Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (59,766)

Search Parameters:
Keywords = mixed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 807 KiB  
Article
Wellbeing, Sense of Belonging, Resilience, and Academic Buoyancy Impacts of Education Outside the Classroom: An Australian Case Study
by Helen Cooper, Tonia Gray, Jacqueline Ullman and Christina Curry
Behav. Sci. 2025, 15(8), 1010; https://doi.org/10.3390/bs15081010 - 25 Jul 2025
Abstract
This paper examines the importance of ‘education outside the classroom’ (EOtC) in an Australian secondary school. The primary aim was to develop a sense of belonging, build resilience, and enhance wellbeing in female students. This study investigated two cohorts of Year 9 students [...] Read more.
This paper examines the importance of ‘education outside the classroom’ (EOtC) in an Australian secondary school. The primary aim was to develop a sense of belonging, build resilience, and enhance wellbeing in female students. This study investigated two cohorts of Year 9 students (aged 14–15 yrs) who participated in a four-week residential EOtC pilot program. The first cohort (Wave 1; N = 58) undertook the program alongside (N = 39) boys. The second cohort was single-sex girls (Wave 2; N = 28). A mixed-methods research design was implemented to inform experiences of students, parents, and staff and to triangulate inferences drawn from the data. Quantitative data was gained from pre- and post-program surveys with students and parents, whilst qualitative data was gathered from student focus groups, staff, and parents through semi-structured interviews to assess more nuanced impacts. School belonging was measured using the PISA six-item scale. Academic buoyancy was quantified using the four-item Academic Buoyancy Scale. Self-efficacy, peer relations, and resilience were evaluated by employing the 34-item Adolescent Girls’ Resilience Scale. The findings revealed significant improvements in students’ sense of belonging, including higher levels of school belonging than reported Australia-wide averages for 15-year-olds. Despite students’ mean academic buoyancy scores being more than a point lower than reported baseline scores for Australian high school students, it was promising to see a modest increase following the EOtC program. In conclusion, EOtC is a potent vehicle for developing a sense of belonging, enhancing resilience, and equipping students to deal with academic challenges. Full article
25 pages, 4161 KiB  
Article
Indoor/Outdoor Particulate Matter and Related Pollutants in a Sensitive Public Building in Madrid (Spain)
by Elisabeth Alonso-Blanco, Francisco Javier Gómez-Moreno, Elías Díaz-Ramiro, Javier Fernández, Esther Coz, Carlos Yagüe, Carlos Román-Cascón, Dulcenombre Gómez-Garre, Adolfo Narros, Rafael Borge and Begoña Artíñano
Int. J. Environ. Res. Public Health 2025, 22(8), 1175; https://doi.org/10.3390/ijerph22081175 - 25 Jul 2025
Abstract
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated [...] Read more.
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated carbonaceous species, such as black carbon (BC), which are classified as carcinogenic by the International Agency for Research on Cancer (IARC), are not currently regulated. Compared with IAQ studies in other types of buildings, studies focusing on IAQ in hospitals or other healthcare facilities are scarce. Therefore, this study aims to evaluate the impact of these outdoor pollutants, among others, on the indoor environment of a hospital under different atmospheric conditions. To identify the seasonal influence, two different periods of two consecutive seasons (summer 2020 and winter 2021) were selected for the measurements. Regulated pollutants (NO, NO2, O3, PM10, and PM2.5) and nonregulated pollutants (PM1, PNC, and equivalent BC (eBC)) in outdoor air were simultaneously measured indoor and outdoor. This study also investigated the impact of indoor activities on indoor air quality. In the absence of indoor activities, outdoor sources significantly contribute to indoor traffic-related pollutants. Indoor and outdoor (I-O) measurements showed similar behavior, but indoor concentrations were lower, with peak levels delayed by up to two hours. Seasonal variations in indoor/outdoor (I/O) ratios were lower for particles than for associated gaseous pollutants. Particle infiltration depended on particle size, with it being higher the smaller the particle size. Indoor activities also significantly affected indoor pollutants. PMx (especially PM10 and PM2.5) concentrations were mainly modulated by walking-induced particle resuspension. Vertical eBC profiles indicated a relatively well-mixed environment. Ventilation through open windows rapidly altered indoor air quality. Outdoor-dominant pollutants (PNC, eBC, and NOX) had I/O ratios ≥ 1. Staying in the room with an open window had a synergistic effect, increasing the I/O ratios for all pollutants. Higher I/O ratios were associated with turbulent outdoor conditions in both unoccupied and occupied conditions. Statistically significant differences were observed between stable (TKE ≤ 1 m2 s−2) and unstable (TKE > 1 m2 s−2) conditions, except for NO2 in summer. This finding was particularly significant when the wind direction was westerly or easterly during unstable conditions. The results of this study highlight the importance of understanding the behavior of indoor particulate matter and related pollutants. These pollutants are highly variable, and knowledge about them is crucial for determining their health effects, particularly in public buildings such as hospitals, where information on IAQ is often limited. More measurement data is particularly important for further research into I-O transport mechanisms, which are essential for developing preventive measures and improving IAQ. Full article
Show Figures

