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Abstract: In this work, we propose a new protocol that integrates robust classification and visualiza-
tion techniques to analyze mixed data. This protocol is based on the combination of the Forward
Search Distance-Based (FS-DB) algorithm (Grané, Salini, and Verdolini 2020) and robust clustering.
The resulting groups are visualized via MDS maps and characterized through an analysis of several
graphical outputs. The methodology is illustrated on a real dataset related to European COVID-19
numerical health data, as well as the policy and restriction measurements of the 2020–2021 COVID-19
pandemic across the EU Member States. The results show similarities among countries in terms
of incidence and the management of the emergency across several waves of the disease. With the
proposed methodology, new smart visualization tools for analyzing mixed data are provided.
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1. Introduction

The diversity of data is continuously increasing with the increase of the availability
of massive datasets from multiple sources, making mixed-type-data analysis tools more
important than ever. This diversity is not only “objective”, but may become “subjective” as
more and more people enter the world of Big Data analysis. For some working on data in
certain areas, it may not be sufficient to only consider the objective nature of the data (for
example, human height can be “objectively” considered as continuous), but, depending on
the context in which the analysis is carried out, transforming the data into another type
and using different data analysis tools could be more strategically effective (human height
could be considered as simply “small” or “big”). Furthermore, when combining data of
different types, a flexible data analysis, i.e., less specific to a particular data type, could
give better results [1].

One common issue when dealing with tools applied to mixed data is the choice of the
distance. Different choices of the distance measure might impact the results of dimension
reduction, clustering, classification, and so on, and in the more general context of machine
learning, for example, the concept of distance metric learning when dealing with mixed
data has been widely explored [2,3], leading to the search for more robust and sensitive
metrics with respect to mixed data [4].

In the context of multidimensional scaling (MDS), Grané and Romera [5] compared
multiple MDS configurations to visualize the intrinsic data profile structure and used a ro-
bust joint metric combining different distance matrices through related metric scaling [6,7].
They also proposed a novel statistic for outlier detection in mixed data. Grané et al. [8]
proposed a method to hierarchically cluster mixed data using an approach based on the
Forward Search algorithm [9]. Their proposal was to build an algorithm (called Forward
Search Distance-Based (FS-DB)), which was a combination of the distance function pro-
posed by Grané and Romera and a forward search algorithm in order to improve the
robustness of the results and to visualize and identify outliers, even if they were masked in
the bulk of the data.
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The aim of this work was twofold. First, we wanted to complement the FS-DB
algorithm by enlarging the collection of distance functions by adding a robustified version
of Gower’s distance and by adding new graphical tools in order to visualize the complex
structure of mixed data. In particular, we implemented interactive scatter plots to visualize
quantitative variables conditioned on categorical ones, we developed cross-correlation
heat maps in order to visualize the complex relationship among the original variables and
the MDS axes, and finally, we implemented a robust hierarchical clustering to visualize
the proximities among individuals through a dendrogram representation. To illustrate
this methodology, we produced a complex dataset related to the spread of the COVID-
19 pandemic in the 27 EU Member States, covering the period from the first day that
COVID-19 data were published to the last month before the start of vaccination programs
in Europe.

This paper is organized as follows. In Section 2, we present an overview of the FS-DB
method and propose a novel algorithm for the improved FS-DB method, as well as a
protocol to visualize mixed data. In Section 3, we apply the algorithm and the protocol to
a dataset related to three waves of the COVID-19 pandemic in the 27 EU Member States.
Section 4 concludes the paper.

2. Materials and Methods
2.1. FS-DB Algorithm

The FS-DB algorithm was introduced by [8] for the analysis and clustering of mixed
data. In particular, the FS-DB algorithm combines the forward search method [9,10] with a
distance-based tool, used in [5], to detect outliers in mixed-type datasets.

