Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,282)

Search Parameters:
Keywords = polymer complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10017 KB  
Article
Over a Decade of Maxillofacial PEEK Patient-Specific Innovation: A Retrospective Review of the Evolution from In-House Craft to Virtual Design and Remote Manufacturing
by Nicholas J. Lee, Gareth Honeybone, Mohammed Anabtawi, Mathew Thomas and Sachin M. Salvi
Craniomaxillofac. Trauma Reconstr. 2026, 19(1), 8; https://doi.org/10.3390/cmtr19010008 (registering DOI) - 21 Jan 2026
Abstract
Maxillofacial skeletal reconstruction presents significant challenges due to anatomical complexity, functional requirements, and aesthetic demands. Traditional materials such as titanium and autogenous bone grafts have limitations, prompting interest in Polyetheretherketone (PEEK), a versatile thermoplastic polymer with advantages like biocompatibility, radiolucency, and elasticity similar [...] Read more.
Maxillofacial skeletal reconstruction presents significant challenges due to anatomical complexity, functional requirements, and aesthetic demands. Traditional materials such as titanium and autogenous bone grafts have limitations, prompting interest in Polyetheretherketone (PEEK), a versatile thermoplastic polymer with advantages like biocompatibility, radiolucency, and elasticity similar to human bone. This multi-year case series evaluates the clinical outcomes of PEEK implants used in 56 cases on 53 patients for maxillofacial reconstruction, primarily for trauma (44 patients) and deformity (9 patients). PEEK implants were applied to various facial regions including the orbit, zygoma, mandible, and maxilla. The majority of surgeries utilised virtual surgical planning. Patient-specific implants were fabricated using 3D imaging technologies, allowing customisation for optimal fit and functionality. The mean patient age was 37 years with a split of 37 to 16 females. Some complications were noted such as infection and paraesthesia. However, the majority of patients experienced positive outcomes. The findings support PEEK implants as a safe, effective, and adaptable material for maxillofacial surgery, with potential for further advancements in material properties and surgical technologies to improve long-term outcomes. Full article
(This article belongs to the Special Issue Innovation in Oral- and Cranio-Maxillofacial Reconstruction)
Show Figures

Figure 1

16 pages, 2350 KB  
Article
New Type of Superabsorbent Polymer Reinforced with Vermicompost and Biochar to Enhance Salt Tolerance of Sesbania cannabina in Severely Saline-Alkali Soils
by Hongji Ding, Haoyue Qin, Mengli Liu and Chong Wang
Agronomy 2026, 16(2), 252; https://doi.org/10.3390/agronomy16020252 - 21 Jan 2026
Abstract
In severely saline-alkali soils, surface salt accumulation caused by intense water evaporation results in elevated salinity, low organic matter content, and suppressed microbial activity, collectively impairing plant physiological metabolism and growth. Superabsorbent polymers hold significant potential for ameliorating saline-alkali soils by regulating soil [...] Read more.
In severely saline-alkali soils, surface salt accumulation caused by intense water evaporation results in elevated salinity, low organic matter content, and suppressed microbial activity, collectively impairing plant physiological metabolism and growth. Superabsorbent polymers hold significant potential for ameliorating saline-alkali soils by regulating soil water–salt dynamics. Biochar, a carbon-rich organic material, plays a pivotal role in enhancing soil organic matter storage, whereas vermicompost, a microbiologically active organic amendment, contributes substantially to improving soil microbial functions. Therefore, this study developed a novel superabsorbent polymer reinforced with vermicompost and biochar (VB-SAP) and further investigated its effects on metabolic pathways associated with enhanced S. cannabina stress resistance in severely saline-alkali soils. The results showed that VB-SAPs significantly increased soil water and organic matter contents by 10.9% and 38.7% (p < 0.05), respectively, and decreased topsoil salinity of saline soils by 44.9% (p < 0.05). The application of VB-SAP altered the soil bacterial community structure and increased the complexity of the bacterial co-occurrence network, specifically enriching members of the phylum Pseudomonadota, which are widely recognized as common plant growth-promoting rhizobacteria. Moreover, VB-SAPs significantly upregulated root-associated salt tolerance genes involved in phenylpropanoid biosynthesis, tryptophan metabolism, and arginine–proline pathways, thereby enhancing root biomass accumulation, nutrient uptake, and shoot growth of S. cannabina. Collectively, these findings reveal that the new type of superabsorbent polymer reinforced with vermicompost and biochar may enhance the salt tolerance and growth of S. cannabina by reshaping the rhizosphere microenvironment, including reducing soil salinity, increasing soil water and organic matter contents, and promoting beneficial bacteria in severely saline-alkali soil, thereby providing novel strategies for the integrated improvement of saline soils. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

