Innovative Monitoring for Aeronautical Application Through Augmented Reality †
Abstract
1. Introduction
- Replace the physical world with a virtual environment (VR).
- Use physical world data to adapt virtual content (MR).
- Superimpose information on the physical world (AR).
2. Methodology
- Light blue, dark blue, and dark purple for strain sensors.
- Green, yellow, and red for temperature sensors.
3. Tests
- Nine strain FBG sensors mounted in different positions of the upper and lower part of the right wing.
- One temperature FBG sensor mounted on the upper part of the right wing, near the base, used for thermal compensation.
- One temperature FBG sensor mounted on the top of the Anubis fuselage, right near the center, used to measure the external temperature.
3.1. Strain Test
3.2. Strain and Temperature Test
- The temperature sensor was overheated with a lighter for about 15 s. As shown in the top image of Figure 5, where the value measured by this sensor is represented in the lower part of the software interface, this led to the traction of the temperature sensor itself and an increase in the value measured. It then started to decrease towards its slow return to the rest condition. This behavior is shown in the center and bottom images of Figure 5.
- The 1 kg weight in the right wing was removed, causing it to return to the rest condition.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-Dimensional |
AR | Augmented Reality |
EX | Extended Reality |
FBG | Fiber Bragg Grating |
FOV | Field of View |
MR | Mixed Reality |
UAV | Unmanned Aerial Vehicle |
UV | Ultraviolet |
VR | Virtual Reality |
References
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Restivo, S.; Cannavò, A.; Terzoli, M.; Mezzino, D.; Spallone, R.; Lamberti, F. Interacting with Ancient Egypt Remains in High-Fidelity Virtual Reality Experiences. In Proceedings of the Eurographics Workshop on Graphics and Cultural Heritage, Lecce, Italy, 4–6 September 2023; Bucciero, A., Fanini, B., Graf, H., Pescarin, S., Rizvic, S., Eds.; The Eurographics Association: Eindhoven, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Bernardo, A. Virtual Reality and Simulation in Neurosurgical Training. World Neurosurg. 2017, 106, 1015–1029. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, Y.M.; Bogorad, D.; Gibson, V.; Peifer, J.; Nussbaum, J. Virtual Reality in Ophthalmology Training. Surv. Ophthalmol. 2006, 51, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.C.; Hou, C.L.; Peng, W.H.; Wei, Z.Z.; Huang, S.; Kung, E.Y.C.; Lin, L.; Liu, Y.H. A multiplayer online car racing virtual-reality game based on internet of brains. J. Syst. Archit. 2018, 89, 30–40. [Google Scholar] [CrossRef]
- Akman, E.; Çakır, R. The effect of educational virtual reality game on primary school students’ achievement and engagement in mathematics. Interact. Learn. Environ. 2023, 31, 1467–1484. [Google Scholar] [CrossRef]
- Avalle, G.; De Pace, F.; Fornaro, C.; Manuri, F.; Sanna, A. An Augmented Reality System to Support Fault Visualization in Industrial Robotic Tasks. IEEE Access 2019, 7, 132343–132359. [Google Scholar] [CrossRef]
- Kirner, C.; Kirner, T.G. A Data Visualization Virtual Environment Supported by Augmented Reality. In Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan, 8–11 October 2006; Volume 1, pp. 97–102. [Google Scholar] [CrossRef]
- Manuri, F.; Sanna, A.; Lamberti, F.; Paravati, G.; Pezzolla, P. A Workflow Analysis for Implementing AR-Based Maintenance Procedures. In Proceedings of the Augmented and Virtual Reality, Lecce, Italy, 17–20 September 2014; De Paolis, L.T., Mongelli, A., Eds.; Springer: Cham, Switzerland, 2014; pp. 185–200. [Google Scholar]
- Lamberti, F.; Manuri, F.; Sanna, A.; Paravati, G.; Pezzolla, P.; Montuschi, P. Challenges, Opportunities, and Future Trends of Emerging Techniques for Augmented Reality-Based Maintenance. IEEE Trans. Emerg. Top. Comput. 2014, 2, 411–421. [Google Scholar] [CrossRef]
- De Pace, F.; Manuri, F.; Sanna, A.; Fornaro, C. A systematic review of Augmented Reality interfaces for collaborative industrial robots. Comput. Ind. Eng. 2020, 149, 106806. [Google Scholar] [CrossRef]
- Hořejší, P. Augmented Reality System for Virtual Training of Parts Assembly. Procedia Eng. 2015, 100, 699–706. [Google Scholar] [CrossRef]
- Schaffernak, H.; Moesl, B.; Vorraber, W.; Holy, M.; Herzog, E.M.; Novak, R.; Koglbauer, I.V. Novel Mixed Reality Use Cases for Pilot Training. Educ. Sci. 2022, 12, 345. [Google Scholar] [CrossRef]
- Kantonen, T.; Woodward, C.; Katz, N. Mixed reality in virtual world teleconferencing. In Proceedings of the 2010 IEEE Virtual Reality Conference (VR), Waltham, MA, USA, 20–24 March 2010; pp. 179–182. [Google Scholar] [CrossRef]
