorption and elution. Process conditions were optimized: the volume ratio of resin to liquid was 15%; the adsorption time was 4 h; the concentration of NaCl was 1.0 mol/L; the recovery rate of lysozyme activity was 95.67%; the enzyme activity was 3879.6 u/mL; and the purification multiple was 0.5, 3.1 times of the original enzyme activity. The enzyme activity of lysozyme dry enzyme powder was 12,573.6 u/mg, which had an inhibitory effect on microsphere lysozyme. Its enzymatic properties were almost the same as those of natural lysozyme, which demonstrated good application prospects and production potential.
Full article
(This article belongs to the Special Issue Applied Microorganisms and Industrial/Food Enzymes)
►▼
Show Figures

Figure 1
Open AccessArticle
Sequencing Batch Reactor Performance Evaluation on Orthophosphates and COD Removal from Brewery Wastewater
Fermentation 2022, 8(7), 296; https://doi.org/10.3390/fermentation8070296 - 23 Jun 2022
Abstract
The discharge of industrial effluent constituting high orthophosphates and organic pollutants in water receiving bodies compromises freshwater quality and perpetuates eutrophication. In this study, an anaerobic–aerobic sequencing batch reactor (SBR) under activated sludge was investigated for orthophosphates and chemical oxygen demand (COD) removal
[...] Read more.
The discharge of industrial effluent constituting high orthophosphates and organic pollutants in water receiving bodies compromises freshwater quality and perpetuates eutrophication. In this study, an anaerobic–aerobic sequencing batch reactor (SBR) under activated sludge was investigated for orthophosphates and chemical oxygen demand (COD) removal from brewery wastewater. Raw brewery wastewater samples were collected on a daily basis for a period of 4 weeks. The findings of the study are reported based on overall removal efficiencies recording 69% for orthophosphates and 54% for total COD for a sludge retention time (SRT) of 7 days and hydraulic retention time of 18 h at mesophilic temperature conditions of ±25 °C. Moreover, the SBR system showed stability on orthophosphate removal at a SRT ranging from 3 to 7 days with a variation in organic volumetric loading rate ranging from 1.14 to 4.83 kg COD/m3.day. The anaerobic reaction period was experimentally found to be 4 h with the aerobic phase lasting for 14 h. The SBR system demonstrated feasibility on orthophosphates and COD removal with variation in organic loading rate.
Full article
(This article belongs to the Special Issue Anaerobic Fermentation – a Biological Route towards Achieving Net Neutrality)
Open AccessArticle
Simultaneous Saccharification and Fermentation of Empty Fruit Bunches of Palm for Bioethanol Production Using a Microbial Consortium of S. cerevisiae and T. harzianum
by
, , , , and
Fermentation 2022, 8(7), 295; https://doi.org/10.3390/fermentation8070295 - 23 Jun 2022
Abstract
A simultaneous saccharification and fermentation (SSF) optimization process was carried out on pretreated empty fruit bunches (EFBs) by employing the Response Surface Methodology (RSM). EFBs were treated using sequential acid-alkali pretreatment and analyzed physically by a scanning electron microscope (SEM). The findings revealed
[...] Read more.
A simultaneous saccharification and fermentation (SSF) optimization process was carried out on pretreated empty fruit bunches (EFBs) by employing the Response Surface Methodology (RSM). EFBs were treated using sequential acid-alkali pretreatment and analyzed physically by a scanning electron microscope (SEM). The findings revealed that the pretreatment had changed the morphology and the EFBs’ structure. Then, the optimum combination of enzymes and microbes for bioethanol production was screened. Results showed that the combination of S. cerevisiae and T. harzianum and enzymes (cellulase and β-glucosidase) produced the highest bioethanol concentration with 11.76 g/L and a bioethanol yield of 0.29 g/g EFB using 4% (w/v) treated EFBs at 30 °C for 72 h. Next, the central composite design (CCD) of RSM was employed to optimize the SSF parameters of fermentation time, temperature, pH, and inoculum concentration for higher yield. The analysis of optimization by CCD predicted that 9.72 g/L of bioethanol (0.46 g/g ethanol yield, 90.63% conversion efficiency) could be obtained at 72 h, 30 °C, pH 4.8, and 6.79% (v/v) of inoculum concentration using 2% (w/v) treated EFBs. Results showed that the fermentation process conducted using the optimized conditions produced 9.65 g/L of bioethanol, 0.46 g/g ethanol yield, and 89.56% conversion efficiency, which was in close proximity to the predicted CCD model.
