Feature Papers in Cosmetics in 2025

A special issue of Cosmetics (ISSN 2079-9284).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 28360

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

As Editor-in-Chief of Cosmetics, I am pleased to announce this 2025 Special Issue. As in previous years, this Special Issue will be a collection of high-quality papers from Editorial Board members, Guest Editors, and leading researchers invited by the Editorial Office and the Editor-in-Chief. Science in the field of cosmetics is rapidly expanding, and many areas are of great interest for us. One of the most thrilling developments in recent years is the rise in personalized skincare solutions. Leveraging cutting-edge artificial intelligence (AI) and genomic research, scientists are crafting bespoke skincare regimens tailored to individual genetic profiles.

Sustainability continues to be a paramount focus, with researchers unveiling novel methods to minimize environmental impact. Biodegradable packaging, eco-friendly ingredients, and innovative recycling techniques are at the forefront of this movement, setting new standards for responsible beauty practices.

Moreover, the exploration of novel ingredients continues to captivate researchers and consumers alike. From marine biotechnology harnessing the power of algae to harnessing the regenerative properties of plant stem cells, these innovations offer new avenues for skincare and cosmetic formulations that are both effective and ethically sourced. The intersection between technology and beauty is another fascinating realm. The year 2025 heralds a new chapter in the cosmetics industry, defined by personalized solutions, sustainable practices, technological integration, and groundbreaking ingredients, and we hope many of you will embrace this project and contribute your outstanding papers to this Special Issue.

Prof. Dr. Enzo Berardesca
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cosmetics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • materials and ingredient research related to cosmetics
  • therapeutic options for skin, hair and body care
  • product formulations and ingredients
  • cosmetic olfactory research developments
  • technologies in cosmetic product development
  • testing of skin and hair products
  • toxicological studies of cosmetic products
  • in vivo and in vitro testing of cosmetic products
  • pure and applied research involved in skin, hair and body cosmetics
  • analytical chemistry of essential components involved in cosmetic product formulations
  • biomedicine research on biologically active components
  • regulatory and ethical issues in cosmetic research
  • dermatology, microbiology, anatomy, physiology, immunology and biochemistry of the skin
  • facial rejuvenation, laser therapy
  • cosmetic surgery and related medicine techniques

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (25 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

18 pages, 1525 KiB  
Article
The Importance of Cosmetics in Oncological Patients. Survey of Tolerance of Routine Cosmetic Care in Oncological Patients
by María-Elena Fernández-Martín, Jose V. Tarazona, Natalia Hernández-Cano and Ander Mayor Ibarguren
Cosmetics 2025, 12(4), 137; https://doi.org/10.3390/cosmetics12040137 - 27 Jun 2025
Viewed by 146
Abstract
The expected cutaneous adverse effects (CAE) of oncology therapies can be disabling and even force the patient to discontinue treatment. The incorporation of cosmetics into skin care regimens (SCRs) as true therapeutic adjuvants can prevent, control, and avoid sequelae. However, cosmetics may also [...] Read more.
The expected cutaneous adverse effects (CAE) of oncology therapies can be disabling and even force the patient to discontinue treatment. The incorporation of cosmetics into skin care regimens (SCRs) as true therapeutic adjuvants can prevent, control, and avoid sequelae. However, cosmetics may also lead to adverse reactions in patients. The aim of our study was to assess the impact of the tolerability of cosmetics used in routine skin care on quality of life in this vulnerable population group through a survey. In addition, information was collected to improve the knowledge of the beneficial effects of cosmetics and the composition recommended. Hospital nurses guided the patients to fill in the surveys, which were done once. The main uses are related to daily hygiene care, photoprotection, and dermo-cosmetic treatment to prevent or at least reduce the skin’s adverse effects. More than 30% (36.36%) of patients perceived undesirable effects or discomfort with the use of cosmetics (27.27% in the facial area, 27.27% in the body and hands, and 22.73% in the scalp and hair). Intolerance was described for some soaps and creams used in the facial area. This study provides additional evidence on perceived tolerance supporting updates of clinical practice guidelines, highlights consolidated knowledge and evidence on the use of cosmetics, as well as new recommendations on the use and composition of cosmetics intended for oncological patients. There is a need for more knowledge about cosmetic ingredients and formulations, including ingredients of concern, such as endocrine disruptors. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

21 pages, 2393 KiB  
Article
Digital Tools in Action: 3D Printing for Personalized Skincare in the Era of Beauty Tech
by Sara Bom, Pedro Contreiras Pinto, Helena Margarida Ribeiro and Joana Marto
Cosmetics 2025, 12(4), 136; https://doi.org/10.3390/cosmetics12040136 - 25 Jun 2025
Viewed by 155
Abstract
3D printing (3DP) enables the development of highly customizable skincare solutions, offering precise control over formulation, structure, and aesthetic properties. Therefore, this study explores the impact of patches’ microstructure on hydration efficacy using conventional and advanced chemical/morphological confocal techniques. Moreover, it advances to [...] Read more.
3D printing (3DP) enables the development of highly customizable skincare solutions, offering precise control over formulation, structure, and aesthetic properties. Therefore, this study explores the impact of patches’ microstructure on hydration efficacy using conventional and advanced chemical/morphological confocal techniques. Moreover, it advances to the personalization of under-eye 3D-printed skincare patches and assesses consumer acceptability through emotional sensing, providing a comparative analysis against a non-3D-printed market option. The results indicate that increasing the patches’ internal porosity enhances water retention in the stratum corneum (53.0 vs. 45.4% µm). Additionally, patches were personalized to address individual skin needs/conditions (design and bioactive composition) and consumer preferences (color and fragrance). The affective analysis indicated a high level of consumer acceptance for the 3D-printed option, as evidenced by the higher valence (14.5 vs. 1.1 action units) and arousal (4.2 vs. 2.7 peaks/minute) scores. These findings highlight the potential of 3DP for personalized skincare, demonstrating how structural modifications can modulate hydration. Furthermore, the biometric-preference digital approach employed offers unparalleled versatility, enabling rapid customization to meet the unique requirements of different skin types. By embracing this advancement, a new era of personalized skincare emerges, where cutting-edge science powers solutions for enhanced skin health and consumer satisfaction. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

