Investigation of the Measurement Systems’ Suitability for the Non-Destructive Measurement of Complex Polymer-Based Micro and Nanostructures
Abstract
:1. Introduction
2. Measurement Systems and Methods
2.1. White Light Interferometer
2.2. Atomic Force Microscope
2.3. Optical Coherence Tomograph
2.4. Environmental Scanning Electron Microscope
2.5. Mirco Computed Thomograph
2.6. Phase Contrast Microscope
2.7. Imaging Mueller Matrix Ellipsometer
3. Polymer-Based Test Patterns
3.1. Pillar Arrays
3.2. Slanted Test Pattern
3.3. Covered Pillar Test Pattern
4. Results and Discussion
4.1. Pillar Analysis: Investigation of the Lateral Resolution and Aspect Ratio Limits
4.2. Undercut and Enclosed Structure Analysis: Evaluation of the Minimum Structure Size and Maximum Cover Heights
4.2.1. White Light Interferometer
4.2.2. Atomic Force Microscope
4.2.3. Optical Coherence Tomograph
4.2.4. Environmental Scanning Electron Microscope
4.2.5. Phase Contrast Microscope
4.2.6. Imagining Mueller Matrix Ellipsometer
4.2.7. Interim Summary of the Undercut and Enclosed Structure Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Wei, J.; Ma, Z.; Song, P.; Ma, J.; Zhao, Y.; Huang, Z.; Zhang, M.; Yang, F.; Wang, X. The Fabrication of Micro/Nano Structures by Laser Machining. Nanomaterials 2019, 9, 1789. [Google Scholar] [CrossRef] [PubMed]
- Panusa, G.; Pu, Y.; Wang, J.; Moser, C.; Psaltis, D. Fabrication of Sub-Micron Polymer Waveguides through Two-Photon Polymerization in Polydimethylsiloxane. Polymers 2020, 12, 2485. [Google Scholar] [CrossRef] [PubMed]
- Mattelin, M.-A.; Radosavljevic, A.; Missinne, J.; Cuypers, D.; Kommeren, S.; Vandael, J.; ter Meulen, J.M.; Verduyckt, L.; van Steenberge, G. Fabrication and replication of high efficiency blazed gratings with grayscale electron beam lithography and UV nanoimprint lithography. In Proceedings of the Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIII, San Francisco, CA, USA, 2–5 February 2020. [Google Scholar] [CrossRef]
- Lee, K.D.; Ahn, S.W.; Kim, S.H.; Lee, S.H.; Park, J.D.; Yoon, P.W.; Kim, D.H.; Lee, S.S. Nanoimprint technology for nano-structured optical devices. Curr. Appl. Phys. 2006, 6, e149–e153. [Google Scholar] [CrossRef]
- Jang, C.; Mercier, O.; Bang, K.; Li, G.; Zhao, Y.; Lanman, D. Design and fabrication of freeform holographic optical elements. ACM Trans. Graph. 2020, 39, 1–15. [Google Scholar] [CrossRef]
- Lu, W.-G.; Xiao, R.; Liu, J.; Wang, L.; Zhong, H.; Wang, Y. Large-area rainbow holographic diffraction gratings on a curved surface using transferred photopolymer films. Opt. Lett. 2018, 43, 675–678. [Google Scholar] [CrossRef]
- Levola, T.; Laakkonen, P. Replicated slanted gratings with a high refractive index material for in and outcoupling of light. Opt. Express 2007, 15, 2067–2074. [Google Scholar] [CrossRef]
- Jin, G.; Liu, W.; Ye, Z.; Jia, W.; Xie, Y.; Zhou, C. High Efficiency Polarization-Independent Slanted Grating for RGB Bands. IEEE Photonics J. 2021, 13, 5100108. [Google Scholar] [CrossRef]
- Li, H.; Peng, X.; Guan, C.; Hu, H. Ultra-Precision Cutting and Characterization of Reflective Convex Spherical Blazed Grating Elements. Micromachines 2022, 13, 1115. [Google Scholar] [CrossRef]
- Al-Assaad, R.M. Physical characterization of nanoimprinted polymer nanostructures using visible light angular scatterometry. J. Micro/Nanolith. MEMS MOEMS 2008, 7, 13008. [Google Scholar] [CrossRef]
- Varshney, M.; Li, Y.; Srinivasan, B.; Tung, S.; Erf, G.; Slavik, M.F.; Ying, Y.; Fang, W. A Microfluidic Filter Biochip-Based Chemiluminescence Biosensing Method for Detection of Escherichia coli O157:H7. Trans. ASABE 2006, 49, 2061–2068. [Google Scholar] [CrossRef]