Full article
(This article belongs to the Special Issue Biofuels Production and Processing Technology)
►▼
Show Figures

Figure 1
Open AccessArticle
Development of a Microalgae-Based Continuous Starch-to-Hydrogen Conversion Approach
Fermentation 2022, 8(7), 294; https://doi.org/10.3390/fermentation8070294 - 23 Jun 2022
Abstract
Eukaryotic algae represent a highly heterogeneous group in terms of organization, lifestyle, and metabolic capabilities. Unicellular green microalgae are capable of biohydrogen production through direct and indirect photolysis as well as dark fermentation. Most algae hydrogen studies focus on axenic algal cultures, although
[...] Read more.
Eukaryotic algae represent a highly heterogeneous group in terms of organization, lifestyle, and metabolic capabilities. Unicellular green microalgae are capable of biohydrogen production through direct and indirect photolysis as well as dark fermentation. Most algae hydrogen studies focus on axenic algal cultures, although these are difficult and expensive to maintain for continuous operation. Moreover, the complex interplays and metabolic fluxes between algae and bacteria in natural ecosystems provide a number of clear biological and technological benefits to large-scale functional algae-based systems. Two green algae species from the Chlamydomonas and Chlorella genera were used to engineer stable synthetic communities by incorporating a starch-degrading bacterium from the Bacillus genus into the inter-kingdom consortium. Continuous photoheterotrophic biohydrogen production was achieved by elaborating an appropriate algal–bacterial ratio and fine-tuning the culture conditions for the synthetic consortia. Medium with starch as only carbon source served as a simple model of cheap substrate for algal hydrogen generation. The engineered pairwise algal–bacterial associations showed increased biomass and biohydrogen yield compared to the axenic control conditions. Chlorella sp. MACC-360 produced a significantly higher amount of hydrogen when both the bacterium partner and starch were added to the media compared to the axenic algae. Continuous, elevated algal hydrogen production was achieved in media supplemented with 8 g L−1 starch as sole carbon source when carefully selected initial cell number values were used for the Chlorella sp. MACC-360–B. amlyloliquefaciens co-cultures.
Full article
(This article belongs to the Special Issue Algal Biomass: From Bioproducts to Biofuels)
►▼
Show Figures

Figure 1
Open AccessArticle
Optimization and Recovery of a Pressure Swing Adsorption Process for the Purification and Production of Bioethanol
by
, , , , , , , , , and
Fermentation 2022, 8(7), 293; https://doi.org/10.3390/fermentation8070293 - 22 Jun 2022
Abstract
Today, there are new technologies to produce bioethanol: one of them is the Pressure Swing Adsorption (PSA) process. This process has displaced other separation technologies due to the use of natural adsorbents and its methodology to obtain high purities with a lower energy
[...] Read more.
Today, there are new technologies to produce bioethanol: one of them is the Pressure Swing Adsorption (PSA) process. This process has displaced other separation technologies due to the use of natural adsorbents and its methodology to obtain high purities with a lower energy cost. The aim of this work focuses on the optimization of the PSA process (experimental case) to obtain a higher recovery and production of bioethanol using lower energy consumption. The results are favorable since the energy cost is reduced to a range of 60% and 62%, obtaining purities above 99% wt of ethanol and recovery between 75% and 77.41%. The bioethanol produced and purified in the different scenarios meets international standards to be used as a fuel or oxygenating additive.
Full article
(This article belongs to the Special Issue Biomass for Sustainable Biofuels and Resilient Bioenergy Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Fermentation Enhances the Anti-Inflammatory and Anti-Platelet Properties of Both Bovine Dairy and Plant-Derived Dairy Alternatives
by
, , , , , , , and
Fermentation 2022, 8(7), 292; https://doi.org/10.3390/fermentation8070292 - 21 Jun 2022
Abstract
Within the present study, the effects of fermentation on the anti-inflammatory and anti-platelet properties of both homemade and commercially purchased bovine dairy and almond, coconut, and rice-based dairy alternatives were evaluated. The extracted total lipids (TL) from homemade and commercially purchased fermented and
[...] Read more.
