Mixed Copolymer Micelles for Nanomedicine
Abstract
:1. Introduction
2. Inclusivity of the Term
3. Stabilizing Factors
4. Preparation Methods
5. Mixed Micelles for Diabetes Therapy
6. Mixed Micelles for Cancer Therapy
7. Mixed Micelles for Bioimaging
8. Mixed Micelles for Alzheimer’s Disease and Central Nervous System (CNS) Disorders
9. Mixed Micelles for Human Immunodeficiency Virus (HIV)
10. Mixed Micelles for Gene Delivery
11. Mixed Micelles for Protein Delivery
12. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferrari, M. Cancer Nanotechnology: Opportunities and Challenges. Nat. Rev. Cancer 2005, 5, 161–171. [Google Scholar] [CrossRef]
- Farokhzad, O.C.; Langer, R. Impact of Nanotechnology on Drug Delivery. ACS Nano 2009, 3, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B. Introduction to Nanotechnology. In Springer Handbook of Nanotechnology; Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–19. [Google Scholar]
- European Observatory for Nanomaterials. EU Research Projects. Available online: https://euon.echa.europa.eu/eu-research-projects (accessed on 24 February 2023).
- Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: Current Status and Future Prospects. FASEB J. 2005, 19, 311–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunitake, T.; Shinkai, S. Catalysis by Micelles, Membranes and Other Aqueous Aggregates as Models of Enzyme Action. Adv. Phys. Org. Chem. 1980, 17, 435–487. [Google Scholar] [CrossRef]
- Kumar, C.; Balasubramanlan, D. Structural Features of Water-in-OII Microemulsions. J. Phys. Chem. 1980, 84, 1895–1899. [Google Scholar] [CrossRef]
- Haider, M.S.; Lübtow, M.M.; Endres, S.; Forster, S.; Flegler, V.J.; Böttcher, B.; Aseyev, V.; Pöppler, A.C.; Luxenhofer, R.; Luxenhofer, R. Think beyond the Core: Impact of the Hydrophilic Corona on Drug Solubilization Using Polymer Micelles. ACS Appl. Mater. Interfaces 2020, 12, 24531–24543. [Google Scholar] [CrossRef]
- Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted Drug Delivery Strategies for Precision Medicines. Nat. Rev. Mater. 2021, 6, 351–370. [Google Scholar] [CrossRef]
- Wells, C.M.; Harris, M.; Choi, L.; Murali, V.P.; Guerra, F.D.; Jennings, J.A. Stimuli-Responsive Drug Release from Smart Polymers. J. Funct. Biomater. 2019, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Saxena, V.; Hussain, M.D. Polymeric Mixed Micelles for Delivery of Curcumin to Multidrug Resistant Ovarian Cancer. J. Biomed. Nanotechnol. 2013, 9, 1146–1154. [Google Scholar] [CrossRef]
- Manjappa, A.S.; Kumbhar, P.S.; Patil, A.B.; Disouza, J.I.; Patravale, V.B. Polymeric Mixed Micelles: Improving the Anticancer Efficacy of Single-Copolymer Micelles. Crit. Rev. Ther. Drug Carr. Syst. 2019, 36, 1–58. [Google Scholar] [CrossRef]
- Ebrahim Attia, A.B.; Ong, Z.Y.; Hedrick, J.L.; Lee, P.P.; Ee, P.L.R.; Hammond, P.T.; Yang, Y.-Y. Mixed Micelles Self-Assembled from Block Copolymers for Drug Delivery. Curr. Opin. Colloid Interface Sci. 2011, 16, 182–194. [Google Scholar] [CrossRef]
- Cagel, M.; Tesan, F.C.; Bernabeu, E.; Salgueiro, M.J.; Zubillaga, M.B.; Moretton, M.A.; Chiappetta, D.A. Polymeric Mixed Micelles as Nanomedicines: Achievements and Perspectives. Eur. J. Pharm. Biopharm. 2017, 113, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Kapse, A.; Anup, N.; Patel, V.; Saraogi, G.K.; Mishra, D.K.; Tekade, R.K. Polymeric Micelles: A Ray of Hope among New Drug Delivery Systems. In Drug Delivery Systems; Academic Press: Cambridge, MA, USA, 2020; pp. 235–289. [Google Scholar] [CrossRef]
