Finite Multiple Mixed Values
Abstract
:1. Introduction
1.1. Multiple Zeta Values and Their Finite Analogs
1.2. Euler Sums and Their Finite Analogs
2. Multiple Mixed Values and Their Finite Analogs
- : generated by FESs (finite Euler sums);
- : generated by FMMVs (finite multiple mixed values);
- : generated by FMtVs (finite multiple t-values);
- : generated by FMTVs (finite multiple T-values);
- : generated by FMSVs (finite multiple S-values);
- : generated by level two FMZVs defined by (15);
- : generated by the ;
- : generated by the .
2.1. Stuffle Relations
2.2. Reversal Relations
2.3. Linear Shuffle Relations
3. Depth-One and -Two Values
4. Weight-Two Finite Alternating MMVs
5. Sum Formulas of FMMVs
5.1. Sum Formulas of Symmetric and Finite MTVs and MSVs of Even Depth
5.2. Restricted Sum Relations
6. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
(F)MZV | (finite) multiple zeta values |
(F)ES | (finite) Euler sums |
(F)MMV | (finite) multiple mixed values |
(F)MtV | (finite) multiple t-values |
(F)MTV | (finite) multiple T-values |
(F)MSV | (finite) multiple S-values |
Appendix A. Dimensions of Subspaces of Finite MMVs
w | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 5 | 7 | |
0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | |
0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | |
0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | |
0 | 1 | 0 | 1 | 2 | 3 | 3 | 6 | 9 | 15 | 17 | 32 | 44 | 76 | |
0 | 1 | 1 | 1 | 2 | 4 | 5 | 7 | 12 | 19 | 28 | 39 | 66 | 109 | |
0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144? | 233? | |
0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89? | 144? | 233? | |
0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89? | 144? | 233? |
References
- Zagier, D. Values of zeta functions and their applications. In First European Congress of Mathematics; (Paris, 1992), Vol. II; Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R., Eds.; Birkhäuser: Basel, Switzerland, 1994; pp. 497–512. [Google Scholar]
- Hoffman, M.E. Multiple harmonic series. Pac. J. Math. 1992, 152, 275–290. [Google Scholar] [CrossRef]
- Broadhurst, D.J. Conjectured enumeration of irreducible multiple zeta values, from knots and Feynman diagrams. arXiv 1996, arXiv:hep-th/9612012. [Google Scholar]
- Zhao, J. Alternating Euler sums and special values of Witten multiple zeta function attached to (5). J. Aust. Math. Soc. 2011, 89, 419–430. [Google Scholar] [CrossRef]
- Deligne, P. Le groupe fondamental de la , pour N = 2, 3, 4, 6 ou 8. Publ. Math. Inst. Hautes Etudes Sci. 2010, 112, 101–141. (In French) [Google Scholar] [CrossRef]
- Broadhurst, D.J. Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity. Eur. Phys. J. C (Fields) 1999, 8, 311–333. [Google Scholar] [CrossRef]
- Hoffman, M.E. Quasi-symmetric functions and mod p multiple harmonic sums. Kyushu J. Math. 2015, 69, 345–366. [Google Scholar] [CrossRef]
- Zhao, J. Wolstenholme type Theorem for multiple harmonic sums. Intl. J. Number Thyory 2008, 4, 73–106. [Google Scholar] [CrossRef]
- Kaneko, M. Finite multiple zeta values. RIMS Kôkyûroku Bessatsu 2017, B68, 175–190. (In Japanese) [Google Scholar]
- Jarossay, D. Double mélange des multizêtas finis et multizêtas symétrisés. C. R. Acad. Sci. Paris Ser. I 2014, 352, 767–771. (In French) [Google Scholar] [CrossRef]
- Murahara, H. A note on finite real multiple zeta values. Kyushu J. Math. 2016, 70, 197–204. [Google Scholar] [CrossRef]
- Saito, S.; Wakabayashi, N. Sum formula for finite multiple zeta values. J. Math. Soc. Jpn. 2015, 67, 1069–1076. [Google Scholar] [CrossRef]
- Sakurada, K. Duality for finite/symmetric multiple zeta values of fixed weight, depth, and height. Int. J. Number Theory 2023, 19, 2299–2307. [Google Scholar] [CrossRef]
- Singer, J.; Zhao, J. Finite and symmetrized colored multiple zeta values. Finite Fields Their Appl. 2020, 65, 101676. [Google Scholar] [CrossRef]