23 pages, 3882 KB  
Article
Thermomechanics and Thermophysics of Optical Fiber Polymer Coating
by Aleksandr N. Trufanov, Anna A. Kamenskikh and Yulia I. Lesnikova
Polymers 2026, 18(2), 271; https://doi.org/10.3390/polym18020271 - 20 Jan 2026
Abstract
The viscoelastic properties of ultraviolet radiation-curable polymer coatings of optical fibers were studied experimentally and numerically. The test setup was completed, and a series of natural experiments were conducted for an extended temperature range from −110 °C to +120 °C using a dynamic [...] Read more.
The viscoelastic properties of ultraviolet radiation-curable polymer coatings of optical fibers were studied experimentally and numerically. The test setup was completed, and a series of natural experiments were conducted for an extended temperature range from −110 °C to +120 °C using a dynamic mechanical analyzer (DMA). Discrete dependencies of the complex modulus on temperature and frequency of kinematic loading were obtained. The problem of multiparametric optimization was solved. Defining relations were obtained for protective coating polymers, making it possible to describe the thermomechanical behavior of the glass-forming materials under consideration in a wide temperature range, including relaxation transition. The optimal solution was found for 18 series terms at the selected reference temperature Tr = −70 °C, C1 = 20.036, and C2 = 32.666 for the DeSolite 3471-1-152A material. The optimal solution was found for 60 series terms at the selected reference temperature Tr = 0 °C, C1 = 40,242.2827, and C2 = 267,448.888 for the DeSolite DS-2015 material. The models were verified according to the data of creep experiments. The capabilities of the viscoelastic model were demonstrated by the example of a numerical experiment on free thermal heating/cooling of a Panda-type optical fiber. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