Within the present study, the effects of fermentation on the anti-inflammatory and anti-platelet properties of both homemade and commercially purchased bovine dairy and almond, coconut, and rice-based dairy alternatives were evaluated. The extracted total lipids (TL) from homemade and commercially purchased fermented and unfermented bovine, almond, coconut, and rice-based products were further separated into their neutral lipids (NL) and polar lipids (PL) fractions by counter current distribution. The TL, PL, and NL of each sample were assessed in human platelets against the inflammatory and thrombotic mediator, platelet-activating factor (PAF), and the well-established platelet agonist, adenosine 5′ diphosphate (ADP). In all samples, the PL fractions showed significantly stronger inhibitory effects against human platelet aggregation induced by PAF or ADP, in comparison to the TL and NL, with higher specificity against PAF. PL of all fermented products (bovine yogurt and fermented dairy alternatives from almond, rice, and coconut), exhibited the strongest anti-inflammatory and anti-platelet potency, in comparison to PL from their initial pasteurized materials (bovine milk and rice, almond, and coconut-based dairy alternative drinks). PL of the pasteurized rice-based drink and, especially PL from the novel homemade rice-based fermented product (HMFRD), showed the strongest anti-PAF and anti-ADP potency compared to all samples, with anti-PAF activity being most potent overall. The unfermented pasteurized coconut-based drink showed the lowest anti-inflammatory and anti-platelet potency, and the bovine and almond-based fermented products showed an intermediate effect. Further lipidomics with LC-MS analysis of all these PL fractions revealed that fermentation altered their fatty acid content in a way that decreased their degree of saturation and increased the content of unsaturated fatty acids, thus providing a rationale for the stronger anti-inflammatory and anti-platelet potency of the more unsaturated PL fractions of the fermented products. This study has shown that fermentation alters the fatty acid content and the bio-functionality of the PL bioactives in both fermented bovine dairy and plant-based dairy alternatives, and subsequently improved their anti-inflammatory and anti-platelet functional properties.
Full article
(This article belongs to the Special Issue The Antioxidant Potential of Fermented Foods: Challenges and Future Trends)
►▼
Show Figures

Figure 1
Open AccessArticle
Rheological Properties of Goat Milk Coagulation as Affected by Rennet Concentration, pH and Temperature
Fermentation 2022, 8(6), 291; https://doi.org/10.3390/fermentation8060291 - 20 Jun 2022
Abstract
Various factors affect rennet coagulation and consequently cheese yield, but the subject of research has been mainly the cow milk. For the purpose of goat cheese production optimization, this paper investigated the influence of enzyme concentration (0.01–0.054 g/L), pH (6.5–6.1) and temperature (27–35
[...] Read more.
Various factors affect rennet coagulation and consequently cheese yield, but the subject of research has been mainly the cow milk. For the purpose of goat cheese production optimization, this paper investigated the influence of enzyme concentration (0.01–0.054 g/L), pH (6.5–6.1) and temperature (27–35 °C) on rennet coagulation of goat milk. Coagulation time (RCT), aggregation rate (AR), and gel firmness (G’60 and GF), were measured by oscillatory rheometry. The decrease in rennet concentration extended RCT. At lower rennet concentrations, a lower AR was recorded, which ranged from 0.02 Pa/s to 0.05 Pa/s. The decrease in pH from 6.5 to 6.1 caused a two times shorter RCT, and a two times faster AR. There was no effect of pH on the firmness of the rennet gel. The increase in coagulation temperature from 27 °C to 35 °C reduced the RCT of pasteurized milk from 12.6 min to 8.6 min, and caused a linear increase in the AR, but did not significantly affect the firmness of the gel. The present study revealed that the optimization of the rennet coagulation process could be directed towards pH lowering, or temperature increase, since they accelerate the process, but do not alter the examined gel firmness parameters.
Full article
(This article belongs to the Special Issue Trends in Development and Use of Fermented Dairy Products)
►▼
Show Figures

Figure 1
Open AccessArticle
Textural and Functional Properties of Skimmed and Whole Milk Fermented by Novel Lactiplantibacillus plantarum AG10 Strain Isolated from Silage
Fermentation 2022, 8(6), 290; https://doi.org/10.3390/fermentation8060290 - 20 Jun 2022
Abstract
Milk fermentation by lactic acid bacteria both enhances its nutritional value and provides probiotic strains to correct the intestinal microflora. Here, we show the comparative analysis of milk fermented with the new strain, Lactiplantibacillus plantarum AG10, isolated from silage and the industrial strain
[...] Read more.