- Yasuda, S. Finite real multiple zeta values generate the whole space . Int. J. Number Theory 2015, 12, 787–812. [Google Scholar] [CrossRef]
- Zhao, J. Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values; Series on Number Theory and Its Applications: Volume 12; World Scientific Publishing: Singapore, 2016; 620p. [Google Scholar]
- Hoffman, M.E. An odd variant of multiple zeta values. Commun. Number Theory Phys. 2019, 13, 529–567. [Google Scholar] [CrossRef]
- Kaneko, M.; Tsumura, H. On multiple zeta values of level two. Tsukuba J. Math. 2020, 44, 213–234. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, J. Variants of multiple zeta values with even and odd summation indices. Math. Z. 2022, 300, 3109–3142. [Google Scholar] [CrossRef]
- Kaneko, M.; Murakami, T.; Yoshihara, A. On finite multiple zeta values of level two. arXiv 2021, arXiv:2109.12501. [Google Scholar] [CrossRef]
- Zhao, J. Finite and symmetric Euler sums and finite and symmetric (alternating) multiple T-values. Axioms 2024, 13, 210. [Google Scholar] [CrossRef]
- Sun, Z.-W. Congruences involving Bernoulli and Euler numbers. J. Number Theory 2008, 128, 280–312. [Google Scholar] [CrossRef]
- Tauraso, R.; Zhao, J. Congruences of alternating multiple harmonic sums. J. Comb. Number Theory 2010, 2, 129–159. [Google Scholar] [CrossRef]
- Xu, C.; Yan, L.; Zhao, J. Alternating multiple mixed values, regularization, parity, and dimension conjecture. Indag. Math. 2024; in press. [Google Scholar] [CrossRef]
- Granville, A. A decomposition of Riemann’s zeta-function. In Analytic Number Theory; London Mathematical Society Lecture Note Series, Series Number 247; Motohashi, Y., Ed.; Cambridge University Press: Cambridge, UK, 1997; pp. 95–101. [Google Scholar]
- Eie, M.; Liaw, W.; Wei, C.S. Double weighted sum formulas of multiple zeta values. Abh. Math. Semin. Univ. Hambg. 2015, 85, 23–41. [Google Scholar] [CrossRef]
- Guo, L.; Xie, B. Weighted sum formula for multiple zeta values. J. Number Theory 2009, 129, 2747–2765. [Google Scholar] [CrossRef]
- Hirose, H.; Murahara, M.; Saito, S. Weighted sum formula for multiple harmonic sums modulo primes. Proc. Am. Math. Soc. 2019, 147, 3357–3366. [Google Scholar] [CrossRef]
- Kawashima, G.; Tanaka, T.; Wakabayashi, N. Cyclic sum formula for multiple L-values. J. Algebra 2011, 348, 336–349. [Google Scholar] [CrossRef]
- Murahara, H. A combinatorial proof of the weighted sum formula for finite and symmetric multiple zeta(-star) values. Kobe J. Math. 2021, 38, 73–81. [Google Scholar]
- Murahara, H.; Saito, S. Restricted sum formula for finite and symmetric multiple zeta values. Pac. J. Math. 2019, 303, 325–335. [Google Scholar] [CrossRef]
- Brown, F. Multiple zeta values and periods: From moduli spaces to Feynman integrals. In Combinatorics and Physics; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2011; Volume 539, pp. 27–52. [Google Scholar]
- Deligne, P. Le groupe fondamental de la droite projective moins trois points. In Galois Groups over : Proceedings of a Workshop Held March 23–27, 1987; Mathematical Sciences Research Institute Publications; Ihara, Y., Ribet, K., Serre, J.-P., Eds.; Springer: New York, NY, USA, 1989; Volume 16, pp. 79–297. (In French) [Google Scholar]
- Deligne, P.; Goncharov, A. Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. de l’Ecole Norm. Supérieure 2005, 38, 1–56. (In French) [Google Scholar] [CrossRef]
- Brown, F. Mixed Tate motives over . Ann. Math. 2012, 175, 949–976. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J. Finite Multiple Mixed Values. Foundations 2024, 4, 451-467. https://doi.org/10.3390/foundations4030029
Zhao J. Finite Multiple Mixed Values. Foundations. 2024; 4(3):451-467. https://doi.org/10.3390/foundations4030029
Chicago/Turabian StyleZhao, Jianqiang. 2024. "Finite Multiple Mixed Values" Foundations 4, no. 3: 451-467. https://doi.org/10.3390/foundations4030029
APA StyleZhao, J. (2024). Finite Multiple Mixed Values. Foundations, 4(3), 451-467. https://doi.org/10.3390/foundations4030029