16 pages, 2121 KB  
Article
Effect of Monomer Feeding Strategy on the Sequence and Properties of Fluorine-Containing Polyarylates via Interfacial Polycondensation
by Lingli Li, Tiantian Li, Siyu Chen, Jintang Duan, Cailiang Zhang, Xueping Gu and Lianfang Feng
Polymers 2026, 18(2), 267; https://doi.org/10.3390/polym18020267 - 19 Jan 2026
Viewed by 83
Abstract
Fluorine-containing polyarylates (F-PARs) were synthesized via interfacial polycondensation of hexafluorobisphenol A (BPAF), bisphenol A (BPA), and two acyl chloride monomers under four feeding strategies. Sequential feeding affords the highest Mw (2.02 × 105 g/mol) and high alternating sequence content; the one-pot [...] Read more.
Fluorine-containing polyarylates (F-PARs) were synthesized via interfacial polycondensation of hexafluorobisphenol A (BPAF), bisphenol A (BPA), and two acyl chloride monomers under four feeding strategies. Sequential feeding affords the highest Mw (2.02 × 105 g/mol) and high alternating sequence content; the one-pot method gives intermediate Mw and a random sequence; and segmented and parallel methods yield lower-Mw polymers and pseudo-block sequences. Time-resolved GPC results reveal that the concentration of -CF3-activated acyl chloride termini during chain propagation controls the subsequent chain propagation and, thus, the final Mw. Consequently, sequential feeding delivers the highest Tg (215 °C) and stiffness (2.51 GPa) for thermal–mechanical loads; the one-pot protocol maximizes optical clarity (T450 = 85%) for transparent films. Systematic variation in the BPAF/BPA ratio via sequential feeding further reveals that higher BPAF content increases Mw, enhances thermal stability, and blue-shifts UV absorption, whereas BPA-rich compositions improve the tensile strength and modulus. These findings provide a quantitative roadmap for the rational design of F-PAR chain architectures, enabling on-demand tuning of thermal, mechanical, and optical properties without additional synthetic complexity. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 1534 KB  
Article
Low-Cost DLW Setup for Fabrication of Photonics-Integrated Circuits
by André Moreira, Alessandro Fantoni, Miguel Fernandes and Jorge Fidalgo
Micromachines 2026, 17(1), 125; https://doi.org/10.3390/mi17010125 - 19 Jan 2026
Viewed by 39
Abstract
The development of photonic-integrated circuits (PICs) for data communication, sensing, and quantum computing is hindered by the high complexity and cost of traditional fabrication methods, which rely on expensive equipment, limiting accessibility for research and prototyping. This study introduces a Direct Laser Writing [...] Read more.
The development of photonic-integrated circuits (PICs) for data communication, sensing, and quantum computing is hindered by the high complexity and cost of traditional fabrication methods, which rely on expensive equipment, limiting accessibility for research and prototyping. This study introduces a Direct Laser Writing (DLW) system designed as a low-cost alternative, utilizing an XY platform for precise substrate movement and an optical system comprising a collimator and lens to focus the laser beam. Operating on a single layer, the system employs SU-8 photoresist to fabricate polymer-based structures on substrates such as ITO-covered glass. Preparation involves thorough cleaning, spin coating with photoresist, and pre- and post-baking to ensure material stability. This approach reduces dependence on costly infrastructure, making it suitable for academic settings and enabling rapid prototyping. A user interface and custom slicer process standard .dxf files into executable commands, enhancing operational flexibility. Experimental results demonstrate a resolution of 10 µm, with successful patterning of structures, including diffraction grids, waveguides, and multimode interference devices. This system aims to transform PIC prototype fabrication into a cost-effective, accessible process. Full article
(This article belongs to the Special Issue Laser-Assisted Ultra-Precision Machining)
Show Figures

Figure 1

22 pages, 6931 KB  
Article
Biopolymer Casein–Pullulan Coating of Fe3O4 Nanocomposites for Xanthohumol Encapsulation and Delivery
by Nikolay Zahariev, Dimitar Penkov, Radka Boyuklieva, Plamen Simeonov, Paolina Lukova, Raina Ardasheva and Plamen Katsarov
Polymers 2026, 18(2), 256; https://doi.org/10.3390/polym18020256 - 17 Jan 2026
Viewed by 133
Abstract
Introduction: Magnetic nanoparticles are widely investigated as multifunctional platforms for drug delivery and theranostic applications, yet their biomedical implementation is hindered by aggregation, limited colloidal stability, and insufficient biocompatibility. Hybrid biopolymer coatings can mitigate these issues while supporting drug incorporation. Aim: This study [...] Read more.
Introduction: Magnetic nanoparticles are widely investigated as multifunctional platforms for drug delivery and theranostic applications, yet their biomedical implementation is hindered by aggregation, limited colloidal stability, and insufficient biocompatibility. Hybrid biopolymer coatings can mitigate these issues while supporting drug incorporation. Aim: This study aimed to develop casein–pullulan-coated Fe3O4 nanocomposites loaded with xanthohumol, enhancing stability and enabling controlled release for potential theranostic use. Methods: Fe3O4 nanoparticles were synthesized through co-precipitation and incorporated into a casein–pullulan matrix formed via polymer complexation and glutaraldehyde crosslinking. A 32 full factorial design evaluated the influence of casein:pullulan ratio and crosslinker concentration on physicochemical performance. Nanocomposites were characterized for size, zeta potential, morphology, composition, and stability, while drug loading, encapsulation efficiency, and release profiles were determined spectrophotometrically. Molecular docking was performed to examine casein–pullulan interactions. Results: Uncoated Fe3O4 nanoparticles aggregated extensively, displaying mean sizes of ~292 nm, zeta potential of +80.95 mV and high polydispersity (PDI above 0.2). Incorporation into the biopolymer matrix improved colloidal stability, yielding particles of ~185 nm with zeta potentials near –35 mV. TEM and SEM confirmed spherical morphology and uniform magnetic core incorporation. The optimal formulation, consisting of a 1:1 casein:pullulan ratio with 1% glutaraldehyde, achieved 5.7% drug loading, 68% encapsulation efficiency, and sustained release of xanthohumol up to 84% over 120 h, fitting Fickian diffusion (Korsmeyer–Peppas R2 = 0.9877, n = 0.43). Conclusions: Casein–pullulan hybrid coatings significantly enhance Fe3O4 nanoparticle stability and enable controlled release of xanthohumol, presenting a promising platform for future targeted drug delivery and theranostic applications. Full article
(This article belongs to the Special Issue Engineered Polymeric Particles for Next-Generation Nanomedicine)
Show Figures

