Numerical Simulation of Dynamic Response of a Composite Battery Housing for Transport Applications †
Abstract
:1. Introduction
2. Geometry and Materials
3. Numerical Modeling
3.1. Impact Models
3.2. Vibration Model
4. Numerical Results
4.1. Impact Analysis Results
4.1.1. Ground Impact
4.1.2. Pole Impact
4.2. Modal and Vibration Analysis Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ansell, P.J. Review of sustainable energy carriers for aviation: Benefits, challenges, and future viability. Prog. Aerosp. Sci. 2023, 141, 100919. [Google Scholar] [CrossRef]
- Santosa, S.P.; Nirmala, T. Numerical and experimental validation of fiber metal laminate structure for lithium-ion battery protection subjected to high-velocity impact loading. Compos. Struct. 2024, 332, 117924. [Google Scholar] [CrossRef]
- Shaikh, S.A.; Taufique, M.F.N.; Balusu, K.; Kulkarni, S.S.; Hale, F.; Oleson, J.; Devanathan, R.; Soulami, A. Finite Element Analysis and Machine Learning Guided Design of Carbon Fiber Organosheet-Based Battery Enclosures for Crashworthiness. Appl. Compos. Mater. 2024, 31, 1475–1493. [Google Scholar] [CrossRef]
- Xing, Y.; Li, Q.M. Evaluation of the mechanical shock testing standards for electric vehicle batteries. Int. J. Impact. Eng. 2024, 194, 105077. [Google Scholar] [CrossRef]
- Avdeev, I.; Gilaki, M. Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact. J. Power Sources 2014, 271, 382–391. [Google Scholar] [CrossRef]
- Dai, Z.; Miao, Q.; Wu, D. Data simulation of the impact of ball strikes on the bottom of electric vehicle battery packs based on finite element analysis. Therm. Sci. Eng. Prog. 2024, 53, 102757. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Hale, F.; Taufique, M.F.N.; Soulami, A.; Devanathan, R. Investigation of Crashworthiness of Carbon Fiber-Based Electric Vehicle Battery Enclosure Using Finite Element Analysis. Appl. Compos. Mater. 2023, 30, 1689–1715. [Google Scholar] [CrossRef]
- Dhoke, A.; Dalavi, A. A Critical Review on Lightweight Design of Battery Pack Enclosure for Electric Vehicles. Int. J. Sustain. Transp. Technol. 2021, 4, 53–62. [Google Scholar] [CrossRef]
- Li, R.; Pan, Y.; Zhang, X.; Dai, W.; Liu, B.; Li, J. Mechanical safety prediction of a battery-pack system under low speed frontal impact via machine learning. Eng. Anal. Bound Elem. 2024, 160, 65–75. [Google Scholar] [CrossRef]
- Hooper, J.M.; Marco, J. Experimental modal analysis of lithium-ion pouch cells. J. Power Sources 2015, 285, 247–259. [Google Scholar] [CrossRef]
- Garafolo, N.G.; Farhad, S.; Koricherla, M.V.; Wen, S.; Esmaeeli, R. Modal Analysis of a Lithium-Ion Battery for Electric Vehicles. Energies 2022, 15, 4841. [Google Scholar] [CrossRef]
- Plaumann, B. Towards Realistic Vibration Testing of Large Floor Batteries for Battery Electric Vehicles (BEV). Sound Vib. 2022, 56, 1–19. [Google Scholar] [CrossRef]
- Hooper, J.M.; Marco, J. Understanding Vibration Frequencies Experienced by Electric Vehicle Batteries. In Hybrid and Electric Vehicles Conference 2013 (HEVC 2013); Institution of Engineering and Technology: London, UK, 2013; p. 9.1. [Google Scholar] [CrossRef]
- Xia, Y.; Wierzbicki, T.; Sahraei, E.; Zhang, X. Damage of cells and battery packs due to ground impact. J. Power Sources 2014, 267, 78–97. [Google Scholar] [CrossRef]
- Scurtu, L.; Szabo, I.; Mariasiu, F.; Moldovanu, D.; Mihali, L.; Jurco, A. Numerical analysis of the influence of mechanical stress on the battery pack’s housing of an electric vehicle. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 568, p. 012054. [Google Scholar] [CrossRef]
- Wang, S.; Guo, S.; Li, R.; Hu, Z.; Leng, Q. On crashworthiness design of hybrid metal–composite battery-pack enclosure structure. Mech. Adv. Mater. Struct. 2024, 1, 1–12. [Google Scholar] [CrossRef]
- “MatWeb”. Available online: https://www.matweb.com/search/datasheet.aspx?MatGUID=3a8afcddac864d4b8f58d40570d2e5aa&ckck=1 (accessed on 4 November 2024).