- Wei, Z.; Hao, J.; Yuan, S.; Li, Y.; Juan, W.; Sha, X.; Fang, X. Paclitaxel-Loaded Pluronic P123/F127 Mixed Polymeric Micelles: Formulation, Optimization and in Vitro Characterization. Int. J. Pharm. 2009, 376, 176–185. [Google Scholar] [CrossRef]
- Lee, C.F.; Yang, C.H.; Lin, T.L.; Bahadur, P.; Chen, L.J. Role of Molecular Weight and Hydrophobicity of Amphiphilic Tri-Block Copolymers in Temperature-Dependent Co-Micellization Process and Drug Solubility. Colloids Surf. B Biointerfaces 2019, 183, 110461. [Google Scholar] [CrossRef] [PubMed]
- Mehanny, M.; Hathout, R.M.; Geneidi, A.S.; Mansour, S. Bisdemethoxycurcumin Loaded Polymeric Mixed Micelles as Potential Anti-Cancer Remedy: Preparation, Optimization and Cytotoxic Evaluation in a HepG-2 Cell Model. J. Mol. Liq. 2016, 214, 162–170. [Google Scholar] [CrossRef]
- Chaibundit, C.; Ricardo, N.M.P.S.; Costa, F.D.M.L.L.; Yeates, S.G.; Booth, C. Micellization and Gelation of Mixed Copolymers P123 and F127 in Aqueous Solution. Langmuir 2007, 23, 9229–9236. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.Y.; Zhang, W.M. Recent Progress in Drug Delivery of Pluronic P123: Pharmaceutical Perspectives. J. Drug Target. 2017, 25, 471–484. [Google Scholar] [CrossRef]
- Kinning, D.J.; Thomas, E.L.; Fetters, L.J. Morphological Studies of Micelle Formation in Block Copolymer/Homopolymer Blends. J. Chem. Phys. 1998, 90, 5806. [Google Scholar] [CrossRef]
- Singh, V.; Khullar, P.; Dave, P.N.; Kaur, N. Micelles, Mixed Micelles, and Applications of Polyoxypropylene (PPO)-Polyoxyethylene (PEO)-Polyoxypropylene (PPO) Triblock Polymers. Int. J. Ind. Chem. 2013, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; Elbayoumi, T.A.; Torchilin, V.P. Mixed Micelles Made of Poly(Ethylene Glycol)–Phosphatidylethanolamine Conjugate and d-α-Tocopheryl Polyethylene Glycol 1000 Succinate as Pharmaceutical Nanocarriers for Camptothecin. Int. J. Pharm. 2005, 306, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Kancharla, S.; Bedrov, D.; Tsianou, M.; Alexandridis, P. Structure and Composition of Mixed Micelles Formed by Nonionic Block Copolymers and Ionic Surfactants in Water Determined by Small-Angle Neutron Scattering with Contrast Variation. J. Colloid Interface Sci. 2022, 609, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.L.; Lin, K.M.; Huang, C.K.; Hsiue, G.H. Self-Assembly of a Micelle Structure from Graft and Diblock Copolymers: An Example of Overcoming the Limitations of Polyions in Drug Delivery. Adv. Funct. Mater. 2006, 16, 2309–2316. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Yu, P.; Han, Y.; Li, Y.; Li, C. Hydrotropic Polymeric Mixed Micelles Based on Functional Hyperbranched Polyglycerol Copolymers as Hepatoma-Targeting Drug Delivery System. J. Pharm. Sci. 2013, 102, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Liu, H.; He, H.; Ribbe, A.E.; Thayumanavan, S. Blended Assemblies of Amphiphilic Random and Block Copolymers for Tunable Encapsulation and Release of Hydrophobic Guest Molecules. Macromolecules 2020, 53, 2713–2723. [Google Scholar] [CrossRef]
- Meyer, E.E.; Rosenberg, K.J.; Israelachvili, J. Recent Progress in Understanding Hydrophobic Interactions. Proc. Natl. Acad. Sci. USA 2006, 103, 15739–15746. [Google Scholar] [CrossRef] [Green Version]
- Chemistry LibreTexts. Hydrophobic Interactions. Available online: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Hydrophobic_Interactions (accessed on 19 March 2023).