The idea behind this algorithm is to help understand the structure of mixed-type
datasets by identifying the subset of the closest units (according to a user-selected distance
measure), as well as those units that are the most distant from the set(s) of data. When the
algorithm is applied to a dataset some numerical outputs and two interesting graphical
outputs are produced. The first one, called the forward plot, depicts the trajectories of
the units and serves to illustrate the units’ performance along the steps of the algorithm.
This is an interactive plot, where the user can select a subset of units for further analysis,
and it allows identifying outlying observations at glance. The second one is the MDS plot,
which contains the final MDS representation of the dataset, where the user-selected subsets
of units are subsequently highlighted.

Two possible distance measures are available in the FS-DB algorithm: a distance
measure based on Gower’s classical similarity coefficient and a metric obtained via related
metric scaling, which satisfies several axioms related to the property of identifying and
discarding redundant information. See [8] for details.

2.2. A Protocol to Visualize Mixed Data

In this section, we present our new contributions to the FS-DB algorithm. In particular,
we incorporated a smart visualization of mixed data to help understand the complexity of
the data structure, as well as the relationships among the variables. This was achieved in
several directions, for example by adding scatter plots of quantitative variables colored
according to the categorical variables; these types of plots can be used to represent either
the original quantitative variables or the resulting principal coordinates (MDS-maps);
we also added a brushing option so that the user could select several sets of units to be
highlighted. Another interesting contribution was to enlarge the collection of distance
measures to be used for mixed data. In this work, we proposed to use a robustified version
of Gower’s distance. The code implemented for the algorithm followed the standards
of the common and flexible framework provided by the FSDA Toolbox of MATLAB [11];
the authors’ intention is to submit the code for future releases.

In what follows, we describe the different steps of the protocol.

1. Exploratory step.
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• Multiple scatter-plots and box-plots of quantitative variables by categorical
ones. Due to the mixture nature of the data, we represent the individuals in
the original variable space and color them according to the categories of the
categorical variables in order to better understand the complexity of the data.

• Spatial data tool. In multiple scatter-plots the user can select which data points
wants to be highlight in a geographical map. The code allows the possibility
to link the data to a shape-file (when available), inspired by the GeoDa user
friendly tool for spatial data analysis (https://geodacenter.github.io, accessed
on 1 February 2021).

2. Data analysis step.

• Starting point: A data matrix of mixed data n × p.
• Metric construction: Robustification of Gower index. Gower’s similarly coeffi-

cient [12] is one of the most popular similarity measures for mixed data. This
well-known similarity coefficient is the Pythagorean sum of three similarity coef-
ficients for quantitative, binary and multi-state categorical variables. For quanti-
tative variables, the similarity is related to range-standardized city-block distance
and for binary and multi-state categorical ones, respectively, simple matching
and Jaccard’s similarity coefficients are computed. One of the main drawbacks
of Gower’s coefficient is its lack of robustness which yields to non-stable MDS
configurations [5,8]. Inspired by Gower’s idea, we construct a robust distance by
adding three distance measures: robust Mahalanobis distance for quantitative
variables, Hamming distance for binary ones and for multi-state categorical
variables we calculate the distance associated to Jaccard’s similarity coefficient.
We denote this new distance measure by δ. Note that, first, our robust proposal
only concerns quantitative variables, since distance measures for binary and
multi-sate categorical are left unchanged, and second, by considering (robust)
Mahalanobis distance, we also take into account the redundant information
within quantitative variables, which is not taken into account by Euclidean or
Minkowski distances, since these well-known distances always increase despite
the added statistical information is not relevant. Thus, the choice of the distance
measure is a key point. Here we are not interested in a general distance measure
but in a statistical distance measure, that is, we want to see close those individ-
uals that share the same kind of information and we want to see distant those
with very different characteristics.

• Data analysis: FS-DB algorithm is applied to the n × n distance matrix obtained
from metric δ.

3. Visualization step.

• Outliers. We use FS-DB algorithm to visualize the most inner and most outer
observations in the dataset, according to δ. The Forward-plot is an interactive
plot, where the user can select a group of individuals to explore.

• Multiple scatter-plots with MDS-maps. We produce MDS maps to visualize
the proximities among individuals, according to δ. Groups of user-selected
individuals are subsequently highlighted with colors.