- Wengenmayr, R. Zellen unter Druck. Max Planck Forsch. 2021. [Google Scholar]
- Tsai, C.-H.D.; Tanaka, J.; Kaneko, M.; Horade, M.; Ito, H.; Taniguchi, T.; Ohtani, T.; Sakata, Y. An On-Chip RBC Deformability Checker Significantly Improves Velocity-Deformation Correlation. Micromachines 2016, 7, 176. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz Motamed, P.; Abouali, H.; Poudineh, M.; Maftoon, N. Experimental measurement and numerical modeling of deformation behavior of breast cancer cells passing through constricted microfluidic channels. Microsyst. Nanoeng. 2024, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Hongbin, Y.; Guangya, Z.; Siong, C.F.; Shouhua, W.; Feiwen, L. Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application. Sens. Actuators B Chem. 2009, 137, 754–761. [Google Scholar] [CrossRef]
- An, L.; Ji, F.; Zhao, E.; Liu, Y.; Liu, Y. Measuring cell deformation by microfluidics. Front. Bioeng. Biotechnol. 2023, 11, 1214544. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, S.H.; Ahn, C.H.; Lee, J.Y.; Kwon, T.H. Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab Chip 2006, 6, 794–802. [Google Scholar] [CrossRef]
- Memon, I.; Shen, Y.; Khan, A.; Woidt, C.; Hillmer, H. Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry–Pérot-filter-array-based nanospectrometers. Appl. Nanosci. 2016, 6, 599–606. [Google Scholar] [CrossRef]
- Peter Amalathas, A.; Alkaisi, M.M. Efficient light trapping nanopyramid structures for solar cells patterned using UV nanoimprint lithography. Mater. Sci. Semicond. Process. 2017, 57, 54–58. [Google Scholar] [CrossRef]
- Köhler, H. On Abbe’s Theory of Image Formation in the Microscope. Opt. Acta Int. J. Opt. 1981, 28, 1691–1701. [Google Scholar] [CrossRef]
- Kim, J.U.; Lee, S.; Kim, T. Recent Advances in Unconventional Lithography for Challenging 3D Hierarchical Structures and Their Applications. J. Nanomater. 2016, 2016, 7602395. [Google Scholar] [CrossRef]
- Lehmann, P.; Niehues, J.; Tereschenko, S. 3-D Optical Interference Microscopy at the Lateral Resolution. Int. J. Optomechatron. 2014, 8, 231–241. [Google Scholar] [CrossRef]
- Morimoto, T.; Kuroda, H.; Minomoto, Y.; Nagano, Y.; Kembo, Y.; Hosaka, S. Atomic Force Microscopy for High Aspect Ratio Structure Metrology. Jpn. J. Appl. Phys. 2002, 41, 4238–4241. [Google Scholar] [CrossRef]
- Meemon, P.; Yao, J.; Lee, K.-S.; Thompson, K.P.; Ponting, M.; Baer, E.; Rolland, J.P. Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material. Sci. Rep. 2013, 3, 1709. [Google Scholar] [CrossRef]
- Lu, J.C.; Liu, Q.; Huang, S. Research on slanted trapezoidal surface relief grating. In Proceedings of the Holography, Diffractive Optics, and Applications IX, Hangzhou, China, 20–23 October 2019; Zhou, C., Sheng, Y., Cao, L., Eds.; SPIE: Bellingham, WA, USA, 2019; p. 81. ISBN 9781510630932. [Google Scholar]
- Wang, H.; Zhang, W.; Ladika, D.; Yu, H.; Gailevičius, D.; Wang, H.; Pan, C.-F.; Nair, P.N.S.; Ke, Y.; Mori, T.; et al. Two-Photon Polymerization Lithography for Optics and Photonics: Fundamentals, Materials, Technologies, and Applications. Adv. Funct. Mater. 2023, 33, 2214211. [Google Scholar] [CrossRef]
- de Groot, P. Method and Apparatus for Surface Topography Measurement by Spatial-Frequency Analysis of Interferograms. U.S. Patent 5,398,113, 14 March 1995. Available online: https://patents.google.com/patent/US5398113A/en (accessed on 5 June 2024).