- Baglioni, P.; Berti, D. Self Assembly in Micelles Combining Stacking and H-Bonding. Curr. Opin. Colloid Interface Sci. 2003, 8, 55–61. [Google Scholar] [CrossRef]
- Chen, F.; Stenzel, M.H. Polyion Complex Micelles for Protein Delivery. Aust. J. Chem. 2018, 71, 768–780. [Google Scholar] [CrossRef]
- Harada, A.; Kataoka, K. Novel Polyion Complex Micelles Entrapping Enzyme Molecules in the Core. 2. Characterization of the Micelles Prepared at Nonstoichiometric Mixing Ratios. Langmuir 1999, 15, 4208–4212. [Google Scholar] [CrossRef]
- Li, G.; Guo, L.; Meng, Y.; Zhang, T. Self-Assembled Nanoparticles from Thermo-Sensitive Polyion Complex Micelles for Controlled Drug Release. Chem. Eng. J. 2011, 174, 199–205. [Google Scholar] [CrossRef]
- Kamenova, K.; Grancharov, G.; Kortenova, V.; Petrov, P.D. Redox-Responsive Crosslinked Mixed Micelles for Controllable Release of Caffeic Acid Phenethyl Ester. Pharmaceutics 2022, 14, 679. [Google Scholar] [CrossRef]
- Petrov, P.; Tsvetanov, C.B.; Jérôme, R. Two-Component “Onionlike” Micelles with a PPO Core, a PDMAEMA Shell and a PEO Corona: Formation and Crosslinking. Polym. Int. 2008, 57, 1258–1264. [Google Scholar] [CrossRef]
- Zhao, L.; Du, J.; Duan, Y.; Zang, Y.; Zhang, H.; Yang, C.; Cao, F.; Zhai, G. Curcumin Loaded Mixed Micelles Composed of Pluronic P123 and F68: Preparation, Optimization and in Vitro Characterization. Colloids Surf. B Biointerfaces 2012, 97, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Zhang, H.; Liu, X.; Zhang, M.; Zhai, G. Preparation and Evaluation in Vitro and in Vivo of Docetaxel Loaded Mixed Micelles for Oral Administration. Colloids Surf. B Biointerfaces 2014, 114, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.K.; Lo, C.L.; Chen, H.H.; Hsiue, G.H. Multifunctional Micelles for Cancer Cell Targeting, Distribution Imaging, and Anticancer Drug Delivery. Adv. Funct. Mater. 2007, 17, 2291–2297. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, L.; Torchilin, V.P. PH-Sensitive Poly(Histidine)-PEG/DSPE-PEG Co-Polymer Micelles for Cytosolic Drug Delivery. Biomaterials 2013, 34, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Aliabadi, H.M.; Lavasanifar, A. Polymeric Micelles for Drug Delivery. Expert Opin. Drug Deliv. 2006, 3, 139–162. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Z.; Chen, T.; Guo, X.; Zhou, S. Preparation and Characterization of Thermosensitive Pluronic F127-b-Poly(ɛ-Caprolactone) Mixed Micelles. Colloids Surf. B Biointerfaces 2011, 86, 45–57. [Google Scholar] [CrossRef]
- DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 Diabetes. Lancet 2018, 391, 2449–2462. [Google Scholar] [CrossRef]
- Liu, G.; Ma, R.; Ren, J.; Li, Z.; Zhang, H.; Zhang, Z.; An, Y.; Shi, L. A Glucose-Responsive Complex Polymeric Micelle Enabling Repeated on–off Release and Insulin Protection. Soft Matter 2013, 9, 1636–1644. [Google Scholar] [CrossRef]
- Li, X.; Xia, X.; Zhang, J.; Adu-Frimpong, M.; Shen, X.; Yin, W.; He, Q.; Rong, W.; Shi, F.; Cao, X.; et al. Preparation, Physical Characterization, Pharmacokinetics and Anti-Hyperglycemic Activity of Esculetin-Loaded Mixed Micelles. J. Pharm. Sci. 2023, 112, 148–157. [Google Scholar] [CrossRef]