• Relationship between original mixed-type variables and MDS coordinates. A way
to see the influence of each original variable in the principal coordinates is to
compute a correlation coefficient or a association measure between the original
variables and the axes. We use Pearson’s correlation coefficient for quantitative
variables, Cramer’s V for nominal ones and Spearman’s correlation coefficient
for ordinal ones. Other measures of association (Kendall’s τB and τC, γ, etc.) can
be implemented. We visualize these relationships through a heat map.

• Clustering. We give hierarchical clustering representations of the individuals
based on distance δ. We also give cophenetic correlation coefficient as a measure
of discrepancy between δ and the corresponding ultrametric distance. This

https://geodacenter.github.io
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analysis allows to check the coherence with the previous clusterings observed in
the Forward-plot and the MDS-maps.

3. Results
3.1. Data Description

We applied the tools described in Section 2.2 to a dataset related to the spread of
the COVID-19 pandemic in the 27 EU Member States. The data cover the period from
24 February 2020 to 30 November 2020, i.e., from the first day when collected COVID-19
data were published to the last month before the start of vaccination programs in Europe.

Data sources were general data repositories for COVID-19 data [13,14], data reposito-
ries of research projects on COVID-19 [15,16] and institutional repositories (Eurostat, United
Nations, World Health Organisation, the World Bank). Our data collection procedure is in
line with the recent literature on COVID-19 data modeling [17–19].

Figure 1 shows a sketch of the data sources and the way they were structured in
our dataset.

Figure 1. Sources and structure of the dataset used for the analysis.

We looked for different data sources regarding three main types of variables: (i) pan-
demic variables; (ii) restriction variables; (iii) mobility variables; (iv) public health variables;
(v) socioeconomic and demographic variables. Pandemic and restriction/mobility vari-
ables are stored on a daily basis, socioeconomic variables have generally a wider time
periodicity (from monthly to annual). The type of variables is very diverse: there are
discrete quantitative (pandemic variables), percentage (pandemic, mobility and public
health variables), ordinal (restriction variables), rate variables (in the public health variables
group), continuous quantitative and index variables in the socioeconomic variable group.
The variable Health_Expenditure_Type is the only binary variable expressing whether
the national health system is prevalently private or public. Overall the dataset comprises
7587 records and amounts to 48 variables divided in 11 ordinal variables, 14 (discrete or
continuous) quantitative variables, 1 binary variable, 14 percentage or percentage change
variables, 6 rate variables and 2 index variables. As for periodicity we get 27 daily variables,
1 monthly variable, 2 quarterly variables and 18 annual variables. For some variables with
similar meaning (like 2019_Risk_Poverty, which is a percentage, and extreme_poverty,
which is ordinal) we considered different types to enrich the mixed nature of our dataset.

Therefore, the formed dataset is rich in variable type variety, can be used for time
series analysis or for multivariate analysis by using appropriate aggregation functions (as
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we will see in the following sections), can be used for outlier and robustness checking in
the context of the 27 EU Member States. It will be freely available together with all the
MATLAB code implemented for this work.

Table A1 in Appendix B lists in detail the characteristics of the variables in the dataset
together with their type, group, periodicity and source.

3.2. Visual Exploratory Data Analysis

In our analysis we divided the epidemiological time series in three periods, the first
one corresponding to the first wave of the pandemic when Western EU countries were
more affected than Eastern EU countries (from the end of February 2020 to mid June 2020),
the second one during the Summer of 2020 when the pandemic was less strong almost
in every EU country, and the final one corresponding to the third pandemic wave which
affected almost all the EU Member States (from mid September 2020 to end of November
2020). The three periods are referred to as Wave 1, Wave 2 and Wave 3 in the following.

Despite the original data were time series data, the aim this work was to explore the
overall characteristics of the different waves in the EU Member States using visual tools.
For this reason we aggregated our data according to: type of variable, wave, country and
aggregating statistics. The statistics considered for aggregation were mean, median and
max for quantitative variables, and the mode for qualitative variables (including the only
binary variable in the dataset, i.e., the country’s health system type).