Figure 1

15 pages, 4613 KiB  
Article
Utilizing Cob–Earth and Sand-Filled Plastic Bottles to Address Environmental Challenges: A Sustainable Construction Solution
by Mayar Khairy, Zeinab Ahmed, Ahmed Abodonya, Omar Ahmed El Kadi, Khaled Tarabieh, Khaled Nassar and Ezzeldin Yazeed Sayed-Ahmed
Sustainability 2025, 17(15), 6784; https://doi.org/10.3390/su17156784 - 25 Jul 2025
Abstract
The construction industry is a major contributor to global carbon emissions, primarily due to its reliance on cement-based materials. Simultaneously, plastic bottle waste presents a significant environmental challenge. This study aims to address both issues by exploring the integration of plastic bottle waste [...] Read more.
The construction industry is a major contributor to global carbon emissions, primarily due to its reliance on cement-based materials. Simultaneously, plastic bottle waste presents a significant environmental challenge. This study aims to address both issues by exploring the integration of plastic bottle waste into cob–earth materials as a sustainable alternative to traditional concrete modules. The research involves testing various mixes with plastic bottles arranged in different patterns to assess their load-bearing capacity and distribution. The cob mix with bottles arranged in a modified pattern demonstrated the highest load resistance, bearing over 47.1 kN, making it suitable for prototype development. The study also investigates the potential of using cob as an exterior finishing layer, reducing the need for cement. The results show that using local earth materials significantly lowers embodied carbon, offering a more sustainable construction solution. This approach helps mitigate plastic waste and supports climate resilience by promoting low-carbon, locally sourced materials, aligning with Egypt’s national sustainability commitments. Full article
Show Figures

Figure 1

26 pages, 2995 KiB  
Article
A New High-Efficiency Fertilization System from Waste Materials for Soil Protection: Material Engineering, Chemical-Physical Characterization, Antibacterial and Agronomic Performances
by Martina Napolitano, Gianluca Malavasi, Daniele Malferrari, Giulio Galamini, Michelina Catauro, Veronica Viola, Fabrizio Marani and Luisa Barbieri
Materials 2025, 18(15), 3492; https://doi.org/10.3390/ma18153492 - 25 Jul 2025
Abstract
The development of slow-release fertilizers (SRFs) based on production residues is a promising strategy to improve nutrient use efficiency and promote circular economy practices in agriculture. In this study, a series of experimental formulations were designed and tested using pumice scraps, liquid and [...] Read more.
The development of slow-release fertilizers (SRFs) based on production residues is a promising strategy to improve nutrient use efficiency and promote circular economy practices in agriculture. In this study, a series of experimental formulations were designed and tested using pumice scraps, liquid and dried blood, and bone meal, aiming at producing sustainable and low-cost N-P-K SRFs. These were processed through mixing and granulation, both in the laboratory and on a semi-industrial scale. The formulations were evaluated through release tests in 2% citric acid solution simulating the acidic conditions of the rhizosphere, and in acetic acid to assess potential nutrient leaching under acid rain conditions. The results showed a progressive cumulative release of macronutrients (NPKs), ranging from approximately 8% at 24 h to 73% after 90 days for the most effective formulation (WBF6). Agronomic trials on lettuce confirmed the effectiveness of WBF6, resulting in significant biomass increases compared with both the untreated control and a conventional fertilizer. The use of livestock waste and minerals facilitated the development of a scalable product aligned with the principles of sustainable agriculture. The observed release behavior, combined with the simplicity of production, positions these formulations as a promising alternative to conventional slow-release fertilizers. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