- de Groot, P.; Colonna de Lega, X.; Kramer, J.; Turzhitsky, M. Determination of fringe order in white-light interference microscopy. Appl. Opt. 2002, 41, 4571–4578. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Nakajima, Y.; Sawada, D.; Morita, K.; Abe, M.; Morita, S. Simultaneous AFM and STM measurements on the Si(111)−(7 × 7) surface. Phys. Rev. B 2010, 81, 245322. [Google Scholar] [CrossRef]
- Cerreta, A.; Vobornik, D.; Di Santo, G.; Tobenas, S.; Alonso-Sarduy, L.; Adamcik, J.; Dietler, G. FM-AFM constant height imaging and force curves: High resolution study of DNA-tip interactions. J. Mol. Recognit. 2012, 25, 486–493. [Google Scholar] [CrossRef]
- Albrecht, F.; Bischoff, F.; Auwärter, W.; Barth, J.V.; Repp, J. Direct Identification and Determination of Conformational Response in Adsorbed Individual Nonplanar Molecular Species Using Noncontact Atomic Force Microscopy. Nano Lett. 2016, 16, 7703–7709. [Google Scholar] [CrossRef]
- Dufrêne, Y.F.; Ando, T.; Garcia, R.; Alsteens, D.; Martinez-Martin, D.; Engel, A.; Gerber, C.; Müller, D.J. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 2017, 12, 295–307. [Google Scholar] [CrossRef]
- Bryant, P.J.; Miller, R.G.; Yang, R. Scanning tunneling and atomic force microscopy combined. Appl. Phys. Lett. 1988, 52, 2233–2235. [Google Scholar] [CrossRef]
- Thorlabs, Inc. EDU-AFM1/M Manual English. Available online: https://www.thorlabs.com/thorproduct.cfm?partnumber=EDU-AFM1/M (accessed on 9 June 2024).
- Hasko, D.; Kovác, J.; Satka, A.; Drzík, M.; Uherek, F.; Hubbard, G.; Allsopp, D.W.E. Structural and optical characterization of photonics structures prepared by nanoimprint technology. In Proceedings of the Photonics, Devices, and Systems IV, Prague, Czech Republic, 27–29 September 2008; Tománek, P., Senderáková, D., Hrabovský, M., Eds.; SPIE: Bellingham, WA, USA, 2008; p. 713824. [Google Scholar]
- VDI/VDE 5565; Optical Coherence Tomography (OCT): Process Descriptions. Verein Deutscher Ingenieure e.V.: Düsseldorf, Germany, 2023.
- Stifter, D.; Wiesauer, K.; Wurm, M.; Schlotthauer, E.; Kastner, J.; Pircher, M.; Götzinger, E.; Hitzenberger, C.K. Investigation of polymer and polymer/fibre composite materials with optical coherence tomography. Meas. Sci. Technol. 2008, 19, 74011. [Google Scholar] [CrossRef]
- Osari, K.; Unno, N.; Taniguchi, J.; Machinaga, K.; Ohsaki, T.; Sakai, N. Evaluation of filling behavior on UV nanoimprint lithography using release coating. Microelectron. Eng. 2010, 87, 918–921. [Google Scholar] [CrossRef]
- Schleunitz, A.; Spreu, C.; Vogler, M.; Atasoy, H.; Schift, H. Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2011, 29, 06FC01. [Google Scholar] [CrossRef]
- LaFratta, C.N.; Li, L.; Fourkas, J.T. Soft-lithographic replication of 3D microstructures with closed loops. Proc. Natl. Acad. Sci. USA 2006, 103, 8589–8594. [Google Scholar] [CrossRef]
- Carl Zeiss Microscopy GmbH. Extend the Limits of Your Exploration: ZEISS Xradia 610 and 620 Versa. Product Brochure. 2024. Available online: https://www.zeiss.com/microscopy/de/produkte/roentgenmikroskopie/xradia-versa.html#accordionItem-818906634 (accessed on 5 June 2024).