- Sigalotti, L.D.G.; Klapp, J.; Gesteira, M.G. The Mathematics of Smoothed Particle Hydrodynamics (SPH) Consistency. Front. Appl. Math. Stat. 2021, 7, 797455. [Google Scholar] [CrossRef]
- Hua, X.; Thomas, A. Effect of dynamic loads and vibrations on lithium-ion batteries. J. Low Freq. Noise Vib. Act. Control 2021, 40, 1927–1934. [Google Scholar] [CrossRef]
Test | Testing Standard | Strength | Modulus | Poisson’s Ratio |
---|---|---|---|---|
Tension | ASTM D3039 | 94.99 MPa | 7.58 GPa | 0.18 |
3-point bending | ASTM D790 | 191.24 MPa | 5.87 GPa | - |
Compression | ASTM D3410 | 129.82 MPa | 13.62 GPa | - |
Shear | ASTM D7078 | 74.98 MPa | 3.87 GPa | - |
Impactor’s Initial Velocity (m/s) | Total Energy (J) | |
---|---|---|
Ground impact | 8.16 | 10 |
11.55 | 20 | |
14.14 | 30 | |
Pole impact | 10 | 350 |
12.50 | 547 | |
15 | 787 |
Amplitude (G) | Frequency Range (Hz) | Pulse Duration (s) | |
---|---|---|---|
Sine vibration | 1 | 10–1000 | 60 |
Random vibration | - | 10–1000 | - |
Mechanical shock | 25 | 10–1000 | 0.015 |
Frequency (Hz) | Frequency (Hz) | Frequency (Hz) | |||
---|---|---|---|---|---|
i. | 98 | iv. | 328 | vii. | 422 |
ii. | 168 | v. | 373 | viii. | 447 |
iii. | 276 | vi. | 388 | ix. | 475 |
Sine Vibration | Random Vibration | Mechanical Shock | |
---|---|---|---|
Excitation in x-direction | 388 | 388 | 388 |
422 | 422 | 422 | |
710 | 710 | 710 | |
882 | 882 | 882 | |
Excitation in y-direction | 601 | 601 | 601 |
645 | 645 | 645 | |
812 | 812 | 812 | |
905 | 905 | 905 | |
922 | 922 | 922 | |
Excitation in z-direction | 98 | 98 | 98 |
276 | 276 | 276 | |
373 | 373 | 373 | |
475 | 475 | 475 | |
594 | 594 | 594 | |
691 | 691 | 691 | |
761 | 737 | 737 | |
805 | 761 | 761 | |
855 | 805 | 805 | |
855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragiadaki, A.; Tserpes, K. Numerical Simulation of Dynamic Response of a Composite Battery Housing for Transport Applications. Eng. Proc. 2025, 90, 10. https://doi.org/10.3390/engproc2025090010
Fragiadaki A, Tserpes K. Numerical Simulation of Dynamic Response of a Composite Battery Housing for Transport Applications. Engineering Proceedings. 2025; 90(1):10. https://doi.org/10.3390/engproc2025090010
Chicago/Turabian StyleFragiadaki, Aikaterini, and Konstantinos Tserpes. 2025. "Numerical Simulation of Dynamic Response of a Composite Battery Housing for Transport Applications" Engineering Proceedings 90, no. 1: 10. https://doi.org/10.3390/engproc2025090010
APA StyleFragiadaki, A., & Tserpes, K. (2025). Numerical Simulation of Dynamic Response of a Composite Battery Housing for Transport Applications. Engineering Proceedings, 90(1), 10. https://doi.org/10.3390/engproc2025090010