19 pages, 2696 KiB  
Article
Cell Type-Specific Effects of Fusarium Mycotoxins on Primary Neurons and Astroglial Cells
by Viktória Szentgyörgyi, Brigitta Tagscherer-Micska, Anikó Rátkai, Katalin Schlett, Norbert Bencsik and Krisztián Tárnok
Toxins 2025, 17(8), 368; https://doi.org/10.3390/toxins17080368 - 25 Jul 2025
Abstract
Fumonisin B1, deoxynivalenol (DON), and zearalenone (ZEA) are toxic secondary metabolites produced by Fusarium molds. These mycotoxins are common food and feed pollutants and represent a risk to human and animal health. Although the mycotoxins produced by this genus can cross the blood–brain [...] Read more.
Fumonisin B1, deoxynivalenol (DON), and zearalenone (ZEA) are toxic secondary metabolites produced by Fusarium molds. These mycotoxins are common food and feed pollutants and represent a risk to human and animal health. Although the mycotoxins produced by this genus can cross the blood–brain barrier in many species, their effect on neuronal function remains unclear. We investigated the cell viability effects of these toxins on specified neural cell types, including mouse primary neuronal, astroglial, and mixed-cell cultures 24 or 48 h after mycotoxin administration. DON decreased cell viability in a dose-dependent manner, independent of the culture type. Fumonisin B1 was toxic in pure neuronal cultures only at high doses, but toxicity was attenuated in mixed and pure astroglial cultures. ZEA had significant effects on all culture types in 10 nM by increasing cell viability and network activity, as revealed by multi-electrode array measurements. Since ZEA is a mycoestrogen, we analyzed the effects of ZEA on the expression of estrogen receptor isotypes ERα and ERβ and the mitochondrial voltage-dependent anion channel via qRT-PCR. In neuronal and mixed cultures, ZEA administration decreased ERα expression, while in astroglial cultures, it induced the opposite effect. Thus, our results emphasize that Fusarium mycotoxins act in a cell-specific manner. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

22 pages, 1513 KiB  
Article
Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management
by Melek Demircan, Emine Serap Kizil Aydemir and Koray Kaçan
Agronomy 2025, 15(8), 1796; https://doi.org/10.3390/agronomy15081796 - 25 Jul 2025
Abstract
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the [...] Read more.
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the 2020–2021 growing season. The experiment included 15 treatments comprising monocultures and mixed sowing at different ratios. Measurements included morphological traits, forage yield components (green herbage, hay, and crude protein), fiber content, botanical composition, and weed biomass. The results reveal significant differences among treatments in terms of growth parameters and forage performance. Monocultures of IFVN 567 and Bartigra showed the highest green and hay yields, while mixtures such as IFVN 567 + Trinova and IFVN 567 + Bartigra outperformed in terms of land equivalent ratio (LER) and protein yield, demonstrating a clear advantage in land use efficiency. Furthermore, these mixtures showed superior weed suppression compared to monocultures. Overall, the findings suggest that carefully selected vetch–ryegrass combinations can enhance forage productivity, nutritional quality, and weed management under organic systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