Our first visualization tool is about displaying in the same multiple scatter-plot the
pairwise relationships among several variables together with the box-plots of the chosen
variables on the main diagonal of the multiple scatter-plot. At the same time, individuals
(country data points) in the multiple scatter-plot are colored according to the values of
another variable which can be viewed as a conditional or data point grouping variable.

Figure 2 shows an example of this tool for three variables (PercConf (No. of tested
positive over No. of tests), 2019_Risk_Poverty and aged_70_older) colored by the levels
of school_closing in all the three waves. From the figure it can be seen that, for example,
all countries adopted a strong form of school closing at levels 2 and 3 (the latter being
the maximum level out of 4 levels, from 0 to 3). Two outlying countries can be identified
with respect to PercConf, one with school_closing at level 2 and another one at level 3.
In wave 2 highest school_closing levels are related to countries having lower percentages
of PercConf. Again, we can see two outlying countries with respect to PercConf one with
school_closing at level 1 and one at level 2. In wave 3, only one country adopted the
highest school closing level, having experienced a medium-high level of PercConf, and
now no outliers are present. This visual representation is dynamic and aims to detect
outliers on some combinations of variables according to the selected conditioning variable.
Looking at the different waves one can see what is the ’overall outlier evolution’ among
the EU Member States with respect to the measures on school closing, which have been
adopted in almost all the EU countries, but at a different level. In this way, it is easier to
see if the EU Member States adopted a more or less ’common policy’ with respect to the
effects of these measures on tackling the pandemic. Of course one can choose different
conditioning variables and different ’output’ variables.

Figure 3 shows scatter-plots and box-plots for deaths_daily, female_smokers and
workplaces_mobility, colored by Health_Expenditure_Type (1 = ’mainly public’, 0 =
’mainly private’) in all the waves considered. It can be observed, for example, that in
wave 1 three countries (of which two have mainly a private health system) were outliers
with respect to the number of deaths per 1000 inhabitants. In wave 2 only one country (with
public health system) was an outlier with respect to deaths_daily, whereas in wave 3
there were no outliers. These can be seen by looking at the conditional box-plots. Another
finding is that in wave 3 the first quartile of deaths_daily for countries with private health
system equals the third quartile of this variable for countries with public health system,
indicating that the number of deaths per 1000 inhabitants was much greater in those
countries with a mainly private health system. This in an important example about using
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this visual tool to immediately check the impact of EU countries’ policies with respect to
some macro-features of the countries, like the type of health system, in this case. There
has been a long and controversial debate on the effectiveness of private or public health
system to tackling the pandemic. The neoliberalism in healthcare has been the prevalent
trend in almost all Western EU countries in recent decades, but the COVID-19 pandemic
has re-ignited some recent literature in favor of the public system [20].

(a) Wave 1 (b) Wave 2 (c) Wave 3

Figure 2. Exploratory step: Multiple scatter-plots for PercConf, 2019_Risk_Poverty and aged_70_older) colored by
school_closing.

(a) Wave 1 (b) Wave 2 (c) Wave 3

Figure 3. Exploratory step: Multiple scatter-plot for deaths_daily, female_smokers and workplaces_mobility, colored
by Health_Expenditure_Type.

Our second exploratory visualization tool is about brushing a multiple scatter-plot,
similar to those in Figures 2 and 3, with the purpose of highlighting some data points of
interest, for example the outliers. The visual effect is the appearance of the acronyms or
name of the countries and the corresponding map regions highlighted in colors. This could
be done dynamically, i.e., the brushing can be done consecutively, and new countries will
be added in the map as a result of consecutive selections. some examples are shown in
Figures 4–6, where we display a multiple scatter-plot for PercConf, 2019_Risk_Poverty
and aged_70_older for waves 1, 2 and 3, respectively. In wave 1, Austria and Lithuania
are outlying countries with respect to PercConf, in wave, 2 Italy, Germany and Portugal
are outlying points for aged_70_older and, in wave 3, the same happens for Bulgaria,
Romania, Greece and Latvia regarding 2019_Risk_Poverty.
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(a) Scatter-plot (b) Geographic map

Figure 4. Exploratory step: Data brushing on multiple scatter-plot and box-plots to highlight
countries on a map: points highlighted on scatter-plots are colored in red on the map. Wave 1.