- Williams, T.; Szafir, D.; Chakraborti, T.; Ben Amor, H. Virtual, Augmented, and Mixed Reality for Human-Robot Interaction. In Proceedings of the Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, New York, NY, USA, 5–8 March 2018; HRI ’18. pp. 403–404. [Google Scholar] [CrossRef]
- Haseda, Y.; Bonefacino, J.; Tam, H.Y.; Chino, S.; Koyama, S.; Ishizawa, H. Measurement of Pulse Wave Signals and Blood Pressure by a Plastic Optical Fiber FBG Sensor. Sensors 2019, 19, 5088. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, D.; Massaroni, C.; D’Abbraccio, J.; Massari, L.; Caponero, M.; Longo, U.G.; Formica, D.; Oddo, C.M.; Schena, E. Wearable System Based on Flexible FBG for Respiratory and Cardiac Monitoring. IEEE Sens. J. 2019, 19, 7391–7398. [Google Scholar] [CrossRef]
- Allil, A.S.; Dutra, F.d.S.; Dante, A.; Carvalho, C.C.; Allil, R.C.d.S.B.; Werneck, M.M. FBG-Based Sensor Applied to Flow Rate Measurements. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Zhou, Z.; Ou, J. Development of FBG Sensors for Structural Health Monitoring in Civil Infrastructures. In Sensing Issues in Civil Structural Health Monitoring; Ansari, F., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 197–207. [Google Scholar]
- Lau, K.T. Structural health monitoring for smart composites using embedded FBG sensor technology. Mater. Sci. Technol. 2014, 30, 1642–1654. [Google Scholar] [CrossRef]
- Shen, W.; Yan, R.; Xu, L.; Tang, G.; Chen, X. Application study on FBG sensor applied to hull structural health monitoring. Optik 2015, 126, 1499–1504. [Google Scholar] [CrossRef]
- Marceddu, A.C.; Quattrocchi, G.; Aimasso, A.; Giusto, E.; Baldo, L.; Vakili, M.G.; Dalla Vedova, M.D.L.; Montrucchio, B.; Maggiore, P. Air-to-Ground Transmission and Near Real-Time Visualization of FBG Sensor Data via Cloud Database. IEEE Sens. J. 2023, 23, 1613–1622. [Google Scholar] [CrossRef]
- Lamberti, A.; Chiesura, G.; Luyckx, G.; Degrieck, J.; Kaufmann, M.; Vanlanduit, S. Dynamic Strain Measurements on Automotive and Aeronautic Composite Components by Means of Embedded Fiber Bragg Grating Sensors. Sensors 2015, 15, 27174–27200. [Google Scholar] [CrossRef] [PubMed]
- Marceddu, A.C.; Aimasso, A.; Schiavello, S.; Montrucchio, B.; Maggiore, P.; Dalla Vedova, M.D.L. Comprehensive Visualization of Data Generated by Fiber Bragg Grating Sensors. IEEE Access 2023, 11, 121945–121955. [Google Scholar] [CrossRef]
- Aimasso, A.; Bertone, M.; Ferro, C.G.; Marceddu, A.C.; Montrucchio, B.; Dalla Vedova, M.D.L.; Maggiore, P. Smart Monitoring of System Thermal Properties Through Optical Fiber Sensors and Augmented Reality. In Proceedings of the IAC 2024 Congress, Milan, Italy, 14–18 October 2024; p. 5. [Google Scholar]
- Panopoulou, A.; Loutas, T.; Roulias, D.; Fransen, S.; Kostopoulos, V. Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures. Acta Astronaut. 2011, 69, 445–457. [Google Scholar] [CrossRef]
- Aimasso, A.; Ferro, C.G.; Bertone, M.; Dalla Vedova, M.D.L.; Maggiore, P. Fiber Bragg Grating Sensor Networks Enhance the In Situ Real-Time Monitoring Capabilities of MLI Thermal Blankets for Space Applications. Micromachines 2023, 14, 926. [Google Scholar] [CrossRef] [PubMed]
- Marceddu, A.C.; Aimasso, A.; Bertone, M.; Viscanti, L.; Montrucchio, B.; Maggiore, P.; Dalla Vedova, M.D.L. Augmented Reality Visualization of Fiber Bragg Grating Sensor Data for Aerospace Application. In Proceedings of the 2024 IEEE 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Lublin, Poland, 3–5 June 2024. [Google Scholar]
- Tatsuta. Fiber Bragg Gratings (FBG). Available online: https://www.tatsuta.com/product/sensor_medical/optical/fbg/ (accessed on 30 April 2024).
- Marceddu, A.C. Multivariate Analysis in Research and Industrial Environments. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2024. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marceddu, A.C.; Aimasso, A.; Bertone, M.; Maggiore, P.; Dalla Vedova, M.D.L.; Montrucchio, B. Innovative Monitoring for Aeronautical Application Through Augmented Reality. Eng. Proc. 2025, 90, 53. https://doi.org/10.3390/engproc2025090053
Marceddu AC, Aimasso A, Bertone M, Maggiore P, Dalla Vedova MDL, Montrucchio B. Innovative Monitoring for Aeronautical Application Through Augmented Reality. Engineering Proceedings. 2025; 90(1):53. https://doi.org/10.3390/engproc2025090053
Chicago/Turabian StyleMarceddu, Antonio Costantino, Alessandro Aimasso, Matteo Bertone, Paolo Maggiore, Matteo Davide Lorenzo Dalla Vedova, and Bartolomeo Montrucchio. 2025. "Innovative Monitoring for Aeronautical Application Through Augmented Reality" Engineering Proceedings 90, no. 1: 53. https://doi.org/10.3390/engproc2025090053
APA StyleMarceddu, A. C., Aimasso, A., Bertone, M., Maggiore, P., Dalla Vedova, M. D. L., & Montrucchio, B. (2025). Innovative Monitoring for Aeronautical Application Through Augmented Reality. Engineering Proceedings, 90(1), 53. https://doi.org/10.3390/engproc2025090053