- Carvalho, C.; Santos, R.X.; Cardoso, S.; Correia, S.; Oliveira, P.J.; Santos, M.S.; Moreira, P.I. Doxorubicin: The Good, the Bad and the Ugly Effect. Curr. Med. Chem. 2009, 16, 3267–3285. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Cheng, T.; Liu, J.; Liu, J.; Yang, C.; Chu, L.; Zhang, Y.; Ma, R.; Shi, L. Self-Regulated Multifunctional Collaboration of Targeted Nanocarriers for Enhanced Tumor Therapy. Biomacromolecules 2014, 15, 3634–3642. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh-Holagh, S.; Hashemi-Najafabadi, S.; Shaki, H.; Vasheghani-Farahani, E. Self-Assembled and PH-Sensitive Mixed Micelles as an Intracellular Doxorubicin Delivery System. J. Colloid Interface Sci. 2018, 523, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zang, X.; Meng, X.; Li, Y.; Xie, Y.; Chen, X. Targeted Delivery of Quercetin by Biotinylated Mixed Micelles for Non-Small Cell Lung Cancer Treatment. Drug Deliv. 2022, 29, 970–985. [Google Scholar] [CrossRef]
- Manyak, M.J.; Russo, A.; Smith, P.D.; Glatstein, E. Photodynamic Therapy. J. Clin. Oncol. 2016, 6, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Cai, Y.; Zhao, Y.; Yu, H.; Zhou, H.; Chen, M. Polymeric Mixed Micelles Loaded Mitoxantrone for Overcoming Multidrug Resistance in Breast Cancer via Photodynamic Therapy. Int. J. Nanomed. 2017, 12, 6595. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Khan, A.R.; Liu, M.; Fu, M.; Ji, J.; Chi, L.; Zhai, G. Stimuli-Responsive Polymeric Micelles for the Delivery of Paclitaxel. J. Drug Deliv. Sci. Technol. 2020, 56, 101523. [Google Scholar] [CrossRef]
- Guan, S.; Zhang, Q.; Bao, J.; Duan, T.; Hu, R.; Czech, T.; Tang, J. Phosphatidylserine Targeting Peptide-Functionalized PH Sensitive Mixed Micelles for Enhanced Anti-Tumor Drug Delivery. Eur. J. Pharm. Biopharm. 2020, 147, 87–101. [Google Scholar] [CrossRef]
- Kim, T.H.; Mount, C.W.; Dulken, B.W.; Ramos, J.; Fu, C.J.; Khant, H.A.; Chiu, W.; Gombotz, W.R.; Pun, S.H. Filamentous, Mixed Micelles of Triblock Copolymers Enhance Tumor Localization of Indocyanine Green in a Murine Xenograft Model. Mol. Pharm. 2012, 9, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Fang, S.; Shi, S.; Deng, J.; Liu, B.; Cai, L. Hybrid Polypeptide Micelles Loading Indocyanine Green for Tumor Imaging and Photothermal Effect Study. Biomacromolecules 2013, 14, 3027–3033. [Google Scholar] [CrossRef]
- Kirchherr, A.K.; Briel, A.; Mäder, K. Stabilization of Indocyanine Green by Encapsulation within Micellar Systems. Mol. Pharm. 2009, 6, 480–491. [Google Scholar] [CrossRef]
- Kim, T.H.; Chen, Y.; Mount, C.W.; Gombotz, W.R.; Li, X.; Pun, S.H. Evaluation of Temperature-Sensitive, Indocyanine Green-Encapsulating Micelles for Noninvasive Near-Infrared Tumor Imaging. Pharm. Res. 2010, 27, 1900–1913. [Google Scholar] [CrossRef]