Milk fermentation by lactic acid bacteria both enhances its nutritional value and provides probiotic strains to correct the intestinal microflora. Here, we show the comparative analysis of milk fermented with the new strain, Lactiplantibacillus plantarum AG10, isolated from silage and the industrial strain Lactobacillus delbrukii subs. bulgaricus. While the milk acidification during fermentation with L. plantarum AG10 was lower compared with L. bulgaricus, milk fermented with L. plantarum AG10 after a 14-day storage period retained a high level of viable cells and was characterized by an increased content of exopolysaccharides and higher viscosity. The increased EPS production led to clot formation with higher density on microphotographs and increased firmness and cohesiveness of the product compared with L. bulgaricus-fermented milk. Furthermore, the L. plantarum AG10-fermented milk exhibited increased radical-scavenging activity assuming lower fat oxidation during storage. Taken together, these data suggest that L. plantarum AG10 seems to be a promising starter culture for dairy products with lowered levels of lactic acid, which is important for people with increased gastric acid formation.
Full article
(This article belongs to the Special Issue The Role of Antioxidant Compounds in Fermented Foods)
►▼
Show Figures

Figure 1
Open AccessArticle
Improved Hydrogen Peroxide Stress Resistance of Zymomonas mobilis NADH Dehydrogenase (ndh) and Alcohol Dehydrogenase (adhB) Mutants
by
, , , , , and
Fermentation 2022, 8(6), 289; https://doi.org/10.3390/fermentation8060289 - 19 Jun 2022
Abstract
Unintended shifts in stress resistance of microbial strains with engineered central metabolism may impact their growth and production performance under oxidative, lignocellulosic, solvent, and other stress conditions, and as such, must be taken into account in bioprocess design. In the present work, we
[...] Read more.
Unintended shifts in stress resistance of microbial strains with engineered central metabolism may impact their growth and production performance under oxidative, lignocellulosic, solvent, and other stress conditions, and as such, must be taken into account in bioprocess design. In the present work, we studied oxidative stress resistance in mutant strains of the facultatively anaerobic, ethanologenic bacterium Zymomonas mobilis with modified respiratory (inactivated NADH dehydrogenase Ndh, by disruption of ndh) and ethanologenic (inactivated iron-containing alcohol dehydrogenase isoenzyme ADH II, by disruption of adhB) catabolism, using exogenously added H2O2 in the concentration range of 2–6 mM as the oxidative stressor. Both mutations improved H2O2 resistance and enhanced catalase activity by a factor of 2–5, while the overexpression of Ndh had an opposite effect. Strains with a catalase-negative background were unable to grow already at 1 mM hydrogen peroxide, and their H2O2 resistance did not depend on AdhB or Ndh expression levels. Hence, the improved resistance of the ndh and adhB mutants to H2O2 resulted from their elevated catalase activity. The interrelation between these mutations, the catabolic redox balance, catalase activity, and oxidative stress defense in Z. mobilis is discussed.
Full article
(This article belongs to the Special Issue Bioconversion of Lignocellulosic Materials to Value-Added Products)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Rubber Seed Kernel Fermented with Yeast on Feed Utilization, Rumen Fermentation and Microbial Protein Synthesis in Dairy Heifers
by
, , , , , , , and
Fermentation 2022, 8(6), 288; https://doi.org/10.3390/fermentation8060288 - 19 Jun 2022
Abstract
Yeast (Saccharomyces cerevisiae) has been used to improve the nutritive value of feedstuffs, especially rubber seed kernel. In the current study, rubber seed kernel was grated and subjected to solid-state fermentation with yeast to enhance the nutritive value. The yeast-fermented rubber
[...] Read more.
Yeast (Saccharomyces cerevisiae) has been used to improve the nutritive value of feedstuffs, especially rubber seed kernel. In the current study, rubber seed kernel was grated and subjected to solid-state fermentation with yeast to enhance the nutritive value. The yeast-fermented rubber seed kernel (YERSEK) was substituted for soybean meal in ruminant diets to evaluate the effect of YERSEK on feed intake, digestibility, rumen fermentation and microbial protein synthesis in dairy heifers. Five Holstein Friesian crossbred heifers with an initial body weight (BW) of 215 ± 20 kg were used in this research. The experimental design was a 5 × 5 Latin squared design and the dietary treatments were five levels of YERSEK at 0, 100, 150, 200 and 250 g/kg dry matter in concentrate at 1% of BW, with rice straw fed ad libitum. The supplementation with YERSEK reduced rice straw and total DM intake linearly (p < 0.05). The intake of neutral detergent fiber and acid detergent fiber decreased linearly (p < 0.05), while ether extract intake increased linearly (p < 0.01) with YERSEK supplementation. The ether extract digestibility tended to be high (p < 0.01) with increasing levels of YERSEK. Supplementation with the YERSEK did not change (p > 0.05) ruminal pH and blood urea nitrogen in this study, but ruminal ammonia nitrogen was increased (p < 0.01) in the heifers receiving YERSEK. Increasing the YERSEK levels did not adversely affect the proportion of volatile fatty acids (VFA), which included acetate, propionate and butyrate and the microbial population (p > 0.05). Microbial protein synthesis was similar among the treatments (p > 0.05). The inclusion of YERSEK at 250 g/kg DM in concentrate feed had no effect on the utilization of feed, rumen fermentation characteristics and microbial protein synthesis. The YERSEK could be used as a protein replacement for up to 86% of the soybean meal in feed concentrate for dairy heifers.