38 pages, 2237 KiB  
Article
Degenerative ‘Affordance’ of Social Media in Family Business
by Bridget Nneka Irene, Julius Irene, Joan Lockyer and Sunita Dewitt
Systems 2025, 13(8), 629; https://doi.org/10.3390/systems13080629 - 25 Jul 2025
Abstract
This paper introduces the concept of degenerative affordances to explain how social media can unintentionally destabilise family-run influencer businesses. While affordance theory typically highlights the enabling features of technology, the researchers shift the focus to its unintended, risk-laden consequences, particularly within family enterprises [...] Read more.
This paper introduces the concept of degenerative affordances to explain how social media can unintentionally destabilise family-run influencer businesses. While affordance theory typically highlights the enabling features of technology, the researchers shift the focus to its unintended, risk-laden consequences, particularly within family enterprises where professional and personal identities are deeply entangled. Drawing on platform capitalism, family business research, and intersectional feminist critiques, the researchers develop a theoretical model to examine how social media affordances contribute to role confusion, privacy breaches, and trust erosion. Using a mixed-methods design, the researchers combine narrative interviews (n = 20) with partial least squares structural equation modelling (PLS-SEM) on survey data (n = 320) from family-based influencers. This study’s findings reveal a high explanatory power (R2 = 0.934) for how digital platforms mediate entrepreneurial legitimacy through interpersonal trust and role dynamics. Notably, trust emerges as a key mediating mechanism linking social media engagement to perceptions of business legitimacy. This paper advances three core contributions: (1) introducing degenerative affordance as a novel extension of affordance theory; (2) unpacking how digitally mediated role confusion and privacy breaches function as internal threats to legitimacy in family businesses; and (3) problematising the epistemic assumptions embedded in entrepreneurial legitimacy itself. This study’s results call for a rethinking of how digital platforms, family roles, and entrepreneurial identities co-constitute each other under the pressures of visibility, intimacy, and algorithmic governance. The paper concludes with implications for influencer labour regulation, platform accountability, and the ethics of digital family entrepreneurship. Full article
(This article belongs to the Section Systems Practice in Social Science)
18 pages, 2328 KiB  
Article
Modeling and Optimization of MXene/PVC Membranes for Enhanced Water Treatment Performance
by Zainab E. Alhadithy, Ali A. Abbas Aljanabi, Adnan A. AbdulRazak, Qusay F. Alsalhy, Raluca Isopescu, Daniel Dinculescu and Cristiana Luminița Gîjiu
Materials 2025, 18(15), 3494; https://doi.org/10.3390/ma18153494 - 25 Jul 2025
Abstract
In this paper, MXene nanosheets were used as nano additives for the preparation of MXene-modified polyvinyl chloride (PVC) mixed max membranes (MMMs) for the rejection of lead (Pb2+) ions from wastewater. MXene nanosheets were introduced into the PVC matrix to enhance [...] Read more.
In this paper, MXene nanosheets were used as nano additives for the preparation of MXene-modified polyvinyl chloride (PVC) mixed max membranes (MMMs) for the rejection of lead (Pb2+) ions from wastewater. MXene nanosheets were introduced into the PVC matrix to enhance membrane performance, hydrophilicity, contact angle, porosity, and resistance to fouling. Modeling and optimization techniques were used to examine the effects of important operational and fabrication parameters, such as pH, contaminant concentration, nanoadditive (MXene) content, and operating pressure. Predictive models were developed using experimental data to assess the membranes’ performance in terms of flux and Pb2+ rejection. The ideal circumstances that struck a balance between long-term operating stability and high removal efficiency were found through multi-variable optimization. The optimized conditions for the best rejection of Pb2+ ions and the most stable permeability over time among the membranes that were manufactured were the initial metal ions concentration (2 mg/L), pH (7.89), pressure (2.99 bar), and MXene mass (0.3 g). The possibility of combining MXene nanoparticles with methodical optimization techniques to create efficient membranes for the removal of heavy metals in wastewater treatment applications is highlighted by this work. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

