Dynamic Modeling of Fuel Cells for Applications in Aviation †
Abstract
1. Introduction
2. Fuel Cell Modeling
2.1. Common Modeling Aspects
2.2. Type-Specific Models
3. Applications in Aviation
3.1. Project AMBER–PEM Fuel Cell
3.2. Project H2EAT–SOFC
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atanasov, G.; Wehrspohn, J.; Kühlen, M.; Cabac, Y.; Silberhorn, D.; Kotzem, M.; Dahlmann, K.; Linke, F. Short-Medium-Range Turboprop-Powered Aircraft as a Cost-Efficient Enabler for Low Climate Impact. In Proceedings of the AIAA AVIATION 2023 Forum, San Diego, CA, USA, 12–16 June 2023. [Google Scholar] [CrossRef]
- Wehrspohn, J.; Rahn, A.; Papantoni, V.; Silberhorn, D.; Burschyk, T.; Schröder, M.; Linke, F.; Dahlmann, K.; Kühlen, M.; Wicke, K.; et al. A Detailed and Comparative Economic Analysis of Hybrid-Electric Aircraft Concepts Considering Environmental Assessment Factors. In Proceedings of the AIAA Aviation 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022. [Google Scholar]
- Salva, J.A.; Iranzo, A.; Rosa, F.; Tapia, E.; Lopez, E.; Isorna, F. Optimization of a PEM fuel cell operating conditions: Obtaining the maximum performance polarization curve. Int. J. Hydrogen Energy 2016, 41, 19713–19723. [Google Scholar] [CrossRef]
- Calili, F.; Ismail, M.; Ingham, D.; Hughes, K.; Ma, L.; Pourkashanian, M. A dynamic model of air-breathing polymer electrolyte fuel cell (PEFC): A parametric study. Int. J. Hydrogen Energy 2021, 46, 17343–17357. [Google Scholar] [CrossRef]
- Schröder, M.; Becker, F.; Kallo, J.; Gentner, C. Optimal operating conditions of PEM fuel cells in commercial aircraft. Int. J. Hydrogen Energy 2021, 46, 33218–33240. [Google Scholar] [CrossRef]
- Campanari, S.; Manzolini, G.; Beretti, A.; Wollrab, U. Performance assessment of turbocharged PEM fuel cell systems for civil aircraft onboard power production. J. Eng. Gas Turbines Power 2008, 130, 021701. [Google Scholar] [CrossRef]
- Donateo, T. Semi-Empirical Models for Stack and Balance of Plant in Closed-Cathode Fuel Cell Systems for Aviation. Energies 2023, 16, 7676. [Google Scholar] [CrossRef]
- Fernandes, M.D.; Andrade, S.d.P.; Bistritzki, V.N.; Fonseca, R.M.; Zacarias, L.; Gonçalves, H.; de Castro, A.F.; Domingues, R.Z.; Matencio, T. SOFC-APU systems for aircraft: A review. Int. J. Hydrogen Energy 2018, 43, 16311–16333. [Google Scholar] [CrossRef]
- Zimmer, D.; Bender, D.; Pollok, A. Robust Modeling of Directed Thermofluid Flows in Complex Networks. In Proceedings of the 2nd Japanese Modelica Conference, Tokyo, Japan, 17–18 May 2018; Modelica Conference Proceedings. Linköping University Press: Linköping, Sweden, 2008; pp. 39–48. [Google Scholar]
- Weber, A.Z.; Newman, J. Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. 2004, 104, 4679–4726. [Google Scholar] [CrossRef] [PubMed]
- O’hayre, R.; Cha, S.W.; Colella, W.; Prinz, F.B. Fuel Cell Fundamentals; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Wilson, J.A.; Wang, Y.; Carroll, J.; Raush, J.; Arkenberg, G.; Dogdibegovic, E.; Swartz, S.; Daggett, D.; Singhal, S.; Zhou, X.D. Hybrid solid oxide fuel cell/gas turbine model development for electric aviation. Energies 2022, 15, 2885. [Google Scholar] [CrossRef]
- Njodzefon, J.C.; Klotz, D.; Kromp, A.; Weber, A.; Ivers-Tiffée, E. Electrochemical modeling of the current-voltage characteristics of an SOFC in fuel cell and electrolyzer operation modes. J. Electrochem. Soc. 2013, 160, F313. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, H.; Brandon, N.P. A fast two-phase non-isothermal reduced-order model for accelerating PEM fuel cell design development. Int. J. Hydrogen Energy 2022, 47, 38774–38792. [Google Scholar] [CrossRef]
- Cavcar, M. The international standard atmosphere (ISA). Anadolu Univ. Turk. 2000, 30, 1–6. [Google Scholar]
- Kazula, S.; Staggat, M.; de Graaf, S.; Geyer, T.; Link, A.; Keller, D.; Ramm, J.; Pick, M. Can SOFC-Systems Power Electric Regional Aircraft In 2050?—The DLR-Project H2EAT. In Proceedings of the DLRK 2024, Hamburg, Germany, 30 September–2 October 2024. [Google Scholar]
Symbol | Description | Unit | Mainly Affects |
---|---|---|---|
Number of cells | - | Cell voltage | |
Active cell area | m2 | Current | |
Width of the MEA | m | Volume of the MEA | |
Charge transfer coefficient | - | Activation loss | |
Exchange current density | A/m2 | Activation loss | |
Area specific resistance | m2 | Ohmic loss | |
Concentration loss coefficient | V | Concentration loss | |
Limit current density | A/m2 | Concentration loss |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dotzauer, N.A. Dynamic Modeling of Fuel Cells for Applications in Aviation. Eng. Proc. 2025, 90, 68. https://doi.org/10.3390/engproc2025090068
Dotzauer NA. Dynamic Modeling of Fuel Cells for Applications in Aviation. Engineering Proceedings. 2025; 90(1):68. https://doi.org/10.3390/engproc2025090068
Chicago/Turabian StyleDotzauer, Niclas A. 2025. "Dynamic Modeling of Fuel Cells for Applications in Aviation" Engineering Proceedings 90, no. 1: 68. https://doi.org/10.3390/engproc2025090068
APA StyleDotzauer, N. A. (2025). Dynamic Modeling of Fuel Cells for Applications in Aviation. Engineering Proceedings, 90(1), 68. https://doi.org/10.3390/engproc2025090068