(a) Scatter-plot (b) Geographic map

Figure 5. Exploratory step: Data brushing on multiple scatter-plot and box-plots to highlight
countries on a map: points highlighted on scatter-plots are colored in red on the map. Wave 2.

(a) Scatter-plot (b) Geographic map

Figure 6. Exploratory step: Data brushing on multiple scatter-plot and box-plots to highlight
countries on a map: points highlighted on scatter-plots are colored in red on the map. Wave 3.

Figure 7 contains the graphical output of the FS-DB algorithm for outlier detection in
datasets of mixed data. Left panels show the Forward-plots and right panels contain the
MDS-plots. To produce these plots, all the variables in the dataset were used, and distance
between countries was measured using our proposal for robust Gower index.
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(a) Forward-plot for wave 1 (b) MDS-plot for wave 1

(c) Forward-plot for wave 2 (d) MDS-plot for wave 2

(e) Forward-plot for wave 3 (f) MDS-plot for wave 3

Figure 7. Visualization step: Graphical output of the FS-DB algorithm for waves 1 to 3.

The Forward-plots monitor the trajectories of the units in order to illustrate their
performance along the steps of the FS-DB algorithm. In the first step of the algorithm the
subset of closest units is identified (according to a proximity function based on distance δ).
In the subsequent steps, units are added one-by-one to this subset until there are no more
units to add. In each iteration, units are allowed to enter and exit the subset, since in each
iteration the current subset is formed by those units with lowest distance measure. Thus,
the Forward-plots are useful to understand how the metric unfolds rather than providing
only a final picture of the outcome, like the final MDS-plot. For example, trajectories which
end close to one another represent units which are similar among themselves, but different
from others. Moreover, those units that enter in the final steps of the algorithm can be seen
as multivariate outliers according to the monitored distance.

The Forward-plot is an interactive graph, which allows the user to select a trajectory or
group of trajectories, which are immediately highlighted and, at the same time, new MDS-
maps are produced with the corresponding highlighted units. To illustrate this, in panels
(a), (c) and (e) of Figure 7, we highlighted those countries that enter at the end of the search,
so the most distant from the bulk of the data. These countries are also highlighted in the
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corresponding MDS-plots on the right hand side panels of Figure 7. They are Italy, Ireland,
Portugal, Sweden, and Denmark for wave 1; Italy, Spain, Portugal, Sweden, Denmark,
and Finland for wave 2; Spain, Portugal, Greece, Ireland, Sweden, and Denmark for wave 3.
So, there are three countries which show a similar pattern along the three waves (Portugal,
Sweden and Denmark), while others like Italy, Spain or Ireland maintain consistency along
two of the three waves.

Clearly, results substantially differ when we consider Gower’s index instead of its
robustified version. As expected, there are more countries that can be considered as
multivariate outliers. For example, in Figure A1 in Appendix A we can see that for wave 1,
Italy, Sweden, Denmark and Finland still appear as outlying countries, but also Austria,
Czech Republic, Latvia, Lithuania, Slovenia, Romania and Bulgaria. Regarding wave 2,
the outlier set formed by Ireland, Portugal, Sweden, Spain and Greece has enlarged with
Poland, Lithuania, Slovenia, Romania and Bulgaria. These four latter countries appear as
outliers along the three waves regarding Gower’s distance.

A way to interpret the influence of the original variables in the MDS-plots is to
compute a coefficient of correlation or a measure of association between the original
variables and MDS coordinates. Figure 8 provides an overview of the cross-correlations
between the original variables and the three MDS coordinates in the three waves. In wave
1 Health_Expenditure_Type was the variable with highest positive correlation with PC1,
whereas hospital_beds showed the highest negative correlation with PC1. Health_Ex-
penditure_Type was also highly positively correlated with PC2 together with workplaces_
mobility and parks_mobility, whereas workplace_closing showed a highly negative
correlation with PC2. As for PC3, testing_policy had a high positive correlation and
international_movement_restrictions had a high negative correlation with PC3.