9 pages, 565 KiB  
Communication
Sun Protection Products Protect Against UV-Induced Mitochondrial DNA Damage and Blue Light-Induced Cell Decline in Human Dermal Fibroblast Skin Cell Viability
by Jessica Moor, Amy Bowman, Hina Choudhary, Jonathan Brookes, Patricia Brieva and Mark Anthony Birch-Machin
Cosmetics 2025, 12(3), 128; https://doi.org/10.3390/cosmetics12030128 - 19 Jun 2025
Viewed by 375
Abstract
The first part of the study shows that four commercial sun protection SPF 50 products provide statistically significant (all p < 0.021) protection by reducing the amount of UV-induced mitochondrial (mtDNA) damage in human dermal fibroblast skin cells (i.e., 320% protection). mtDNA damage [...] Read more.
The first part of the study shows that four commercial sun protection SPF 50 products provide statistically significant (all p < 0.021) protection by reducing the amount of UV-induced mitochondrial (mtDNA) damage in human dermal fibroblast skin cells (i.e., 320% protection). mtDNA damage has been shown to be an effective and reliable biomarker of skin damage and plays a key role in the ageing process. The second part of the study investigates a sub-set, namely two of the four commercial sun protection products. Both products significantly protect (both p < 0.014) against the longer wavelength blue light induced decrease in a different biomarker, namely the viability of human dermal fibroblast skin cells. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

17 pages, 1085 KiB  
Article
Chamomile Matters: Species- and Producer-Dependent Variation in Bulgarian Matricaria recutita L. and Chamaemelum nobile L. Essential Oils and Their Cosmetic Potential
by Daniela Batovska, Natalina Panova, Anelia Gerasimova, Yulian Tumbarski, Ivan Ivanov, Ivayla Dincheva, Ina Yotkovska, Galia Gentscheva and Krastena Nikolova
Cosmetics 2025, 12(3), 123; https://doi.org/10.3390/cosmetics12030123 - 13 Jun 2025
Viewed by 574
Abstract
Chamomile essential oils (EOs) are widely used in cosmetics for their antioxidant, anti-inflammatory, and antimicrobial properties. Bulgaria, with its long-standing tradition in EO production, provides an ideal setting to examine the influence of species and cultivation practices on oil quality. This study compares [...] Read more.
Chamomile essential oils (EOs) are widely used in cosmetics for their antioxidant, anti-inflammatory, and antimicrobial properties. Bulgaria, with its long-standing tradition in EO production, provides an ideal setting to examine the influence of species and cultivation practices on oil quality. This study compares the chemical composition and biological activity of EOs from German chamomile (Matricaria recutita L.) and Roman chamomile (Chamaemelum nobile L.), sourced from two major Bulgarian producers—Bulgarska Bilka Ltd. and Kateko Ltd. (Plovdiv, Bulgaria). Gas chromatography–mass spectrometry (GC–MS) profiling revealed species- and producer-dependent differences. German chamomile EOs were rich in β-farnesene, chamazulene, and bisabolol oxides, whereas Roman chamomile EOs were dominated by isobutyl angelate and related esters. Antioxidant activity, assessed via the ABTS assay, was higher in German chamomile EOs, especially from Bulgarska Bilka Ltd. The oils also showed photoprotective potential, with SPF values of 26–27 for German and 9–16 for Roman chamomile. Anti-inflammatory activity, evaluated by inhibition of albumin denaturation, was highest in Roman chamomile oils and comparable to that of prednisolone, while German chamomile also showed strong effects. Antimicrobial activity was generally low, with moderate effects observed only against Penicillium chrysogenum and Aspergillus flavus. These findings support the targeted use of chamomile EOs in cosmetics—German chamomile for antioxidant-rich, UV-protective, and microbiome-supportive care, and Roman chamomile for soothing, anti-inflammatory, and fragrance-enhancing applications. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

12 pages, 841 KiB  
Article
The Evaluating Skin Acid–Base Balance After Application of Cold-Processed and Hot-Processed Natural Soaps: A Double-Blind pH Monitoring Study
by Julita Zdrada-Nowak, Sandra Aniołkowska and Małgorzata Deska
Cosmetics 2025, 12(3), 120; https://doi.org/10.3390/cosmetics12030120 - 11 Jun 2025
Viewed by 787
Abstract
Maintaining the physiological acid–base balance of the skin is critical to preserving the integrity of the epidermal barrier and preventing irritation. This study investigates the short-term effects of natural soaps, prepared using cold and hot processes, on skin surface pH. A double-blind, controlled [...] Read more.
Maintaining the physiological acid–base balance of the skin is critical to preserving the integrity of the epidermal barrier and preventing irritation. This study investigates the short-term effects of natural soaps, prepared using cold and hot processes, on skin surface pH. A double-blind, controlled design was applied to assess changes in pH following application of soap formulations. pH levels were measured in vivo using non-invasive instrumentation at baseline and 2, 15 and 30 min post-application in 41 adult volunteers. The results demonstrated a significant increase in skin pH immediately after exposure to both types of natural soap, with elevated values persisting for up to 30 min. These changes were associated with potential disruption of the skin’s acid mantle and reduced buffering capacity. The findings highlight the importance of pH considerations in the formulation and routine use of natural cleansers. Although natural soaps are often perceived as gentle alternatives, their alkalinity may transiently disturb the skin’s acid–base homeostasis, potentially leading to increased transepidermal water loss and barrier impairment. This study supports the need for reformulation strategies and consumer awareness regarding the physicochemical impact of cleansing agents on skin health. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