Full article
(This article belongs to the Special Issue Recent Advances in Rumen Fermentation Efficiency)
Open AccessCommunication
Scanning Electron Microscopy Study on the Biodeterioration of Natural Fiber Materials Compared to Disposable Hygiene and Sanitary Products
Fermentation 2022, 8(6), 287; https://doi.org/10.3390/fermentation8060287 - 17 Jun 2022
Abstract
Disposable personal care products are part of modern life, but these products could become a biological hazard in case of improper disposal. Therefore, our study compared the biodeterioration of plant-based woven materials (cotton, linen), animal materials (wool, leather), disposable hygiene products with cellulose
[...] Read more.
Disposable personal care products are part of modern life, but these products could become a biological hazard in case of improper disposal. Therefore, our study compared the biodeterioration of plant-based woven materials (cotton, linen), animal materials (wool, leather), disposable hygiene products with cellulose fibers (sanitary pads, cosmetic pads), and chemical impregnated products (antimicrobial/sanitary wet wipes) using burial tests in two types of soils for 40 days. Weight loss (%) and scanning electron microscopy (SEM) revealed that textiles are relatively quickly deteriorated compared to animal-based products, and the process is dependent on the soil type. According to SEM analysis, sanitary pads were the least deteriorated, followed by wet wipes and cosmetic pads (maximum weight loss 24.332% and 27.537%, respectively), and the process was influenced by the composition and structure of the product. These results were correlated with changes in the number of microbes and cellulolytic activity of soil near the samples, and eight isolates belong to Ascomycetes according to PCR analysis. This is the first report on the fate of disposable hygiene and sanitary products in soil, but further comprehensive research is required to reveal crucial insights about their potential hazards and to increase public awareness of the inappropriate disposal of these products.
Full article
(This article belongs to the Special Issue Biotransformation of Plant Materials by Molds and Higher Fungi)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agriculture, Beverages, Dairy, Fermentation, Foods
Food Processing and Preservation
Topic Editors: Ângela Fernandes, Eliana PereiraDeadline: 31 August 2022
Topic in
Processes, Catalysts, Applied Sciences, Fermentation, Bioengineering
Bioreactors: Control, Optimization and Applications
Topic Editors: Francesca Raganati, Alessandra ProcenteseDeadline: 31 December 2022
Topic in
Agriculture, Beverages, Dairy, Fermentation, Foods
Recent Advances and Insights in Storage, Spoilage and Shelf Life of Foods
Topic Editors: Salam A. Ibrahim, Sulaiman Omar Aljaloud, B. N. Dar, Ammar Al-TemimiDeadline: 30 May 2023
Topic in
Agriculture, Applied Sciences, Fermentation, Foods, Molecules
New Concepts in Functional Food Product Development
Topic Editors: Aleksandra Szydłowska, Joanna Stadnik, Sylwia Ścieszka, Rubén DomínguezDeadline: 30 September 2023

Conferences
Special Issues
Special Issue in
Fermentation
Carboxylic Acid Production 2.0
Guest Editors: Gunnar Lidén, Jie BaoDeadline: 30 June 2022
Special Issue in
Fermentation
Microbiotechnology Tools for Wastewater Treatment and Waste Valorization
Guest Editors: Shamas Tabraiz, Evangelos PetropoulosDeadline: 15 July 2022
Special Issue in
Fermentation
Trends in Development and Use of Fermented Dairy Products
Guest Editor: Irena BarukčićDeadline: 20 July 2022
Special Issue in
Fermentation
Biofuels Production—by Applying Thermochemical Energy Conversion Technologies
Guest Editor: Sahar SafarianDeadline: 31 July 2022