For wave 2, a similar pattern of correlation can be observed for PC1, with Health_Ex-
penditure_Type having the highest positive correlation and hospital_beds the high-
est negative one. Regarding PC2, there is a less clear correlation pattern, since all vari-
ables are weakly or moderately correlated with PC2. For PC3 Health_Expenditure_Type
and life_expectancy were highly positively correlated, whereas school_closing and
transport_closing showed high negative correlations with PC3.

In wave 3, Health_Expenditure_Type was again highly positively correlated with
PC1, but this time hospital_beds showed high positive correlation (not negative correla-
tion as in wave 1) with PC1. High negative correlation is present for transport_closing.
cancel_events is highly negatively correlated with PC2 whereas for PC3 there are neither
positive nor negative patterns of strong correlation.

(a) Wave 1 (b) Wave 2 (c) Wave 3

Figure 8. Visualization step: Heat map cross-correlations for original variables and MDS coordinates,
for waves 1 to 3.

In Figure 9, we give the hierarchical clustering representations obtained from the
robust distance measure, for the three waves. Cophenetic correlation coefficient is also
provided as a measure of distortion between original distance and the ultrametric distance.
This coefficient took a minimum value of 0.75 (attained in the first wave) and a maxi-
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mum of 0.78 (in second wave), meaning that there is a high degree of coherence between
both metrics.

(a) Wave 1 (b) Wave 2 (c) Wave 3

Figure 9. Visualization step: Hierarchical clustering for waves 1–3.

Similar clusterings can be observed at level 2.4. For the first and second wave two
clusters are clearly defined, whereas for the third wave one of the previous clusters seems
to split in two or three groups. In particular, countries like Portugal, Malta, Italy, Ireland,
Spain, Latvia, Sweden, Finland, and Denmark are in the same cluster during the first and
second waves. Note that all the countries identified as outliers with the FS-DB algorithm
are in this group. If we look at those variables most correlated with the MDS axes, we
see that all these countries share common characteristics: they all have a mainly public
health system, with a rather low number of hospital beds per 1000 inhabitants (below 4.5),
a median life expectation of 81.9, a medium record of confinement to home during the
first wave that reduced to low levels in the second wave, and medium-high values of
school-closing during the first wave that reduced to medium values during the second
wave. On the other hand, the rest of EU State Members have a mainly private health
system, with a high number of hospital beds per 1000 inhabitants (from 3 to 8), a median
life expectation of 81.3, a varying record of confinement to home during the first wave
(0–3 values), that reduced to none/low levels in the second wave, and medium-high
values of school-closing during the first wave that reduce to low values during the second
wave. In the third wave, the smallest cluster is split in three groups, Spain, Malta, Finland,
and Denmark; Sweden, Portugal and Italy; Ireland and Greece. All these countries have the
highest level of bans on private gatherings, low values of school-closing and they differ in
stay-home restrictions. On the other hand, the EU State Members in the biggest cluster have
in common wide ranges on the level of bans on private gatherings and on school-closing.

Concerning Gower’s distance, cophenetic correlation coefficient took lower values
(from a minimum of 0.64 in the first wave to a maximum of 0.73 in the third wave),
indicating that the degree of coherence between Gower’s and ultrametric distance is
lower than between robust Gower’s and the ultrametric one. Regarding the dendrograms,
in Figure A2 in the Appendix A we observe a very different pattern in the three waves.
Moreover, those countries identified as multivariate outliers by the FS-DB algorithm are
no longer in the same cluster. This may indicate that a non-robust distance can produce
misleading results.

4. Discussion

A new protocol that integrates robust classification and visualization techniques for
mixed data was proposed. The protocol was based on the combination of the FS-DB
algorithm and robust hierarchical clustering.

