Multi-System Modeling Challenges for Integration of Parts for Increased Sustainability of Next Generation Aircraft †
Abstract
1. Introduction
1.1. Simulation of Lock-In Thermography for Fast Defect Recognition
1.2. Simulation of Induction Welding of Uni-Directional Thermoplastic CFRP Parts
1.3. Simulation of Fan Blades for Wind Tunnel Testing
2. Materials and Methods
2.1. Simulation of Lock-In Thermography
2.2. Simulation of Dynamic Induction Heating of Uni-Directional Thermoplastic CFRP Plates
2.3. Simulation of Fan Blades for Wind Tunnel Testing
3. Results
3.1. Simulation of Lock-In Thermography
3.2. Simulation of Dynamic Induction Heating
3.3. Simulation of Fan Blades for Wind Tunnel Testing
4. Discussion
4.1. Simulation of Lock-In Thermography
4.2. Simulation of Dynamic Induction Heating
4.3. Simulation of Fan Blades for Wind Tunnel Testing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, Y.C.; Herrmann, R.; Sanchez Santos, C.; Uellendahl, M.; Koopman, J.; Henneberg, A.; Kos, J.; Villegas, I.F.; Choudhary, A.; Larsen, L.; et al. CleanSky2/Clean Aviation Large Passenger Aircraft for more sustainable commercial fuselage technologies—Major achievements. In Proceedings of the 34th Congress of the International Council of the Aeronautical Sciences, Firenze, Italy, 9–13 September 2024; Available online: https://www.icas.org/ICAS_ARCHIVE/ICAS2024/data/preview/ICAS2024_0091.htm (accessed on 10 March 2025).
- Deutz, D.B.; Bosch, A.F.; Baptista, D.E.; van Veen, E.S.; Platenkamp, D.J.; Jansen, H.P. Non-contact NDT methods for large-scale CFRP aircraft parts. In Proceedings of the 14th EASN International Conference on “Innovation in Aviation & Space towards Sustainability Today & Tomorrow”, Thessaloniki, Greece, 8–11 October 2024. [Google Scholar]
- Clean Aviation Joint Undertaking, Movie: The SA2FIR Test Rig—Optimizing Greener Engine Integration!. Clean Aviation Joint Undertaking. 2021. Available online: https://www.youtube.com/watch?v=C56OSgpTwYo (accessed on 10 March 2025).
- Lopez, F.; Paulo Nicolau N de Ibarra-Castanedo, C.; Maldague, X. Thermal–numerical model and computational simulation of pulsed thermography inspection of carbon fiber-reinforced composites. Int. J. Therm. Sci. 2014, 86, 325–340. [Google Scholar] [CrossRef]
- Coelho Fernandez, H.; Zang, H.; Figueiredo, A.; Ibarra-Castanedo, C. Carbon fiber composite inspection and defect characterization using active infrared thermography: Numerical simulations and experimental results. Appl. Opt. 2016, 55, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Notebaert, A.; Quinten, J.; Moonens, M.; Olez, V.; Barros, C.; Simões Cunha, S., Jr.; Demarbaix, A. Numerical Modelling of the Heat Source and the Thermal Response of an Additively Manufactured Composite during an Active Thermographic Inspection. Materials 2024, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Vankan, W.J.; van Hoorn, N.; de Wit, A.J.; Koenis, T.P.A. Electromagnetic induction heating of TP-CFRP laminates: FEM modelling and validation. In Proceedings of the 34th Congress of the Int. Council of the Aeronautical Sciences, Firenze, Italy, 9–13 September 2024; Available online: https://www.icas.org/ICAS_ARCHIVE/ICAS2024/data/preview/ICAS2024_0032.htm (accessed on 10 March 2025).
- Koenis, T.P.A.; de Wit, A.J.; Maas, R.; van Hoorn, N. A machine learning approach to dynamic simulation of electromagnetic heating. In Proceedings of the 21st European Conference on Composite Materials, Nantes, France, 2–5 July 2024; The European Society for Composite Materials (ESCM) and the Ecole Centrale de Nantes: Nantes, France, 2024; Volume 5, pp. 548–555. [Google Scholar] [CrossRef]
- Noordman, B.A.T.; Vankan, W.J. Design and analysis of a scaled composite UHBR fan blade for wind tunnel tests. In Proceedings of the 34th Congress of the Int. Council of the Aeronautical Sciences, Firenze, Italy, 9–13 September 2024; pp. 1–11. Available online: https://www.icas.org/ICAS_ARCHIVE/ICAS2024/data/papers/ICAS2024_0157_paper.pdf (accessed on 10 March 2025), ISSN 2958-4647.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kos, J.; Moghadasi, M.; Koenis, T.; Noordman, B.; Erartsin, O.; Nahuis, R. Multi-System Modeling Challenges for Integration of Parts for Increased Sustainability of Next Generation Aircraft. Eng. Proc. 2025, 90, 40. https://doi.org/10.3390/engproc2025090040
Kos J, Moghadasi M, Koenis T, Noordman B, Erartsin O, Nahuis R. Multi-System Modeling Challenges for Integration of Parts for Increased Sustainability of Next Generation Aircraft. Engineering Proceedings. 2025; 90(1):40. https://doi.org/10.3390/engproc2025090040
Chicago/Turabian StyleKos, Johan, Marie Moghadasi, Tim Koenis, Bram Noordman, Ozan Erartsin, and Ruben Nahuis. 2025. "Multi-System Modeling Challenges for Integration of Parts for Increased Sustainability of Next Generation Aircraft" Engineering Proceedings 90, no. 1: 40. https://doi.org/10.3390/engproc2025090040
APA StyleKos, J., Moghadasi, M., Koenis, T., Noordman, B., Erartsin, O., & Nahuis, R. (2025). Multi-System Modeling Challenges for Integration of Parts for Increased Sustainability of Next Generation Aircraft. Engineering Proceedings, 90(1), 40. https://doi.org/10.3390/engproc2025090040