- Szewczykowski, P.P.; Skarzynski, L. Application of the X-ray micro-computed tomography to the analysis of the structure of polymeric materials. Polimery 2019, 64, 12–22. [Google Scholar] [CrossRef]
- Cangül, S.; Adıgüzel, Ö.; Sağmak, S.; Evran, B. A micro-computed tomography evaluation of the change in volume of different bulk-fill composite materials caused by polymerization shrinkage. Int. Dent. Res. 2021, 11, 75–82. [Google Scholar] [CrossRef]
- Xie, X.-M.; Kong, X.-M.; Xiao, T.-J.; Yang, Y.; Gao, N.; Tanioka, A. Interface-Induced Coarsening Process in Polymer Blends. J. Colloid Interface Sci. 2001, 234, 24–27. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, T.; Yan, X.; Zhang, C. Temporal evolution of phase morphology of polypropylene/poly(ethylene octene) elastomer binary polymer blends by phase contrast microscope. J. Appl. Polym. Sci. 2007, 104, 2778–2784. [Google Scholar] [CrossRef]
- Azzam, R.M. Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 1978, 2, 148. [Google Scholar] [CrossRef]
- Käseberg, T.; Grundmann, J.; Siefke, T.; Klapetek, P.; Valtr, M.; Kroker, S.; Bodermann, B. Mueller Matrix Ellipsometric Approach on the Imaging of Sub-Wavelength Nanostructures. Front. Phys. 2022, 9, 814559. [Google Scholar] [CrossRef]
- Cumpston, B.H.; Ananthavel, S.P.; Barlow, S.; Dyer, D.L.; Ehrlich, J.E.; Erskine, L.L.; Heikal, A.A.; Kuebler, S.M.; Lee, I.-Y.S.; McCord-Maughon, D.; et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 1999, 398, 51–54. [Google Scholar] [CrossRef]
- Schmid, M.; Ludescher, D.; Giessen, H. Optical properties of photoresists for femtosecond 3D printing: Refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Opt. Mater. Express 2019, 9, 4564. [Google Scholar] [CrossRef]
- Crica, L.E.; Wengenroth, J.; Tiainen, H.; Ionita, M.; Haugen, H.J. Enhanced X-ray absorption for micro-CT analysis of low density polymers. J. Biomater. Sci. Polym. Ed. 2016, 27, 805–823. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Leach, R.K.; Petzing, J.; Coupland, J.M. Surface measurement errors using commercial scanning white light interferometers. Meas. Sci. Technol. 2008, 19, 15303. [Google Scholar] [CrossRef]
- Gołek, F.; Mazur, P.; Ryszka, Z.; Zuber, S. AFM image artifacts. Appl. Surf. Sci. 2014, 304, 11–19. [Google Scholar] [CrossRef]
- Nie, H.Y.; McIntyre, N.S. Unstable amplitude and noisy image induced by tip contamination in dynamic force mode atomic force microscopy. Rev. Sci. Instrum. 2007, 78, 23701. [Google Scholar] [CrossRef]
- Cho, S.-J.; Ahn, B.-W.; Kim, J.; Lee, J.-M.; Hua, Y.; Yoo, Y.K.; Park, S. Three-dimensional imaging of undercut and sidewall structures by atomic force microscopy. Rev. Sci. Instrum. 2011, 82, 23707. [Google Scholar] [CrossRef]
- Murayama, K.; Gonda, S.; Koyanagi, H.; Terasawa, T.; Hosaka, S. Side-Wall Measurement using Tilt-Scanning Method in Atomic Force Microscope. Jpn. J. Appl. Phys. 2006, 45, 5423. [Google Scholar] [CrossRef]
- Wang, W.; Ma, C.; Chen, Y. Measurement of undercut etching by contact resonance atomic force microscopy. Appl. Phys. Lett. 2020, 117, 023103. [Google Scholar] [CrossRef]
- Liu, P.; Groves, R.M.; Benedictus, R. Optical Coherence Tomography for the Study of Polymer and Polymer Matrix Composites. Strain 2014, 50, 436–443. [Google Scholar] [CrossRef]
- Yao, J.; Rolland, J.P. Optical Coherence Tomography for Polymer Film Evaluation; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Sun, J.; Lin-Gibson, S. X-ray microcomputed tomography for measuring polymerization shrinkage of polymeric dental composites. Dent. Mater. 2008, 24, 228–234. [Google Scholar] [CrossRef]
- Cho, E.; Sadr, A.; Inai, N.; Tagami, J. Evaluation of resin composite polymerization by three dimensional micro-CT imaging and nanoindentation. Dent. Mater. 2011, 27, 1070–1078. [Google Scholar] [CrossRef]
System | Name | Manufacturer | Dimensions | Main Settings |
---|---|---|---|---|
WLI | NewView8300 | Zygo, Weiterstadt, Germany | 3d | 50×, NA 0.5, 1024 × 1024 px |
AFM | EDU-AFM1/M | Thorlabs, New Jersey, Vereinigte Staaten | 3d | 250 × 250 px, 200 px/s, different magnifications |
OCT | Spectral domain OCT according to VDI/VDE 5565 | non-commercial | 3d | 50×, NA 0.8, FOV 0.1 (factor) |
ESEM | Prisma ESEM | Thermo Fisher Scientific, Massachusetts, Vereinigte Staaten | 2d | LDV, 5 kV, 50 Pa, different magnifications |
µCT | Xradia Versa 610 | Zeiss, Oberkochen, Germany | 3d | 40×, 80 kV, 10 W, different magnifications |
PCM | BZ-X800 | Keyence, Ōsaka, Japan | 2d | 40×, 960 × 720 px |
MME | Imaging Mueller matrix ellipsometry, Accurion EP4 | Park Systems, Suwon, Korea | 2d | 50×, incidence angle 40°, 500 nm |
Width w [µm] | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.2 | 0.4 | 0.8 | 1.4 | 2.8 | 5.0 | 10.0 | 20.0 | ||
Height h [µm] | 0.5 | 2.50 (1) | 1.25 (2) | 0.63 (3) | 0.36 (4) | 0.18 (5) | 0.10 (6) | ||
1.0 | 5.00 (7) | 2.50 (8) | 1.25 (9) | 0.71 (10) | 0.36 (11) | 0.20 (12) | 0.10 (13) | ||
2.0 | 5.00 (14) | 2.50 (15) | 1.43 (16) | 0.71 (17) | 0.40 (18) | 0.20 (19) | 0.10 (20) | ||
4.0 | 5.00 (21) | 2.86 (22) | 1.43 (23) | 0.80 (24) | 0.40 (25) | 0.20 (26) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burkert, S.; Schwörer, L.; Schubert, T.; Grundmann, J.; Stein, D.; Heinrich, A. Investigation of the Measurement Systems’ Suitability for the Non-Destructive Measurement of Complex Polymer-Based Micro and Nanostructures. Metrology 2024, 4, 673-694. https://doi.org/10.3390/metrology4040040
Burkert S, Schwörer L, Schubert T, Grundmann J, Stein D, Heinrich A. Investigation of the Measurement Systems’ Suitability for the Non-Destructive Measurement of Complex Polymer-Based Micro and Nanostructures. Metrology. 2024; 4(4):673-694. https://doi.org/10.3390/metrology4040040
Chicago/Turabian StyleBurkert, Selina, Lukas Schwörer, Tim Schubert, Jana Grundmann, David Stein, and Andreas Heinrich. 2024. "Investigation of the Measurement Systems’ Suitability for the Non-Destructive Measurement of Complex Polymer-Based Micro and Nanostructures" Metrology 4, no. 4: 673-694. https://doi.org/10.3390/metrology4040040
APA StyleBurkert, S., Schwörer, L., Schubert, T., Grundmann, J., Stein, D., & Heinrich, A. (2024). Investigation of the Measurement Systems’ Suitability for the Non-Destructive Measurement of Complex Polymer-Based Micro and Nanostructures. Metrology, 4(4), 673-694. https://doi.org/10.3390/metrology4040040