The methodological contributions of this paper are several: First, the collection of
distance functions to be used in FS-DB algorithm was enlarged by adding a robustified
version of Gower’s distance. Second, new interactive plots were implemented in the
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exploratory step, such as multiple-scatter plot to visualize the relationship between several
numerical variables conditioned to a categorical one. The code also allowed the possibility
to link these plots to geographical maps, so that user-selected points in the scatter-plot
appeared as highlighted countries in the map. Third, in the visualization step, a heat
map was added to help the user visualize the complex relationship between the original
variables and the MDS coordinates. Finally, a dendrogram based on robust hierarchical
clustering was provided.

The methodology was illustrated on a rather complex dataset, produced by the
authors, related to the spread of the COVID-19 pandemic in the 27 EU 27 Member States,
covering the period from the first day when collected COVID-19 data were published
to the last month before the start of vaccination programs in Europe. Data sources were
general data repositories for COVID-19 data [13,14], data repositories of research projects
on COVID-19 [15,16] and institutional repositories (Eurostat, United Nations, World Health
Organisation, the World Bank).

As a result, the FS-DB algorithm identified several multivariate outliers, that is, coun-
tries that could be considered less similar to the others. This was the case for Portugal,
Sweden and Denmark, which showed a similar pattern along the three waves, but different
form the other Member States. The same happened to Italy, Spain and Ireland in two of the
three waves.

Regarding the influence of the original variables in the MDS-coordinates, we found a
common pattern along the three waves in the first coordinate, being Health_Expenditure_
Type and hospital_beds the highest correlated variables with PC1. The second and third
coordinates presented more heterogeneity, although variables such as Health_Expenditure
_Type, gathering_restrictions, stay_home_restrictions or life_expectancy showed
moderate correlations with PC2 in two of the three waves.

Finally, with the dendrogram representation based on a robust metric, several groups
of countries were identified at different levels. For instance, two clusters were observed
at level 2.4 in waves 1 and 2, which could be interpreted in terms of health resources and
management of the emergency.

We left for further research other implementations in the FS-DB algorithm, like a
k-means clustering algorithm based on metric δ or the extension of the algorithm for large
datasets, by applying the fast-MDS proposal in Grané and Sow-Barry [21].
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Appendix A. Results Concerning Gowers’ Distance

(a) Forward-plot for wave 1 (b) MDS-plot for wave 1

(c) Forward-plot for wave 2 (d) MDS-plot for wave 2

(e) Forward-plot for wave 3 (f) MDS-plot for wave 3

Figure A1. Visualization step: Graphical output of the FS-DB algorithm for waves 1 to 3. Gower’s distance.

(a) Wave 1 (b) Wave 2 (c) Wave 3

Figure A2. Visualization step: Hierarchical clustering for waves 1 to 3. Gower’s distance.
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Appendix B. Variable Description and Sources

Table A1. Variable description and sources—Variable values are referred to the period 24 February 2020–30 November 2020, unless stated otherwise.

Variable Name Variable Group Variable Type Description Periodicity Source; Accessed on 1 January 2021

Tests Pandemic Discrete quantitative Cumul. no. of SARS-CoV-2 tests Daily github.com/owid
confirmed Pandemic Discrete quantitative Cumul. no. of new COVID-19 cases Daily github.com/owid
recovered Pandemic Discrete quantitative Cumul. no. of recovered Daily github.com/covid19datahub/COVID19

people from COVID-19
deaths_accumulated Pandemic Discrete quantitative Cumul. no. of COVID-19 deaths Daily github.com/owid
deaths_daily Pandemic Discrete quantitative No. of daily COVID-19 deaths per 1000 inhab. Daily github.com/owid
PercConf Pandemic % rate No. of tested positive over No. of tests (×100) Daily github.com/owid
hosp Pandemic Discrete quantitative No. of people currently Daily github.com/owid; github.com/covid19datahub

hospitalized for COVID-19
icu Pandemic Discrete quantitative No. of people currently in Daily github.com/owid; github.com/covid19datahub