12 pages, 375 KiB  
Article
An Analytical Framework for the Selective Extraction and Determination of Nine Multiclass Endocrine-Disrupting Chemicals from Haircare Products
by Ilaria Neri, Ritamaria Di Lorenzo, Giacomo Russo, Teresa Di Serio, Lucia Grumetto and Sonia Laneri
Cosmetics 2025, 12(3), 116; https://doi.org/10.3390/cosmetics12030116 - 3 Jun 2025
Viewed by 568
Abstract
Humans are exposed to pollutants daily through various routes, including skin contact. A key concern is the presence of endocrine-disrupting chemicals, which means they can mimic, block or interfere with the body’s natural hormones, in many everyday items, among which are personal care [...] Read more.
Humans are exposed to pollutants daily through various routes, including skin contact. A key concern is the presence of endocrine-disrupting chemicals, which means they can mimic, block or interfere with the body’s natural hormones, in many everyday items, among which are personal care products. We set up a chromatographic method to simultaneously assess the occurrence of nine endocrine disruptors and to verify the compliance with mandatory regulations concerning the potential fraudulent additions of preservatives. A total of twenty-six haircare products were collected and analyzed. The limits of detection ranged from 0.052 μg mL−1 to 1.744 μg mL−1, while the limits of quantification ranged from 0.175 μg mL−1 to 5.815 μg mL−1, respectively. Analyte recovery was between 66% and 87%, demonstrating the accuracy of the method in these target formulations. Even if the recovered quantity of parabens did not exceed the legal limits, the analysis detected bis(2-ethylhexyl) phthalate (DEHP) in 2 real samples and dibutyl phthalate (DBP) in all 26 samples, with concentrations ranging from 151.01 μg/100 g to 1042.58 μg/100 g. Although the European Union regulates the quantity of potentially harmful compounds in consumer goods, repeated use of certain products, such as haircare formulations, could result in chronic exposure to several endocrine disruptors. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

17 pages, 1014 KiB  
Article
Design of a Novel DNA-FISH Probe for the Rapid Identification of Candida albicans in Cosmetic Products
by Patrícia Branco, Margarida Nunes, Paula Pereira and Elisabete Muchagato Mauricio
Cosmetics 2025, 12(3), 115; https://doi.org/10.3390/cosmetics12030115 - 3 Jun 2025
Viewed by 576
Abstract
Microbiological quality control in cosmetic and pharmaceutical products is crucial for consumer safety. Traditional culture-based detection methods, such as plating on selective media, are time-consuming and may lack sensitivity. Fluorescence In Situ Hybridisation (FISH), a molecular and culture-independent technique, enables rapid and precise [...] Read more.
Microbiological quality control in cosmetic and pharmaceutical products is crucial for consumer safety. Traditional culture-based detection methods, such as plating on selective media, are time-consuming and may lack sensitivity. Fluorescence In Situ Hybridisation (FISH), a molecular and culture-independent technique, enables rapid and precise microbial identification by targeting specific RNA or DNA sequences with fluorescent probes. In this study, a novel DNA-FISH probe was developed for the detection of Candida albicans in cosmetic formulations. The probe’s specificity was assessed in silico and experimentally using flow cytometry (flow-FISH) on C. albicans and non-target microorganisms, including Pichia kudriavzevii, commonly known as Candida krusei, Saccharomyces cerevisiae, Wickerhamomyces anomalus, Escherichia coli, and Staphylococcus aureus. The probe exhibited 98.9% hybridization efficiency with C. albicans, yielding a fluorescence intensity (FI) of 25,000 (a.u.), while non-target yeasts demonstrated minimal hybridization (4.7%, 2.3%, and 1.9% for C. krusei, S. cerevisiae, and W. anomalus, respectively) and bacteria showed negligible FI. Additionally, the probe’s applicability was evaluated in a tonic formulation, where C. albicans’ hybridization efficiency was slightly reduced to 88.4%, suggesting that formulation components may influence probe performance. Nevertheless, the probe maintained high specificity and efficiency without formamide, a toxic reagent commonly used in FISH. These findings highlight the potential of FISH probes for rapid, accurate, and safe microbial detection, offering a valuable tool for microbiological quality control in the cosmetics industry. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

19 pages, 2591 KiB  
Article
Natural Mineral Water–Plant Extract Combinations as Potential Anti-Aging Ingredients: An In Vitro Evaluation
by Carolina P. Gomes, Ana S. Oliveira, Joana Rolo, Tayse F. F. da Silveira, Rita Palmeira de Oliveira, Maria José Alves, Paula Plasencia and Ana Palmeira de Oliveira
Cosmetics 2025, 12(3), 113; https://doi.org/10.3390/cosmetics12030113 - 28 May 2025
Viewed by 1684
Abstract
Natural mineral waters (NMWs) and plant extracts have long been valued for their therapeutic properties and skin benefits. This study investigated, in vitro, the role of five Portuguese NMWs (A-E), combined with plant extracts from five species (Ficus carica L., Rubus idaeus [...] Read more.
Natural mineral waters (NMWs) and plant extracts have long been valued for their therapeutic properties and skin benefits. This study investigated, in vitro, the role of five Portuguese NMWs (A-E), combined with plant extracts from five species (Ficus carica L., Rubus idaeus L., Vaccinium myrtillus, Cistus ladanifer and Thymus x citriodorus) as bioactive ingredients. Antioxidant capacity was assessed using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method. Cellular biocompatibility was evaluated in fibroblasts (L929) and macrophages (RAW 264.7). Skin-repairing and anti-senescence properties were evaluated in L929 cells through the scratch-wound method and β-galactosidase assay. Superoxide dismutase (SOD) was quantified using a commercial kit, and lipopolysaccharide-induced reactive oxygen species (ROS) were quantified using a fluorescent probe (H2DCFDA) in RAW 264.7. The results highlighted the beneficial impact of extracts combined with NMWs. An increase in antioxidant capacity of up to 90% was observed in mixtures comprising Ficus carica L., compared with NMWs alone. In contrast, mixtures with Cistus ladanifer showed promising anti-aging potential, with a 40% decrease in senescent cells and a 33% ROS reduction. Rubus idaeus L. extract produced an increase in cell migration capacity (up to 50%), depending on the NMW. This study highlights the potential synergism of natural ingredients with plant extracts for anti-aging. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