- Chien, Y.Y.; Wang, T.Y.; Liao, P.W.; Wu, W.C.; Chen, C.Y. Folate-Conjugated and Dual Stimuli-Responsive Mixed Micelles Loading Indocyanine Green for Photothermal and Photodynamic Therapy. Macromol. Biosci. 2018, 18, 1700409. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Santoso, M.R.; Rezaee, F.; Aghaverdi, H.; Mahmoudi, M.; Perry, G. Advances in Alzheimer’s Diagnosis and Therapy: The Implications of Nanotechnology. Trends Biotechnol. 2017, 35, 937–953. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, M.J.; Andrade, S.; Loureiro, J.A.; do Carmo Pereira, M. Nanotechnology to Improve the Alzheimer’s Disease Therapy with Natural Compounds. Drug Deliv. Transl. Res. 2020, 10, 380–402. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Thakur, V.; Deshmukh, R.; Sharma, A.; Rathore, M.S.; Kumar, A.; Mishra, N. Development and Characterization of Morin Hydrate-Loaded Micellar Nanocarriers for the Effective Management of Alzheimer’s Disease. J. Microencapsul. 2018, 35, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Katekar, R.; Thombre, G.; Riyazuddin, M.; Husain, A.; Rani, H.; Praveena, K.S.; Gayen, J.R. Pharmacokinetics and Brain Targeting of Trans-Resveratrol Loaded Mixed Micelles in Rats Following Intravenous Administration. Pharm. Dev. Technol. 2019, 25, 300–307. [Google Scholar] [CrossRef]
- Singh, A.; Ujjwal, R.R.; Kumar, A.; Verma, R.K.; Shukla, R. Formulation and Optimization of Silymarin-Encapsulated Binary Micelles for Enhanced Amyloid Disaggregation Activity. Drug Dev. Ind. Pharm. 2022, 47, 1775–1785. [Google Scholar] [CrossRef]
- Ding, J.; Sun, Y.; Li, J.; Wang, H.; Mao, S. Enhanced Blood–Brain Barrier Transport of Vinpocetine by Oral Delivery of Mixed Micelles in Combination with a Message Guider. J. Drug Target. 2017, 25, 532–540. [Google Scholar] [CrossRef]
- Mondal, R.; Ghosh, N.; Paul, B.K.; Mukherjee, S. Triblock-Copolymer-Assisted Mixed-Micelle Formation Results in the Refolding of Unfolded Protein. Langmuir 2018, 34, 896–903. [Google Scholar] [CrossRef]
- Huang, F.; Qu, A.; Yang, H.; Zhu, L.; Zhou, H.; Liu, J.; Long, J.; Shi, L. Self-Assembly Molecular Chaperone to Concurrently Inhibit the Production and Aggregation of Amyloid β Peptide Associated with Alzheimer’s Disease. ACS Macro Lett. 2018, 7, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Wang, J.; Qu, A.; Shen, L.; Liu, J.; Liu, J.; Zhang, Z.; An, Y.; Shi, L. Maintenance of Amyloid β Peptide Homeostasis by Artificial Chaperones Based on Mixed-Shell Polymeric Micelles. Angew. Chem. Int. Ed. 2014, 53, 8985–8990. [Google Scholar] [CrossRef]
- Chiappetta, D.A.; Facorro, G.; Rubin de Celis, E.; Sosnik, A. Synergistic Encapsulation of the Anti-HIV Agent Efavirenz within Mixed Poloxamine/Poloxamer Polymeric Micelles. Nanomedicine 2011, 7, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.H.; Mahajan, H.S. Mixed Micelles for Bioavailability Enhancement of Nelfinavir Mesylate: In Vitro Characterisation and In Vivo Pharmacokinetic Study. Mater. Technol. 2018, 33, 793–802. [Google Scholar] [CrossRef]
- Li, Q.; Hao, X.; Lv, J.; Ren, X.; Zhang, K.; Ullah, I.; Feng, Y.; Shi, C.; Zhang, W. Mixed Micelles Obtained by Co-Assembling Comb-like and Grafting Copolymers as Gene Carriers for Efficient Gene Delivery and Expression in Endothelial Cells. J. Mater. Chem. B 2017, 5, 1673–1687. [Google Scholar] [CrossRef]