intensive care for COVID-19
school_closing Restriction Ordinal Record closings of schools and universities Daily www.bsg.ox.ac.uk
workplace_closing Restriction Ordinal Record closings of working places Daily www.bsg.ox.ac.uk
cancel_events Restriction Ordinal Record canceling public events Daily www.bsg.ox.ac.uk
gatherings_restrictions Restriction Ordinal Record bans on private gatherings Daily www.bsg.ox.ac.uk
transport_closing Restriction Ordinal Record closing of public transport Daily www.bsg.ox.ac.uk
stay_home_restrictions Restriction Ordinal Record confinement to home. Daily www.bsg.ox.ac.uk
internal_movement_restrictions Restriction Ordinal Record restrictions on internal movement Daily www.bsg.ox.ac.uk
international_movement_restrictions Restriction Ordinal Record restrictions on international travel Daily www.bsg.ox.ac.uk
information_campaigns Restriction Ordinal Record presence of public info campaigns Daily www.bsg.ox.ac.uk
testing_policy Restriction Ordinal Record testing policy Daily www.bsg.ox.ac.uk
contact_tracing Restriction Ordinal Record government contact tracing Daily www.bsg.ox.ac.uk
stringency_index Restriction Index Weighted average of closures variables (×100) Daily www.bsg.ox.ac.uk
retail_and_recreation_mobility Mobility % change % change in mobility for retail and recreation Daily www.google.com/covid19/mobility
grocery_and_pharmacy_mobility Mobility % change % change in mobility for grocery and pharmacy Daily www.google.com/covid19/mobility
parks_mobility Mobility % change % change in mobility for parks Daily www.google.com/covid19/mobility
transit_stations_mobility Mobility % change % change in mobility in stations Daily www.google.com/covid19/mobility
workplaces_mobility Mobility % change % change in mobility for workplaces Daily www.google.com/covid19/mobility
residential_mobility Mobility % change % change in mobility for residential places Daily www.google.com/covid19/mobility
2019_Risk_Poverty Socioeconomic % rate % of population at risk of poverty Annual (2019) www.ec.europe.eu
Population Socioeconomic Discrete quantitative Estimated country’s population Quarterly ec.europa.eu/eurostat/data/database
excess_mortality Socioeconomic % change Estimated country’s excess mortality Monthly ec.europa.eu/eurostat/data/database
per_capita_gdp Socioeconomic Discrete quantitative Quarterly per-capita GDP Quarterly ec.europa.eu/eurostat/data/database
gdp_per_capita Socioeconomic Discrete quantitative Annual per-capita GDP Annual ec.europa.eu/eurostat/data/database
population_density Socioeconomic Rate Population density Annual www.ec.europe.eu
median_age Socioeconomic Quantitative Population median age Annual www.ec.europe.eu
median_age Socioeconomic Quantitative Population median age Annual www.ec.europe.eu
aged_65_older Socioeconomic % % of population aged 65 or older Annual www.ec.europe.eu
aged_70_older Socioeconomic Quantitative Population median age Annual www.ec.europe.eu
extreme_poverty Socioeconomic % % of people living in extreme poverty Annual data.worldbank.org
cardiovasc_death_rate Public health Rate Death rate from cardiovascular disease Annual (2017) www.thelancet.com/gbd
diabetes_prevalence Public health % % of people aged 20–79 diagnosed with diabetes Annual (2017) idf.org
female_smokers Public health % % of women who smoke Annual apps.who.int/gho
male_smokers Public health % % of men who smoke Annual apps.who.int/gho
hospital_beds Public health Rate No. of hosp. beds per 1 K inhabitants Annual www.ec.europe.eu
life_expectancy Public health Quantitative Life expectancy at birth Annual (2019) population.un.org/wpp
human_development_index Socioeconomic Index Composite index measuring basic develop. Annual (2019) hdr.undp.org
joblessness Socioeconomic % % of people living in jobless households Annual www.ec.europe.eu
gps_per_100k_inhab Socioeconomic Rate No. of GPs per 100 K inhabitants Annual (2018) gateway.euro.who.int/en/indicators
Health_Expenditure_Type Public health Binary Prevalent health system (private or public) Annual www.ec.europe.eu
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