16 pages, 1793 KiB  
Article
Exploring Skin Biometrics, Sensory Profiles, and Rheology of Two Photoprotective Formulations with Natural Extracts: A Commercial Product Versus a Vegan Test Formulation
by Karine Campos Nunes, Bruna Lendzion Alves, Rafaela Said dos Santos, Lennon Alonso de Araújo, Rosângela Bergamasco, Marcos Luciano Bruschi, Tânia Ueda-Nakamura, Sueli de Oliveira Silva Lautenschlager and Celso Vataru Nakamura
Cosmetics 2025, 12(3), 112; https://doi.org/10.3390/cosmetics12030112 - 27 May 2025
Viewed by 665
Abstract
Cumulative exposure to UV radiation can lead to harmful effects such as skin burns, photoaging, and skin cancer, thus highlighting the importance of using photoprotective formulations. Many sunscreens are vegan and have antioxidant substances to ensure additional photochemoprotective action. We evaluated biophysical, rheological, [...] Read more.
Cumulative exposure to UV radiation can lead to harmful effects such as skin burns, photoaging, and skin cancer, thus highlighting the importance of using photoprotective formulations. Many sunscreens are vegan and have antioxidant substances to ensure additional photochemoprotective action. We evaluated biophysical, rheological, and sensorial parameters of Face Care Facial Moisturizing Cream® (P1) and a vegan formulation (P2) by in vitro and in vivo tests. Sun Protection Factor (SPF) was evaluated by Mansur method. Biophysical parameters were analyzed: sebum content, hydration level, transepidermal water loss, erythema and melanin level, skin color, and skin pH. The acceptance profile of the formulations was determined using a 9-point hedonic scale and a 5-point purchase intention test. The SPF values of P1 and P2 obtained by in vitro tests were 25.21 and 12.10, respectively. They also exhibited pseudoplastic and thixotropic behavior, which could contribute to better spreadability and form a protective film. Biometric tests showed an increase in hydration and skin sebum, decreased erythema, and maintenance of skin pH after application of both formulations. The comparison of a commercialized product and a vegan test version showed similar rheological and great acceptance profiles. Therefore, the vegan formulation is a good alternative to reach a different market. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

12 pages, 1339 KiB  
Article
Two-Photon Microscopy for the Investigation of Morphological and Quantitative Changes in Skin Chrono- and Photo-Aging
by Stefano Bighetti, Chiara Rovati, Luca Bettolini, Mariachiara Arisi, Mariateresa Rossi, Cosetta Ravelli, Sara Rovaris, Marina Venturini, Stefania Mitola and Piergiacomo Calzavara-Pinton
Cosmetics 2025, 12(3), 111; https://doi.org/10.3390/cosmetics12030111 - 26 May 2025
Viewed by 547
Abstract
Introduction: Skin aging is influenced both by intrinsic factors and environmental exposures, such as UV radiation, which accelerate structural changes within the skin’s extracellular matrix (ECM). Understanding these changes is crucial for developing effective anti-aging treatments. Materials and Methods: This pilot cross-sectional study [...] Read more.
Introduction: Skin aging is influenced both by intrinsic factors and environmental exposures, such as UV radiation, which accelerate structural changes within the skin’s extracellular matrix (ECM). Understanding these changes is crucial for developing effective anti-aging treatments. Materials and Methods: This pilot cross-sectional study examined skin biopsy samples from three Caucasian male subjects with different levels of UV exposure, aiming to evaluate the effectiveness of two-photon microscopy (2PM) and Second Harmonic Generation (SHG) in visualizing and quantifying structural changes associated with skin aging. The samples were analyzed using 2PM to assess the structure and density of collagen and elastin fibers within the ECM. Integrated optical density (IOD) and the SHG-to-Autofluorescence Aging Index of the Dermis (SAAID) were used for quantitative analysis. Results: This study revealed a significant decrease in collagen density and increased disorganization in the ECM with age. Photo-exposed skin showed a more pronounced degradation of collagen and a higher increase in elastin content compared to non-photo-exposed skin. The average IOD for collagen was notably lower in elderly subjects compared to younger subjects, with a marked decrease in chronically photo-exposed skin. Discussion: The SAAID values indicated a substantial impact of photoaging, with lower scores in photo-exposed elderly skin compared to non-exposed skin. Conclusions: In conclusion, 2PM and SHG microscopy were effective in visualizing and quantifying age- and UV-induced skin remodeling, providing valuable insights into the distinct mechanisms driving intrinsic and extrinsic aging. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