24 pages, 10881 KiB  
Article
Dynamics of Water Quality in the Mirim–Patos–Mangueira Coastal Lagoon System with Sentinel-3 OLCI Data
by Paula Andrea Contreras Rojas, Felipe de Lucia Lobo, Wesley J. Moses, Gilberto Loguercio Collares and Lino Sander de Carvalho
Geomatics 2025, 5(3), 36; https://doi.org/10.3390/geomatics5030036 - 25 Jul 2025
Abstract
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the [...] Read more.
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the spatial and temporal patterns of water quality in the lagoon system using Sentinel-3/OLCI satellite imagery. Atmospheric correction was performed using ACOLITE, followed by spectral grouping and classification into optical water types (OWTs) using the Sentinel Applications Platform (SNAP). To explore the behavior of water quality parameters across OWTs, Chlorophyll-a and turbidity were estimated using semi-empirical algorithms specifically designed for complex inland and coastal waters. Results showed a gradual increase in mean turbidity from OWT 2 to OWT 6 and a rise in chlorophyll-a from OWT 2 to OWT 4, with a decline at OWT 6. These OWTs correspond, in general terms, to distinct water masses: OWT 2 to clearer waters, OWT 3 and 4 to intermediate/mixed conditions, and OWT 6 to turbid environments. In the second part, we analyzed the response of the Patos Lagoon to flooding in Rio Grande do Sul during an extreme weather event in May 2024. Satellite-derived turbidity estimates were compared with in situ measurements, revealing a systematic underestimation, with a negative bias of 2.6%, a mean relative error of 78%, and a correlation coefficient of 0.85. The findings highlight the utility of OWT classification for tracking changes in water quality and support the use of remote sensing tools to improve environmental monitoring in data-scarce regions, particularly under extreme hydrometeorological conditions. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

24 pages, 2229 KiB  
Article
Effect of Mixing Technology on Homogeneity and Quality of Sodium Naproxen Tablets: Technological and Analytical Evaluation Using HPLC Method
by Mateusz Przywara, Regina Lech-Przywara, Patrycja Rupar and Wojciech Zapała
Molecules 2025, 30(15), 3119; https://doi.org/10.3390/molecules30153119 - 25 Jul 2025
Abstract
The uniform distribution of APIs is essential in tablet formulations, particularly in direct compression, where powder blending is the only means of ensuring dose homogeneity. This study evaluated the influence of three mixing techniques—V-type mixer, planetary ball mill, and vibratory ball mill—on the [...] Read more.
The uniform distribution of APIs is essential in tablet formulations, particularly in direct compression, where powder blending is the only means of ensuring dose homogeneity. This study evaluated the influence of three mixing techniques—V-type mixer, planetary ball mill, and vibratory ball mill—on the physical properties and content uniformity of naproxen sodium tablets. Blends consisting of naproxen sodium, cellulose, PVP, calcium carbonate, and magnesium stearate were prepared under varied mixing intensities and characterized in terms of flowability, compressibility, and particle size distribution. The resulting tablets were analyzed for weight, thickness, hardness, friability, and API content using a simplified bypass HPLC method. The V-type mixer yielded tablets with the most consistent weight and thickness, despite the poorest blend flow properties. Vibratory milling produced the hardest tablets and best API content uniformity, although high-energy processing introduced variability at longer mixing times. The analytical method proved fast and robust, allowing for reliable API quantification without full chromatographic separation. These findings underscore the need to balance mechanical blending energy with formulation properties and support the use of streamlined analytical strategies in pharmaceutical development. Full article
Show Figures