- Guo, C.; Manjili, M.H.; Subjeck, J.R.; Sarkar, D.; Fisher, P.B.; Wang, X.Y. Therapeutic Cancer Vaccines: Past, Present, and Future. Adv. Cancer Res. 2013, 119, 421–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherbet, G.V. Notable Approaches to Cancer Immunotherapy. In Molecular Approach to Cancer Management; Academic Press: Cambridge, MA, USA, 2017; pp. 223–244. [Google Scholar] [CrossRef]
- Sui, Y.; Li, J.; Qu, J.; Fang, T.; Zhang, H.; Zhang, J.; Wang, Z.; Xia, M.; Dai, Y.; Wang, D. Dual-Responsive Nanovaccine for Cytosolic Delivery of Antigens to Boost Cellular Immune Responses and Cancer Immunotherapy. Asian J. Pharm. Sci. 2022, 17, 583–595. [Google Scholar] [CrossRef]
- Li, J.; Chen, Q.; Zha, Z.; Li, H.; Toh, K.; Dirisala, A.; Matsumoto, Y.; Osada, K.; Kataoka, K.; Ge, Z. Ternary Polyplex Micelles with PEG Shells and Intermediate Barrier to Complexed DNA Cores for Efficient Systemic Gene Delivery. J. Control. Release 2015, 209, 77–87. [Google Scholar] [CrossRef]
- Yang, W.; Chen, P.; Boonstra, E.; Hong, T.; Cabral, H. Polymeric Micelles with PH-Responsive Cross-Linked Core Enhance In Vivo MRNA Delivery. Pharmaceutics 2022, 14, 1205. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y.; Zhang, J.; Gao, H.; Liu, G.; Ma, R.; An, Y.; Kong, D.; Shi, L. PH/Sugar Dual Responsive Core-Cross-Linked PIC Micelles for Enhanced Intracellular Protein Delivery. Biomacromolecules 2013, 14, 3434–3443. [Google Scholar] [CrossRef]
- Honda, Y.; Nomoto, T.; Matsui, M.; Takemoto, H.; Kaihara, Y.; Miura, Y.; Nishiyama, N. Sequential Self-Assembly Using Tannic Acid and Phenylboronic Acid-Modified Copolymers for Potential Protein Delivery. Biomacromolecules 2020, 21, 3826–3835. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Kim, H.J.; Osawa, S.; Hayashi, K.; Toh, K.; Naito, M.; Min, H.S.; Yi, Y.; Kwon, I.C.; Kataoka, K.; et al. Dually Stabilized Triblock Copolymer Micelles with Hydrophilic Shell and Hydrophobic Interlayer for Systemic Antisense Oligonucleotide Delivery to Solid Tumor. ACS Biomater. Sci. Eng. 2019, 5, 5770–5780. [Google Scholar] [CrossRef] [PubMed]
- Kumbhar, P.S.; Nadaf, S.; Manjappa, A.S.; Jha, N.K.; Shinde, S.S.; Chopade, S.S.; Shete, A.S.; Disouza, J.I.; Sambamoorthy, U.; Kumar, S.A. D-ɑ-Tocopheryl Polyethylene Glycol Succinate: A Review of Multifarious Applications in Nanomedicines. OpenNano 2022, 6, 100036. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerardos, A.M.; Balafouti, A.; Pispas, S. Mixed Copolymer Micelles for Nanomedicine. Nanomanufacturing 2023, 3, 233-247. https://doi.org/10.3390/nanomanufacturing3020015
Gerardos AM, Balafouti A, Pispas S. Mixed Copolymer Micelles for Nanomedicine. Nanomanufacturing. 2023; 3(2):233-247. https://doi.org/10.3390/nanomanufacturing3020015
Chicago/Turabian StyleGerardos, Angelica M., Anastasia Balafouti, and Stergios Pispas. 2023. "Mixed Copolymer Micelles for Nanomedicine" Nanomanufacturing 3, no. 2: 233-247. https://doi.org/10.3390/nanomanufacturing3020015
APA StyleGerardos, A. M., Balafouti, A., & Pispas, S. (2023). Mixed Copolymer Micelles for Nanomedicine. Nanomanufacturing, 3(2), 233-247. https://doi.org/10.3390/nanomanufacturing3020015