13 pages, 981 KiB  
Article
Evaluating the Cosmetic Efficacy of Topical Micrococcus luteus Q24 Probiotic Balm: A Pilot Study in Healthy Adults
by Abigail L. Voss, Stephanie A. Mattison, Sonali S. Sali, John D. F. Hale and Rohit Jain
Cosmetics 2025, 12(3), 105; https://doi.org/10.3390/cosmetics12030105 - 22 May 2025
Viewed by 848
Abstract
The skin microbiome is a focus for innovative skincare. This study investigated topical semi-solid balm formulations of Micrococcus luteus Q24, a live skin-native probiotic, to enhance skin quality parameters such as hydration, pores, pigmentation, wrinkles and dryness. Firstly, the compatibility and growth-promoting effects [...] Read more.
The skin microbiome is a focus for innovative skincare. This study investigated topical semi-solid balm formulations of Micrococcus luteus Q24, a live skin-native probiotic, to enhance skin quality parameters such as hydration, pores, pigmentation, wrinkles and dryness. Firstly, the compatibility and growth-promoting effects of prebiotics and functional actives on M. luteus Q24 were evaluated, identifying oil-based actives, including vitamin E and pomegranate seed oil, that significantly boosted bacterial growth compared to oatmeal, the sole effective prebiotic tested. Subsequently, a pilot cosmetic trial assessed two M. luteus Q24-enriched balms on healthy adults utilising a cutting-edge AI (Artificial Intelligence) driven skin analyser device. Balm B significantly reduced keratin levels, wrinkles, and pore size, and increased hydration, while Balm A effectively reduced spots and keratin. After 4 days of application, Balm A showed mean percentage reductions of 80% in pores, 20% in spots, 60% in wrinkles, and 100% in keratin scores, while Balm B exhibited mean percentage reductions of 100% in pores, 50% in spots, 67% in wrinkles, and 80% in keratin, with a 100% increase in hydration score. Both balms demonstrated compatibility and efficacy, highlighting the potential of M. luteus Q24 in improving skin parameters. These findings suggest that balms optimise the benefits of skin-specific probiotics for microbiome-friendly skincare. Future research with larger, placebo-controlled trials is needed to substantiate these preliminary findings. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

14 pages, 657 KiB  
Article
Microemulsions Loaded with Plinia cauliflora Extract and Fractions for Topical Application Against Cutaneous Mycosis
by Rodrigo Sorrechia, Camila Cristina Baccetti Medeiros, João Vitor Carvalho Constantini, Rafaela Regina Fantatto, Bárbara Regina Kapp, Nathália Ferreira Fregonezi, Ana Melero, Ana Marisa Fusco-Almeida, Marlus Chorilli and Rosemeire Cristina Linhari Rodrigues Pietro
Cosmetics 2025, 12(3), 103; https://doi.org/10.3390/cosmetics12030103 - 15 May 2025
Viewed by 601
Abstract
Fungal infections, including skin ones, due to resistant strains combined with the gap in discovering new antifungal compounds have presented great medical importance; thus, we evaluated the antifungal properties of Plinia cauliflora, a Brazilian plant known as jabuticabeira, as its fruits have [...] Read more.
Fungal infections, including skin ones, due to resistant strains combined with the gap in discovering new antifungal compounds have presented great medical importance; thus, we evaluated the antifungal properties of Plinia cauliflora, a Brazilian plant known as jabuticabeira, as its fruits have been used in traditional medicine, which has been scientifically proved. The differential in this study was the use of leaves to obtain the ethanolic extract and its fractions and with incorporation in microemulsions that can increase the activity, promoting greater availability of active components in therapeutic targets. Candida glabrata has been very prominent in nosocomial infections and our results were very promising, showing a minimum inhibitory concentration of 4.88 μg/mL for the extract and about a 4-fold decrease with its microemulsion reaching 1.22 μg/mL; for the dermatophytic fungus Trichophyton rubrum, this decreased 2-fold, from 156.25 μg/mL to 78.12 μg/mL. The antioxidant activity was also studied, showing the best results for the extract at 25.6 μg/mL and lastly, the samples were not toxic when the Galleria mellonella model was used. Thus, the results demonstrate the activity of the extract, and that the incorporation was able to increase the antifungal activity in a safe, non-toxic manner, making it possible to provide a therapeutic option for these fluconazole-resistant microorganisms. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

23 pages, 6860 KiB  
Article
Cosmetic Potential of Haberlea rhodopensis Extracts and Extracellular Vesicles in Human Fibroblast Cells
by Milena Georgieva, Bela Vasileva, Penyo Ivanov, Kamelia Hristova-Panusheva, Tsvetelina Paunova-Krasteva, Ivan Lesov, Zlatina Gospodinova, Natalia Krasteva, George Miloshev and Vasil Georgiev
Cosmetics 2025, 12(3), 90; https://doi.org/10.3390/cosmetics12030090 - 1 May 2025
Viewed by 1924
Abstract
Skin ageing is a complex biological process influenced by cellular senescence, oxidative stress, and extracellular matrix degradation. Emerging evidence suggests that plant-derived bioactive compounds and extracellular vesicles (EVs) play a crucial role in modulating cellular homeostasis, promoting tissue regeneration, and counteracting age-related morphological [...] Read more.
Skin ageing is a complex biological process influenced by cellular senescence, oxidative stress, and extracellular matrix degradation. Emerging evidence suggests that plant-derived bioactive compounds and extracellular vesicles (EVs) play a crucial role in modulating cellular homeostasis, promoting tissue regeneration, and counteracting age-related morphological and functional changes. This study investigates the impact of Haberlea rhodopensis in vitro culture extracts, native and enriched with EVs, on key cellular processes, including morphology, mitochondrial dynamics, lysosomal activity, gene expression, and genotoxicity in human dermal fibroblasts. The extracellular vesicles were identified in terms of shape, size, and morphology using dynamic light scattering, negative staining and observation under a transmission electron microscope. A comprehensive in vitro analysis was conducted utilizing light microscopy to assess cellular morphology and lysosomal mass, fluorescence microscopy for actin cytoskeletal organization, mitochondrial integrity, and nuclear morphology, and gene expression profiling for markers associated with collagen synthesis (COL1A1, COL3A1), senescence (CDKN1A), and oxidative stress response (NFE2L2). Additionally, cell cycle progression was evaluated, and genotoxicity was assessed using the neutral comet assay. Haberlea rhodopensis in vitro culture extracts and EVs were found to preserve fibroblast morphology, enhance mitochondrial mass, and upregulate collagen-related gene expression. These effects were concentration-dependent. The extracts exhibited biocompatibility with minimal genotoxic effects, indicating their potential as safe bioactive agents for skin rejuvenation. The findings suggest that Haberlea rhodopensis in vitro culture extracts and their enrichment with extracellular vesicles hold promise for cosmetic and dermatological applications, particularly in enhancing collagen production, preserving cellular integrity, and mitigating age-related alterations in skin fibroblasts. Further studies are warranted to elucidate the underlying molecular mechanisms and optimize formulation strategies for clinical translation. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