Figure 1

16 pages, 246 KiB  
Article
Examining Flipped Classroom and Project-Based Learning Integration in Older Adult Health Education: A Mixed-Methods Study
by Fu-Chi Yang and Hsiao-Mei Chen
Nurs. Rep. 2025, 15(8), 267; https://doi.org/10.3390/nursrep15080267 - 25 Jul 2025
Abstract
Background: As population aging accelerates, the demand for professionals in older adult care continues to rise. Traditional teaching methods often fail to improve students’ willingness to serve older adults or foster teamwork. This study evaluated the effects of integrating a flipped classroom with [...] Read more.
Background: As population aging accelerates, the demand for professionals in older adult care continues to rise. Traditional teaching methods often fail to improve students’ willingness to serve older adults or foster teamwork. This study evaluated the effects of integrating a flipped classroom with project-based learning (PBL) and a hands-on clinical practicum into a health internship course. Methods: A mixed-methods design was adopted. Participants included 88 interdisciplinary university students enrolled in an 18-week, two-credit geriatric health internship course offered at a university in central Taiwan from August 2023 to July 2024. The course combined flipped classroom and PBL approaches, as well as clinical practicum activities. Data on willingness to serve older adults, teamwork skills, and learning outcomes were collected using structured questionnaires and analyzed with paired t-tests. Results: Significant improvements were found in willingness (from 68.93 to 73.15), teamwork (67.33 to 71.45), and learning outcomes (89.84 to 102.14) (p = 0.001). Qualitative findings further revealed increased empathy, improved teamwork, and enhanced ability to apply knowledge in real-world contexts. Conclusions: A teaching approach that integrates a flipped classroom, PBL, and a clinical practicum can effectively enhance students’ competencies in older adult care. Future research should explore long-term and cross-cultural impacts. Full article
13 pages, 405 KiB  
Review
Insular Cortex—Biology and Its Role in Psychiatric Disorders: A Narrative Review
by Darko Laketić, Nikola M. Stojanović, Isidora Laketić, Milorad Pavlović, Bojan Milosević, Ana Starčević and Slobodan Kapor
Brain Sci. 2025, 15(8), 793; https://doi.org/10.3390/brainsci15080793 - 25 Jul 2025
Abstract
The insular cortex has emerged as a key region implicated in a wide array of cognitive, emotional, and sensory processes. The anterior part of the insula (AIC) is central to emotional awareness, decision-making, and interoception, while the posterior insula (PIC) is more associated [...] Read more.
The insular cortex has emerged as a key region implicated in a wide array of cognitive, emotional, and sensory processes. The anterior part of the insula (AIC) is central to emotional awareness, decision-making, and interoception, while the posterior insula (PIC) is more associated with somatosensory processing. The insula acts as a functional hub within the salience network and integrates homeostatic, affective, and cognitive information; thus, its role in different mental disorders seems to be prominent. Altered structure and connectivity of the insular cortex are evident in several psychiatric conditions. In schizophrenia, reductions in insular volume—especially on the left—correlate with hallucinations, emotional dysregulation, and cognitive deficits. Bipolar and major depressive disorders exhibit AIC volume loss and aberrant connectivity patterns linked to impaired affect regulation and interoceptive awareness. Anxiety disorders show functional hyperactivity of the insula, especially in response to fear-inducing stimuli, though findings on structural changes are mixed. Overall, growing evidence underscores the insular cortex’s central role in psychiatric pathophysiology and highlights its potential as a target for future diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Understanding the Role and Functions of the Insula in the Brain)
Show Figures

Figure 1

15 pages, 2001 KiB  
Article
Study on the Impact of Lithium Slag as an Alternative to Washed Sand on Mortar Properties
by Xianliang Zhou, Wei Dai, Xi Zhu and Xiaojun Zhou
Materials 2025, 18(15), 3490; https://doi.org/10.3390/ma18153490 - 25 Jul 2025
Abstract
Lithium slag (LS), a by-product of lithium extraction processes, poses a significant disposal challenge during the rapid development of new energy technologies. In this study, LS was used to replace partially washed sand in the process of mortar production to compensate for the [...] Read more.
Lithium slag (LS), a by-product of lithium extraction processes, poses a significant disposal challenge during the rapid development of new energy technologies. In this study, LS was used to replace partially washed sand in the process of mortar production to compensate for the content of stone powder in sand. Five mortar mixes containing varying proportions of LS were prepared, and the macroscopic performance was evaluated. A comprehensive microscopic analysis, including microstructure observations, hydration product identification, and pore structure analysis, was conducted. The impact of LS on the chloride ion permeability of mortar was also investigated in this study. The results indicate that an increase in LS content gradually reduces the workability of the mortar, with a 39.29% decrease in fluidity when 40% of the sand is replaced with LS. Moreover, the compressive and flexural strengths of the mortar initially increase and then decrease with higher LS content. Microscopic tests reveal that 20% LS substitution significantly optimizes the pore structure of the mortar, resulting in a lower chloride ion permeability coefficient. Consequently, 20% LS substitution is recommended as the optimal dosage for use as fine aggregate in mortar. Full article
Show Figures