Figure 1

53 pages, 7662 KB  
Review
Machine Learning-Assisted Polymer and Polymer Composite Design for Additive Manufacturing
by Kingsley Yeboah Gyabaah, Bernard Mahoney, Anthony Kwasi Martey, Cheng Yan, Patrick Mensah and Guoqiang Li
AI Mater. 2026, 1(1), 2; https://doi.org/10.3390/aimater1010002 - 17 Jan 2026
Viewed by 145
Abstract
Additive manufacturing (AM) of polymers and polymer composites is changing how customized, lightweight, and complex parts are produced across various industries. However, predicting the final properties of printed parts remains challenging due to variations in material compositions, processing conditions, and microstructural characteristics. This [...] Read more.
Additive manufacturing (AM) of polymers and polymer composites is changing how customized, lightweight, and complex parts are produced across various industries. However, predicting the final properties of printed parts remains challenging due to variations in material compositions, processing conditions, and microstructural characteristics. This review explores how machine learning (ML) is being used to address these challenges. It examines the application of various ML approaches in polymer and polymer composite design for AM, including supervised, unsupervised, semi-supervised, self-supervised, and reinforcement learning, for predicting key properties such as mechanical strength, thermal stability, and electrical performance. The review also highlights hybrid techniques that combine ML with physics-informed modeling, including the use of digital twins, to enhance AM process control. Challenges and future perspectives, such as data scarcity, model interpretability, and computational demands, are discussed. In summary, ML is showing strong potential to support faster, more reliable, and more sustainable development of advanced polymers and polymer composites for AM. Full article
Show Figures

Figure 1

14 pages, 2317 KB  
Article
Shrimp-Derived Chitosan for the Formulation of Active Films with Mexican Propolis: Physicochemical and Functional Evaluation of the Biomaterial
by Alejandra Delgado-Lozano, Pedro Alberto Ledesma-Prado, César Leyva-Porras, Lydia Paulina Loya-Hernández, César Iván Romo-Sáenz, Carlos Arzate-Quintana, Manuel Román-Aguirre, María Alejandra Favila-Pérez, Alva Rocío Castillo-González and Celia María Quiñonez-Flores
Coatings 2026, 16(1), 124; https://doi.org/10.3390/coatings16010124 - 17 Jan 2026
Viewed by 114
Abstract
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films [...] Read more.
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films enriched with Mexican propolis, aiming to evaluate the influence of the extract on the physicochemical and functional properties of the resulting biomaterial. Propolis was incorporated into the chitosan film-forming solution at a final concentration of 1.0% (v/v). The propolis employed met the requirements of the Mexican Official Standard NOM-003-SAG/GAN-2017 regarding flavonoid content, total phenolic compounds, and antimicrobial activity; additionally, it was evaluated through antioxidant activity, hemolysis, and acute toxicity (LD50) assays to provide a broader biological and safety assessment. The extracted chitosan exhibited a degree of deacetylation of 74% and characteristic FTIR spectral features comparable to those of commercial chitosan, confirming the quality of the obtained polymer. Chitosan–propolis films exhibited antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans, whereas pure chitosan films showed no inhibitory effect. Thermal analyses (TGA/DSC) revealed a slight reduction in thermal stability due to the incorporation of thermolabile polyphenolic compounds, along with increased thermal complexity of the system. SEM observations demonstrated reduced microbial adhesion and marked morphological damage in microorganisms exposed to the functionalized films. Overall, the incorporation of Mexican propolis enabled the development of a hybrid biomaterial with enhanced antimicrobial performance and potential application in wound dressings and bioactive coatings. Full article
(This article belongs to the Special Issue Coatings with Natural Products)
Show Figures

Graphical abstract

25 pages, 5742 KB  
Article
Functionalization of Photopolymer with Laser-Ablated Copper NPs: A Comprehensive Study of ROS Generation, Antimicrobial Activity and Cytotoxic Profile
by Dmitriy E. Burmistrov, Dmitriy A. Serov, Lev R. Sizov, Maxim E. Astashev, Ekaterina E. Karmanova, Ilya V. Baimler, Alexander V. Simakin, Dmitriy N. Ignatenko, Fatikh M. Yanbaev, Evgeny V. Kuzmin and Sergey V. Gudkov
Polymers 2026, 18(2), 238; https://doi.org/10.3390/polym18020238 - 16 Jan 2026
Viewed by 120
Abstract
This study addresses the critical need for advanced biomedical materials that possess both potent antimicrobial properties and high biocompatibility to prevent device-related infections and promote healing. To this end, we demonstrate the successful development and comprehensive characterization of functional composite materials based on [...] Read more.
This study addresses the critical need for advanced biomedical materials that possess both potent antimicrobial properties and high biocompatibility to prevent device-related infections and promote healing. To this end, we demonstrate the successful development and comprehensive characterization of functional composite materials based on a photopolymerizable acrylate resin modified with laser-ablated copper nanoparticles (Cu NPs). The synthesized Cu NPs exhibited a monomodal size distribution with a peak at 47 nm, a high zeta potential of −33 mV, and a spherical morphology. Incorporation of Cu NPs into the polymer matrix via Masked Stereolithography (MSLA) enabled the fabrication of complex structures that maintained high surface quality and optical transparency after polishing. Modification of photopolymer resin with Cu NPs significantly increased the strength of the resulting products and caused dose-dependent formation of reactive oxygen species (ROS). The resulting composite materials exhibited strong antibacterial activity against E. coli. Crucially, despite their potent antimicrobial efficacy, the materials showed no cytotoxicity towards human fibroblast cultures. These results highlight the potential of these composites for a new generation of biomedical applications, such as implantable devices and wound coatings, which combine programmable antimicrobial activity with high biocompatibility. Full article
Show Figures

Figure 1

15 pages, 3512 KB  
Article
Design of a Robot Vacuum Gripper Manufactured with Additive Manufacturing Using DfAM Method
by Bálint Leon Seregi, Adrián Bognár and Péter Ficzere
Appl. Sci. 2026, 16(2), 935; https://doi.org/10.3390/app16020935 - 16 Jan 2026
Viewed by 147
Abstract
This study presents a Design for Additive Manufacturing (DfAM)–driven redesign of an industrial robot vacuum gripper for Fused Deposition Modeling (FDM), focusing on the systematic transformation of a multi-part, machined aluminum assembly into a lightweight, support-minimized polymer component suitable for continuous industrial operation. [...] Read more.
This study presents a Design for Additive Manufacturing (DfAM)–driven redesign of an industrial robot vacuum gripper for Fused Deposition Modeling (FDM), focusing on the systematic transformation of a multi-part, machined aluminum assembly into a lightweight, support-minimized polymer component suitable for continuous industrial operation. Beyond a practical redesign, the work contributes a geometry-centered DfAM methodology that links internal channel topology, overhang control, and functional interfaces to manufacturability, vacuum performance, and cost efficiency. The development follows three iterative design revisions, progressing from a geometry-adapted baseline toward a fully DfAM-optimized solution. A key innovation is the introduction of support-free internal vacuum channels with triangular cross-sections, enabling complete elimination of soluble support material within enclosed cavities. This redesign reduces the internal vacuum volume by 44%, leading to faster vacuum response while maintaining functional suction performance. The optimized overhang angles, filleted load paths, and DfAM-compliant suction cup seats significantly reduce post-processing requirements and improve structural robustness. Experimental validation under industrial operating conditions confirms that the final design achieves reliable vacuum performance and mechanical durability. Compared to the original configuration, the optimized gripper demonstrates a substantial reduction in manufacturing complexity, with printing time reduced by approximately 50% and total part cost decreased by 26%, primarily due to eliminated tooling, reduced support material, and simplified post-processing. The presented results demonstrate that DfAM principles, when applied systematically at both global and internal geometry levels, can yield quantifiable functional and economic benefits. The findings provide transferable design guidelines for support-free internal channels and functional interfaces in FDM-manufactured vacuum components, offering practical reference points for researchers and practitioners developing end-use additive manufacturing solutions in industrial automation. Full article
(This article belongs to the Special Issue Optimized Design and Analysis of Mechanical Structure)
Show Figures

Figure 1

21 pages, 4861 KB  
Article
Synthesis and Characterization of ITO Films via Forced Hydrolysis for Surface Functionalization of PET Sheets
by Silvia del Carmen Madrigal-Diaz, Laura Cristel Rodríguez-López, Isaura Victoria Fernández-Orozco, Saúl García-López, Cecilia del Carmen Díaz-Reyes, Claudio Martínez-Pacheco, José Luis Cervantes-López, Ibis Ricárdez-Vargas and Laura Lorena Díaz-Flores
Coatings 2026, 16(1), 120; https://doi.org/10.3390/coatings16010120 - 16 Jan 2026
Viewed by 96
Abstract
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a [...] Read more.
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a low-cost, reproducible alternative. SnO2 nanoparticles were synthesized by forced hydrolysis at 180 °C for 3 h and 6 h, yielding crystalline nanoparticles with a cassiterite phase and an average crystallite size of 20.34 nm. The process showed high reproducibility, enabling consistent structural properties without complex equipment or high-temperature treatments. The SnO2 sample obtained at 3 h was incorporated into commercial In2O3 to form a mixed In–Sn–O oxide, which was subsequently deposited onto PET substrates by spin coating onto UV-activated PET. The resulting 1.1 µm ITO films demonstrated good adhesion (4B according to ASTM D3359), a low resistivity of 1.27 × 10−6 Ω·m, and an average optical transmittance of 80% in the visible range. Although their resistivity is higher than vacuum-processed films, this route provides a superior balance of mechanical robustness, featuring a hardness of (H) of 3.8 GPa and an elastic modulus (E) of 110 GPa. These results highlight forced hydrolysis as a reproducible route for producing ITO/PET thin films. The thickness was strategically optimized to act as a structural buffer, preventing crack propagation during bending. Forced hydrolysis-driven PET sheet functionalization is an effective route for producing durable ITO/PET electrodes that are suitable for flexible sensors and solar cells. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

23 pages, 1039 KB  
Review
Advanced Liposomal Systems for Cancer Therapy with Focus on Lipid–Polymer Hybrids and Cell Membrane-Coated Liposomes
by Paraskevi Zagana and Alexandra Paxinou
Future Pharmacol. 2026, 6(1), 6; https://doi.org/10.3390/futurepharmacol6010006 - 16 Jan 2026
Viewed by 119
Abstract
Since their discovery in the 1960s, liposomes have become a versatile platform for drug delivery in cancer research, capable of carrying both hydrophilic and hydrophobic drugs. Throughout the past decades, liposomes have evolved to improve stability, blood circulation time, and targeting ability, overcoming [...] Read more.
Since their discovery in the 1960s, liposomes have become a versatile platform for drug delivery in cancer research, capable of carrying both hydrophilic and hydrophobic drugs. Throughout the past decades, liposomes have evolved to improve stability, blood circulation time, and targeting ability, overcoming many disadvantages of early formulations. Lipid–polymer hybrid liposomes (LPHLs), a third-generation nanoparticle model, are vesicles where polymers are incorporated in or around the lipid bilayer to increase their stability, to control drug release, and to provide multifunctional capabilities. More recently, cell membrane-coated (CMC) liposomes, which consist of “core” liposomes (preformed liposomes) cloaked in natural cell membranes, have emerged as an even more innovative approach, offering superior immune evasion and highly selective targeting, which are both particularly promising for cancer therapy. Preclinical studies in cancer models demonstrate that these advanced liposomal systems improve pharmacokinetics and therapeutic outcomes. They hold significant potential for developing next-generation, personalized nanomedicines for cancer and other complex diseases. However, challenges related to large-scale production, long-term stability, and safety evaluation remain. Full article
Show Figures

Figure 1

16 pages, 2979 KB  
Article
Non-Invasive Assessment of Water-Based Gel Cleaning on a Capogrossi Oil Painting Using NMR-MOUSE
by Noemi Proietti, Patrizia Moretti, Eleonora Maniccia, Paola Carnazza, Daphne De Luca, Costanza Miliani and Valeria Di Tullio
Heritage 2026, 9(1), 30; https://doi.org/10.3390/heritage9010030 - 15 Jan 2026
Viewed by 122
Abstract
This study investigates water-based gel and gel-like cleaning treatments on Superficie 553, an oil painting on canvas by Giuseppe Capogrossi, using portable NMR to assess their impact. The objective was to evaluate the effects of four cleaning systems composed of a buffer [...] Read more.
This study investigates water-based gel and gel-like cleaning treatments on Superficie 553, an oil painting on canvas by Giuseppe Capogrossi, using portable NMR to assess their impact. The objective was to evaluate the effects of four cleaning systems composed of a buffer solution released in free form and combined with xanthan gum, a cross-linked silicone polymer gel, and an agar gel matrix. Two distinct NMR experiments were conducted. The first involved the acquisition of 1H depth profiles to detect the distribution of the cleaning solution within the painted layer and the thickness variations resulting from cleaning procedures. The second employed the acquisition of relaxation times, facilitating the investigation of molecular mobility within the organic components of the paint layer. NMR results indicated that the agar gel system caused negligible structural changes, whereas the silicone gel induced rigidification, and the other systems permanently increased molecular mobility. These measurements provided insights into alterations in the dynamic behavior of the polymerized oil. A key strength of this investigation lies in the direct application of diagnostic methods on Superficie 553, made possible by the non-invasive nature and portability of the NMR-MOUSE system. Additionally, portable FTIR was used to detect residues and obtain chemical information, confirming that the silicone gel left detectable residues and identifying the agar gel as the most conservative cleaning method. This enabled in situ analysis of the original artwork without sampling or relocation—a crucial advantage given the difficulty of replicating the complex physicochemical conditions of historical paint surfaces under laboratory constraints. Such real-time, on-site monitoring ensured an authentic evaluation of the treatment effects, preserving the integrity of the artwork throughout the conservation process. Full article
(This article belongs to the Special Issue Innovative Materials and Tools for the Cleaning of Cultural Heritage)
Show Figures

Graphical abstract

14 pages, 3537 KB  
Article
Electrostatic Patterning of Nanofibrous Microcapsules for Three-Dimensional Cell Culture
by Masashi Ikeuchi, Yoshinori Inoue, Ryosuke Tane, Daisuke Ishikawa, Chihiro Aoyama, Yoshitaka Miyamoto and Koji Ikuta
J. Funct. Biomater. 2026, 17(1), 42; https://doi.org/10.3390/jfb17010042 - 15 Jan 2026
Viewed by 193
Abstract
Three-dimensional biomaterial scaffolds with controlled geometry and surface nanoarchitecture are essential for advancing polymer processing strategies in tissue engineering. Conventional electrospinning generates nanofibrous structures but has limited ability to reproduce defined three-dimensional shapes or achieve high pattern fidelity. This study aimed to develop [...] Read more.
Three-dimensional biomaterial scaffolds with controlled geometry and surface nanoarchitecture are essential for advancing polymer processing strategies in tissue engineering. Conventional electrospinning generates nanofibrous structures but has limited ability to reproduce defined three-dimensional shapes or achieve high pattern fidelity. This study aimed to develop a scalable processing method for producing biodegradable scaffolds with precisely controlled microstructure and geometry using phase separation–assisted electrospray. Poly (lactic acid) microcapsules with tunable diameters and porous nanofibrous surfaces were fabricated under controlled humidity and deposited onto conductive molds to obtain two- and three-dimensional scaffold shapes. The manufacturing process required only simple electrospray equipment and static molds, without mechanically complex collectors or moving stages. The resulting scaffolds replicated mold features with resolutions down to 200 μm and achieved thickness up to 600 μm. The nanofibrous microcapsule surfaces supported strong adhesion and metabolic activity of HepG2 cells, while cellular penetration into deeper scaffold regions remained limited to approximately 80 μm. These findings indicate that electrospray-mediated microcapsule deposition is a practical polymer-processing approach that integrates nanofibrous surface formation with mold-defined shaping, offering a reproducible and scalable method for fabricating structurally precise and biologically compatible three-dimensional scaffolds. Full article
(This article belongs to the Special Issue Advanced Technologies for Processing Functional Biomaterials)
Show Figures

Figure 1

15 pages, 4650 KB  
Article
Engineering Phosphorus Doping Graphitic Carbon Nitride for Efficient Visible-Light Photocatalytic Hydrogen Production
by Thi Chung Le, Truong Thanh Dang, Tahereh Mahvelati-Shamsabadi and Jin Suk Chung
Catalysts 2026, 16(1), 88; https://doi.org/10.3390/catal16010088 - 13 Jan 2026
Viewed by 304
Abstract
Modulating the electronic structure and surface properties of graphitic carbon nitride (g-C3N4) by chemically phosphorus doping is an effective strategy for improving its photocatalytic performance. However, in order to benefit from practical applications, the cost-effectiveness, efficiency, and optimization of [...] Read more.
Modulating the electronic structure and surface properties of graphitic carbon nitride (g-C3N4) by chemically phosphorus doping is an effective strategy for improving its photocatalytic performance. However, in order to benefit from practical applications, the cost-effectiveness, efficiency, and optimization of the doping level need to be investigated further. Herein, we report a structural doping of P into g-C3N4 by in situ polymerization of the mixture of dicyandiamide (DCDA) and phosphorus pentoxide (P2O5). As an alternative to previous studies that used complex organic phosphorus precursors or post-treatment strategies, this work proposed a one-pot thermal polycondensation method that is low-cost, scalable, and enables controlled phosphorus substitutions at carbon sites of the g-C3N4 heptazine structure. Most of the structural features of g-C3N4 were well retained after doping, but the electronic structures and light harvesting capacity had been effectively altered, which provided not only a much better charge separation but also an improvement in photocatalytic activity toward H2 evolution under irradiation of a simulated sunlight. The optimized sample with P-doping content of 9.35 at.% (0.5PGCN) exhibited an excellent photocatalytic performance toward H2 evolution, which is over 5 times higher than that of bulk g-C3N4. This work demonstrates a facile one-step in situ route for producing high-yield photocatalysts using low-cost commercial precursors, offering practical starting materials for studies in solar cells, polymer batteries, and photocatalytic applications. Full article
Show Figures

Graphical abstract

Back to TopTop