14 pages, 2020 KiB  
Article
Unveiling the Biological Properties of Rosa rubiginosa L. Leaf Extract as a Bio-Functional Ingredient Based on 2D Cell-Based Models and In Vitro Assessments
by Sophia Letsiou, Aliki Tsakni, Dionysis Antonopoulos, Alexandros Tsoupras and Dimitra Houhoula
Cosmetics 2025, 12(2), 62; https://doi.org/10.3390/cosmetics12020062 - 31 Mar 2025
Viewed by 795
Abstract
Natural ingredients have long been utilized to enhance human health. While Rosa rubiginosa L. has been relatively understudied, it is known for its antioxidant and anti-inflammatory properties. This study explores its diverse bioactivity on human primary keratinocytes and fibroblasts, highlighting its potential as [...] Read more.
Natural ingredients have long been utilized to enhance human health. While Rosa rubiginosa L. has been relatively understudied, it is known for its antioxidant and anti-inflammatory properties. This study explores its diverse bioactivity on human primary keratinocytes and fibroblasts, highlighting its potential as a bio-functional agent in cosmeceuticals or nutraceuticals. The Rosa rubiginosa L. leaf extract demonstrated strong scavenging activity and high phenolic content protection while also preventing DNA breakage. At the molecular level, ATP determination revealed that the Rosa rubiginosa L. leaf confers cell viability even under oxidative stress. Gene expression analysis uncovered its protective effects on human primary keratinocytes and fibroblasts due to its strong antioxidant and anti-inflammatory response under oxidative stress induced by UVA irradiation. These findings suggest that Rosa rubiginosa L. leaf extract provides significant in vitro biological properties in cell-based models, offering new insights into its potential benefits and underscoring its bio-functional role. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

12 pages, 1818 KiB  
Article
Skin Cell Phototoxicity and Photoprotection Study of Agro-Derived Lignin and Nanocellulose
by Juliana Varella Cruz, Adriana Solange Maddaleno, Julia Salles Gava, Washington Luiz Esteves Magalhães, Danielle Palma de Oliveira, Daniela Morais Leme, Montserrat Mitjans and Maria Pilar Vinardell
Cosmetics 2025, 12(2), 61; https://doi.org/10.3390/cosmetics12020061 - 28 Mar 2025
Viewed by 628
Abstract
Lignin, a significant industrial byproduct from paper manufacturing processes, exhibits ultraviolet (UV) radiation absorption properties. Cellulose nanofibers (CNFs) demonstrate universal ligand characteristics and represent an innovative approach for converting industrial waste into value-added products. Given their potential applications in cosmetic formulations, their efficacy [...] Read more.
Lignin, a significant industrial byproduct from paper manufacturing processes, exhibits ultraviolet (UV) radiation absorption properties. Cellulose nanofibers (CNFs) demonstrate universal ligand characteristics and represent an innovative approach for converting industrial waste into value-added products. Given their potential applications in cosmetic formulations, their efficacy and safety parameters, such as their photoprotection mechanisms and phototoxicity, need to be investigated. Therefore, two kraft lignin fractions, LE and R1, along with a kraft-bleached pulp CNF, were evaluated for their phototoxicity and photoprotection mechanisms, both using the HaCaT cell line (immortalized human keratinocytes) as the in vitro model. Phototoxicity assessment involved exposing cells to UVA radiation (4 J/cm2), with the subsequent comparison of cell viability between irradiated and non-irradiated samples. ROS quantification was performed using a 2′,7′-dichlorofluorescein diacetate (DCF-DA) probe, with fluorescence intensity measurements, and was then used to evaluate the photoprotection effect. The results demonstrated that both LE and R1 exhibited concentration-dependent increases in phototoxicity, whereas CNF showed no phototoxic effects under the conditions tested. For photoprotection, LE, R1, and CNF reduced UV-induced ROS production, a result which could be associated with antioxidant properties in the case of the lignin fractions. These findings suggest that both lignin fractions and CNF hold promise for use in renewable and sustainable cosmetic formulations. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

13 pages, 3383 KiB  
Article
Clinical Efficacy of Adiponectin-Stimulating Peptide on UV-Induced Skin Damage
by Yongwoo Kim, Seokjeong Yoon, Sungwoo Kim, Yeonjae Kim, Sekyoo Jeong and Hyun-jung Kim
Cosmetics 2025, 12(2), 54; https://doi.org/10.3390/cosmetics12020054 - 18 Mar 2025
Viewed by 754
Abstract
Several studies have suggested that adiponectin is an anti-aging molecule based on its potential involvement of adipose tissue in skin aging. In this study, we investigated the anti-photoaging efficacy of an adiponectin expression-stimulating peptide derivative, pentasodium tetracarboxymethyl hexanoyl dipeptide-12 (PTHD-12), in in vitro [...] Read more.
Several studies have suggested that adiponectin is an anti-aging molecule based on its potential involvement of adipose tissue in skin aging. In this study, we investigated the anti-photoaging efficacy of an adiponectin expression-stimulating peptide derivative, pentasodium tetracarboxymethyl hexanoyl dipeptide-12 (PTHD-12), in in vitro and ex vivo human skin explant models. A double-blind, randomized, comparator placebo-controlled study was performed to confirm clinical efficacy. After irradiation with 50 mJ/cm2 of UVB, a UV-induced decrease in adiponectin expression and an increase in inflammatory cytokines in cultured human dermal fibroblasts were prevented by the PTHD-12 treatment test peptide. Mitigation of cellular senescence and senescence-associated secretory phenotype (SASP) expressions induced by UVB (50 mJ/cm2) exposure were also mitigated by the post-treatment of PTHD-12, which was also observed in an ex vivo human skin explant model. The restoration of filaggrin, loricrin, and claudin-1 protein expression in a cultured human skin explant was observed. A clinical study further confirmed that the restoration of UVB-induced skin damage, represented by increased skin redness and trans-epidermal water loss, was accelerated by the use of test peptide PTHD-12-containing products. These results suggest that targeting adiponectin may be a plausible strategy for the development of anti-aging ingredients. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

16 pages, 4614 KiB  
Article
Production and Characterization of Semi-Solid Formulations for the Delivery of the Cosmetic Peptide Palmitoyl-GHK
by Valentyn Dzyhovskyi, Federico Santamaria, Erika Marzola, Leda Montesi, Irene Donelli, Stefano Manfredini, Remo Guerrini and Elisabetta Esposito
Cosmetics 2025, 12(2), 50; https://doi.org/10.3390/cosmetics12020050 - 13 Mar 2025
Viewed by 1169
Abstract
In this study, vesicular lipid systems and semi-solid formulations for the skin application of Palmitoyl-GHK were formulated and characterized. Palmitoyl-GHK is a cosmetic peptide with anti-aging action, capable of treating the signs of skin aging by mainly stimulating collagen synthesis in the dermis. [...] Read more.
In this study, vesicular lipid systems and semi-solid formulations for the skin application of Palmitoyl-GHK were formulated and characterized. Palmitoyl-GHK is a cosmetic peptide with anti-aging action, capable of treating the signs of skin aging by mainly stimulating collagen synthesis in the dermis. The so-called “ethosomes” were evaluated as nanovesicular systems constituted of phosphatidylcholine, organized in vesicles, ethanol, and water. In addition, semi-solid systems were produced and characterized, namely an organogel based on phosphatidylcholine, isopropyl palmitate, and water, a gel based on Poloxamer 407, and the poloxamer organogel, created by combining organogel and Poloxamer gel. To make the ethosomal dispersions suitable for skin application, xanthan gum was added as a gelling agent. Studies were therefore carried out on semi-solid formulations to determine (i) the spreadability, a key factor that influences various aspects of a topical/transdermal formulation, (ii) the occlusive factor, important to guarantee good effectiveness of a dermocosmetic product, and finally, (iii) the hydrating power, to study the effect of a formulation applied to the skin. A formulation study enabled the selection of the most suitable formulations for the incorporation of the active ingredient of interest. Palmitoyl-GHK was found to be soluble both in ethosomes and in the poloxamer organogel. In vitro studies were therefore conducted to evaluate the release kinetics of Palmitoyl-GHK from the formulations, via Franz cells. The qualitative–quantitative analysis, through analytical HPLC, highlighted that the active ingredient is released more slowly from semi-solid formulations compared to vesicular systems; in particular, the presence of poloxamer allows a controlled release of the peptide. Further studies will be necessary to verify the anti-aging efficacy of formulations containing the peptide. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

Review

Jump to: Research, Other

19 pages, 487 KiB  
Review
Evolution of Thread Lifting: Advancing Toward Bioactive Polymers and Sustained Hyaluronic Acid Delivery
by Pavel Burko and Ilias Miltiadis
Cosmetics 2025, 12(3), 127; https://doi.org/10.3390/cosmetics12030127 - 18 Jun 2025
Viewed by 497
Abstract
Facial aging is a multifactorial and stratified biological process characterized by progressive morphological and biochemical alterations affecting both cutaneous (Layer I) and subcutaneous (Layer II) tissues. These age-related changes manifest clinically as volume depletion, tissue ptosis, and a decline in overall skin quality. [...] Read more.
Facial aging is a multifactorial and stratified biological process characterized by progressive morphological and biochemical alterations affecting both cutaneous (Layer I) and subcutaneous (Layer II) tissues. These age-related changes manifest clinically as volume depletion, tissue ptosis, and a decline in overall skin quality. In response to these phenomena, thread lifting techniques have evolved significantly—from simple mechanical suspension methods to sophisticated bioactive platforms. Contemporary threads now incorporate biocompatible polymers and hyaluronic acid (HA), aiming not only to reposition soft tissues but also to promote dermal regeneration. This review provides a comprehensive classification and critical assessment of thread lifting materials, focusing on their chemical composition, mechanical performance, degradation kinetics, and biostimulatory potential. Particular emphasis has been given to the surface integration of HA into monofilament threads, especially with the emergence of advanced delivery systems such as NAMICA, which facilitate sustained HA release. Advanced thread materials, especially those fabricated from poly(L-lactide-co-ε-caprolactone) [P(LA/CL)], demonstrate both tensile support and regenerative efficacy. Emerging HA-covered threads exhibit synergistic bioactivity, stimulating skin remodeling. NAMICA technology represents an advancement in the field, in which HA is encapsulated within biodegradable polymer fibers to enable gradual release and enhanced dermal integration. Nonetheless, well-designed human studies are still needed to substantiate its therapeutic efficacy. Consequently, the paradigm of thread lifting is shifting from purely mechanical interventions toward biologically active systems that promote comprehensive ECM regeneration. The integration of HA into resorbable threads, especially when combined with sustained-release technologies, represents a meaningful innovation in aesthetic dermatology, meriting further preclinical and clinical evaluation. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