Figure 1

17 pages, 593 KiB  
Article
Knowledge, Attitudes, and Practices on Climate Change in a Muslim Community in Knoxville, Tennessee
by Haya Bader Albaker, Kelsey N. Ellis, Jennifer First, Dimitris A. Herrera and Solange Muñoz
Sustainability 2025, 17(15), 6770; https://doi.org/10.3390/su17156770 - 25 Jul 2025
Abstract
Muslims are religiously obligated to care for the Earth, yet little empirical research exists on how Muslim communities in the U.S. engage with climate change. This study used a mixed-methods approach to explore climate change knowledge, attitudes, and practices (KAP) among 82 Muslims [...] Read more.
Muslims are religiously obligated to care for the Earth, yet little empirical research exists on how Muslim communities in the U.S. engage with climate change. This study used a mixed-methods approach to explore climate change knowledge, attitudes, and practices (KAP) among 82 Muslims in Knoxville, Tennessee, building on prior theoretical or internationally focused work. Results found that participants largely accepted anthropogenic climate change and were strongly willing to act, citing Islamic principles such as stewardship and divine accountability as key motivators. However, many felt underinformed and lacked clarity on how to take action. Religious texts, more than religious leaders, shaped environmental views, offering interpretations that both aligned with and diverged from scientific narratives. Education and personal experience were the most frequently cited sources of climate understanding. Religion emerged as an important source of climate knowledge and a filter through which scientific information was interpreted. The knowledge and environmental attitudes inspired by their religion guided many participants to mitigate climate impacts, although some expressed a more fatalistic view of climate change. These findings suggest that effective climate communication in Muslim communities should integrate faith-based teachings with scientific messaging and engage religious leaders as amplifiers. Expanding this research to include more diverse Muslim populations across the U.S. can provide deeper insight into how Islamic worldviews shape climate engagement and behavior. Full article
Show Figures

Figure 1

25 pages, 6014 KiB  
Article
Research on Synergistic Enhancement of UHPC Cold Region Repair Performance by Steel Fibers and Early-Strength Agent
by Ming Xie, Zhangdong Wang, Li’e Yin and Hao Li
Buildings 2025, 15(15), 2630; https://doi.org/10.3390/buildings15152630 - 25 Jul 2025
Abstract
This study looked at the performance requirements of repair materials for concrete structures in cold regions, systematically analyzing the effects of steel fiber dosage (0.7–2.1%), early-strength agent PRIORITY dosage (6–10%), and their coupling effects on the workability, interfacial bond strength, and freeze–thaw resistance [...] Read more.
This study looked at the performance requirements of repair materials for concrete structures in cold regions, systematically analyzing the effects of steel fiber dosage (0.7–2.1%), early-strength agent PRIORITY dosage (6–10%), and their coupling effects on the workability, interfacial bond strength, and freeze–thaw resistance of rapid-hardening ultra-high-performance concrete (UHPC). Through fluidity testing, bond interface failure analysis, freeze–thaw cycle testing, and pore analysis, the mechanism of steel fibers and early-strength agent on the multi-dimensional performance of fast-hardening UHPC was revealed. The results showed that when the steel fiber dosage exceeded 1.4%, the flowability was significantly reduced, while a PRIORITY dosage of 8% improved the flowability by 20.5% by enhancing the paste lubricity. Single addition of steel fibers decreased the interfacial bond strength, but compound addition of 8% PRIORITY offset the negative impact by optimizing the filling effect of hydration products. Under freeze–thaw cycles, excessive steel fibers (2.1%) exacerbated the mass loss (1.67%), whereas a PRIORITY dosage of 8% increased the retention rate of relative dynamic elastic modulus by 10–15%. Pore analysis shows that the synergistic effect of 1.4% steel fiber and 8% PRIORITY can reduce the number of pores, optimize the pore distribution, and make the structure denser. The study determined that the optimal compound mixing ratio was 1.4% steel fibers and 8% PRIORITY. This combination ensures construction fluidity while significantly improving the interfacial bond durability and freeze–thaw resistance, providing a theoretical basis for the design of concrete repair materials in cold regions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop