molecules-logo

Journal Browser

Journal Browser

Bioactive Compounds in Foods and Their By-Products

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Food Chemistry".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 1497

Special Issue Editor

Special Issue Information

Dear Colleagues,

Bioactive compounds found in food and their derivatives play a crucial role in enhancing human health while also contributing to the reduction in food waste. These compounds can come from a wide range of food sources and include vitamins, essential fatty acids, carotenoids, dietary fibers, phenolic compounds, flavonoids, glucosinolates, saponins, and phytosterols, among others. They exhibit beneficial properties such as antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. Recent research highlights the importance of utilizing food by-products as valuable sources of bioactive compounds, which can aid in the development of functional foods, nutraceuticals, and their applications in cosmetics and pharmaceuticals. The increasing focus on sustainable food practices has led to significant advancements in agricultural methods that enhance the production of bioactive metabolites in plants, new extraction techniques that facilitate their purification on a larger scale, and technologies that have been created to incorporate them into food products. Researchers and food technologists are exploring innovative approaches to boost the bioavailability and stability of these compounds, such as nanoencapsulation and smart delivery systems, ensuring they retain their health benefits when added to various food items or improve their efficacy through processes like fermentation and biotransformation. This Special Issue includes research articles and review papers that concentrate on agronomic techniques capable of increasing the production of bioactive molecules in plants, the extraction and analysis of bioactive compounds from food and agro-food waste, innovative methods to improve their bioavailability and stability when incorporated into food, pharmaceutical, or cosmetic products, as well as potential toxicological issues linked to their repurposing.

In particular, the following subjects are of interest:

  • Isolation of bioactives;
  • Characterization of bioactives;
  • Dosage of bioactives;
  • Isolation of toxins;
  • Characterization of toxins;
  • Dosage of toxins;
  • The validation procedures for food methods;
  • Bioavailability of bioactive compounds;
  • Bioaccessibility of bioactive compounds;
  • Stability of bioactive compounds.

Prof. Dr. Irene Dini
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • circular economy
  • food analytical method
  • food analytical method validation
  • bioactives bioavailability
  • suitable agronomic technique
  • food toxicology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1458 KB  
Article
Prescreening of Mango (Mangifera indica L.) Leaves as a Potential Functional Food Ingredient: Techno-Functional and Antioxidative Characteristics
by Génica Lawrence, Ingrid Marchaux, Ewa Pejcz, Agata Wojciechowicz-Budzisz, Remigiusz Olędzki, Adam Zając, Oliwia Paroń, Guylène Aurore and Joanna Harasym
Molecules 2025, 30(16), 3381; https://doi.org/10.3390/molecules30163381 - 14 Aug 2025
Viewed by 831
Abstract
Mango (Mangifera indica L.) is cultivated in tropical and subtropical regions, with all parts of the tree—including leaves—used traditionally to treat diabetes, infections, pain, and other conditions. Mango leaves contain proteins, minerals, vitamins, and phenolic compounds, including mangiferin, quercetin, and kaempferol, whose [...] Read more.
Mango (Mangifera indica L.) is cultivated in tropical and subtropical regions, with all parts of the tree—including leaves—used traditionally to treat diabetes, infections, pain, and other conditions. Mango leaves contain proteins, minerals, vitamins, and phenolic compounds, including mangiferin, quercetin, and kaempferol, whose content varies by cultivar. This study evaluated the functional and bioactive properties of dried mango leaves from five cultivars (Julie, DLO, Nam Dok Mai, Irwin, and Keïtt) to determine their potential for food and nutraceutical applications. Analyses included water- and oil-related parameters, swelling and solubility indices, foaming and emulsifying properties, and antioxidant activity (DPPH, ABTS, and FRAP in hydroalcoholic and water extracts), complemented by FT-IR/ATR spectroscopy. Significant differences between the five analyzed cultivars were observed. Irwin exhibited the highest antioxidant activity (2.65 ± 0.55 mg TE/g DM in DPPH assay), while Nam Dok Mai demonstrated superior foaming capacity (82.69 ± 7.79 mL). Strong correlations (r > 0.9) between reducing sugars and antioxidant capacity suggest cultivar selection based on sugar content could predict antioxidant potential. FT-IR confirmed the presence of polar phenolic and protein compounds. The results demonstrate that mango leaves offer cultivar-dependent functional and antioxidant attributes relevant to food systems. Their targeted valorization may support sustainable industrial applications and circular bioeconomy strategies, particularly in tropical regions where mango cultivation is widespread. Full article
(This article belongs to the Special Issue Bioactive Compounds in Foods and Their By-Products)
Show Figures

Figure 1

16 pages, 1651 KB  
Article
Standardization of Germinated Oat Extracts and Their Neuroprotective Effects Against Aβ1-42 Induced Cytotoxicity in SH-SY5Y Cells
by Yu-Young Lee, In-Su Na, Jeong-Eun Kim, Jae-Gwang Song, Chae-Eun Han, Hyung-Wook Kim and Soon-Mi Shim
Molecules 2025, 30(15), 3291; https://doi.org/10.3390/molecules30153291 - 6 Aug 2025
Viewed by 487
Abstract
The present study aimed to standardize germinated oat extracts (GOEs) by profiling avenanthramides (AVNs) and phenolic acids and evaluate their neuroprotective effects against Aβ1-42-induced cytotoxicity in human neuroblastoma (SH-SY5Y) cells. GOEs were standardized to contain 1652.56 ± 3.37 µg/g dry weight [...] Read more.
The present study aimed to standardize germinated oat extracts (GOEs) by profiling avenanthramides (AVNs) and phenolic acids and evaluate their neuroprotective effects against Aβ1-42-induced cytotoxicity in human neuroblastoma (SH-SY5Y) cells. GOEs were standardized to contain 1652.56 ± 3.37 µg/g dry weight (dw) of total AVNs, including 468.52 ± 17.69 µg/g AVN A, 390.33 ± 10.26 µg/g AVN B, and 641.22 ± 13.89 µg/g AVN C, along with 490.03 ± 7.83 µg/g dw of ferulic acid, using a validated analytical method. Treatment with AVN C and GOEs significantly inhibited Aβ1-42-induced cytotoxicity (p < 0.05). Furthermore, both AVNs and GOEs markedly reduced Aβ1-42-induced reactive oxygen species (ROS) generation in SH-SY5Y cells, showing significant scavenging activity at concentrations of 25 μg/mL (AVNs) and 50 μg/mL (GOEs) (p < 0.05). RT-PCR analysis revealed that AVNs and GOEs effectively downregulated the expression of inflammation- and apoptosis-related genes triggered by Aβ1-42 exposure. These findings suggest that GOEs rich in AVNs may serve as a potential functional ingredient for enhancing memory function through the inhibition of neuroinflammation and oxidative stress. Full article
(This article belongs to the Special Issue Bioactive Compounds in Foods and Their By-Products)
Show Figures

Graphical abstract

Back to TopTop