Open AccessProceeding Paper
Assessing Continuous Descent Operations Using the Impact Monitor Framework
by
Jordi Pons-Prats, Xavier Prats, David de la Torre, Eric Soler, Peter Hoogers, Michel van Eenige, Sreyoshi Chatterjee, Prajwal Shiva Prakasha, Patrick Ratei, Marko Alder, Thierry Lefebvre, Saskia van der Loo and Emanuela Peduzzi
Viewed by 133
Abstract
The Impact Monitor Project is a European initiative designed to develop an impact assessment toolbox and framework, targeting the European aviation sector. The proposed framework is not only aimed at the environment, economics, and operations but also the societal impacts of new technologies
[...] Read more.
The Impact Monitor Project is a European initiative designed to develop an impact assessment toolbox and framework, targeting the European aviation sector. The proposed framework is not only aimed at the environment, economics, and operations but also the societal impacts of new technologies and aircraft configurations. The toolbox works by setting out the key steps in the impact assessment cycle and presenting guidance, tips, and best practices. Led by DLR, the consortium includes research institutions and universities that have contributed their expertise and tools to develop the collaborative assessment toolbox and framework. The project defines three use cases by considering three assessment levels: aircraft, airport, and air transport system. This article focuses on Use Case 2 on continuous descent operations (CDOs) at the aircraft and airport levels. It describes the workflow proposal, along with the tools involved. The collaborative approach showcases integrating these tools and using collaborative strategies enabled by CPACS (Common Parametric Aircraft Configuration Schema) and RCE (remote component environment). The list of tools includes Scheduler (DLR; flight schedule simulation), AirTOp (NLR; TMA simulation), Dynamo/Farm (UPC; trajectory simulation and assessment), LEAS-iT (NLR; emissions simulation), Tuna (NLR; noise simulation), AECCI (ONERA; emissions simulation), TRIPAC (NLR; third-party risk simulation), and SCBA (TML; social and economic impact assessment). Interactions with other use cases of the project will be demonstrated via new aircraft configurations stemming from the use case at the aircraft level of the project. The results demonstrate the workflow’s feasibility, the cooperation among the tools to obtain and refine the outcomes, as well as the analysis of the operational scenario of a generic airport, CAEPport, which has been extensively used in previous Clean Sky 2 projects.
Full article
►▼
Show Figures