16 pages, 650 KiB  
Review
The Epidemiology of Acne in the Current Era: Trends and Clinical Implications
by Dumitrița Lenuța Guguluș, Dan Vâță, Ioana Adriana Popescu, Adriana Ionela Pătrașcu, Ioana Alina Halip, Mădălina Mocanu and Laura Gheucă Solovăstru
Cosmetics 2025, 12(3), 106; https://doi.org/10.3390/cosmetics12030106 - 22 May 2025
Viewed by 1573
Abstract
Acne is an inflammatory dermatosis of the pilosebaceous unit that remains highly prevalent worldwide. In recent decades, the epidemiological profile of acne has evolved, with a rising incidence observed not only among adolescents but also in adult populations, particularly adult women. The current [...] Read more.
Acne is an inflammatory dermatosis of the pilosebaceous unit that remains highly prevalent worldwide. In recent decades, the epidemiological profile of acne has evolved, with a rising incidence observed not only among adolescents but also in adult populations, particularly adult women. The current global prevalence is approximately 9.4%, reflecting its continued relevance as a public health concern. While early epidemiological studies were predominantly conducted in the United States and United Kingdom, recent data from diverse geographic regions highlight the need for updated, globally representative research. The Global Burden of Disease (GBD) initiative has recognized acne as a condition with a substantial impact on disability-adjusted life years (DALYs), underscoring its contribution to both physical and psychological morbidity. This review aims to synthesize current epidemiological findings, identify high-risk populations, and explore intrinsic and extrinsic factors influencing disease distribution and progression. A deeper understanding of acne’s epidemiology is essential to inform prevention strategies and improve outcomes in dermatological care. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

17 pages, 507 KiB  
Review
Optimizing Skin Quality via AI-Enhanced Physical Activity
by Niki Tertipi, Eleni Sfyri, Vasiliki Sofia Grech, Vasiliki Kefala and Efstathios Rallis
Cosmetics 2025, 12(3), 104; https://doi.org/10.3390/cosmetics12030104 - 20 May 2025
Viewed by 1595
Abstract
Genetic predisposition, environmental factors, lifestyle choices, and physical activity influence skin quality. Regular exercise has well-documented benefits for skin physiology, including enhanced microcirculation, improved collagen synthesis, oxidative stress reduction, and modulation of inflammatory pathways. However, individual responses to physical activity vary significantly, depending [...] Read more.
Genetic predisposition, environmental factors, lifestyle choices, and physical activity influence skin quality. Regular exercise has well-documented benefits for skin physiology, including enhanced microcirculation, improved collagen synthesis, oxidative stress reduction, and modulation of inflammatory pathways. However, individual responses to physical activity vary significantly, depending on skin type, age, fitness level, and environmental exposures. Recent advances in artificial intelligence (AI) offer new opportunities for tailoring exercise programs to meet individual skin health needs. Wearable sensors and smart fitness devices provide real-time data on physiological responses (e.g., heart rate, sweat rate, and oxidative stress) and environmental parameters (e.g., UV exposure and pollution levels). AI algorithms process this data to create dynamic, adaptive exercise routines designed to maximize skin benefits while minimizing potential harm (e.g., exercise-induced oxidative stress in sensitive skin types). This review synthesizes the current evidence on the skin benefits of exercise while exploring the emerging role of AI-driven personalized physical activity as a novel tool in cosmetic dermatology. Integrating AI into fitness planning, personalized, non-invasive skincare strategies may complement traditional topical and procedural approaches, representing a step forward in precision dermatology. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

24 pages, 774 KiB  
Review
New Perspectives on Titanium Dioxide and Zinc Oxide as Inorganic UV Filters: Advances, Safety, Challenges, and Environmental Considerations
by Stephany Mayumi Araki and André Rolim Baby
Cosmetics 2025, 12(2), 77; https://doi.org/10.3390/cosmetics12020077 - 11 Apr 2025
Cited by 1 | Viewed by 3829
Abstract
Exposure to ultraviolet (UV) radiation is a primary risk factor for various skin disorders, including erythema, sunburn, and skin cancer. Sunscreens containing UV filters, categorized as organic or inorganic, are widely utilized to mitigate these effects. Among inorganic UV filters, titanium dioxide (TiO [...] Read more.
Exposure to ultraviolet (UV) radiation is a primary risk factor for various skin disorders, including erythema, sunburn, and skin cancer. Sunscreens containing UV filters, categorized as organic or inorganic, are widely utilized to mitigate these effects. Among inorganic UV filters, titanium dioxide (TiO2) and zinc oxide (ZnO) are prominently used due to their favorable safety and achievable broad-spectrum protection profiles. This review focuses on the properties, safety, and efficacy of TiO2 and ZnO in sunscreens, emphasizing their mechanisms of action, photostability, and impacts on human health and the environment. Key factors influencing their performance include particle size, surface coatings, and formulation pH. Despite recognized advantages, concerns about toxicity—particularly related to nanoparticle penetration and reactive oxygen species generation—highlight the need for robust safety assessments. Additionally, the environmental impacts of inorganic UV filters, including bioaccumulation and effects on aquatic ecosystems, warrant consideration. Advances in nanoparticle synthesis, bioactive compound integration, and environmentally friendly formulations offer pathways to enhance sunscreen efficacy and safety, providing opportunities for innovation in photoprotection. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

20 pages, 1265 KiB  
Review
On the Key Role of Polymeric Rheology Modifiers in Emulsion-Based Cosmetics
by Matteo Franceschini, Fabio Pizzetti and Filippo Rossi
Cosmetics 2025, 12(2), 76; https://doi.org/10.3390/cosmetics12020076 - 11 Apr 2025
Viewed by 2983
Abstract
Emulsions play a crucial part in the whole beauty and care market, especially in skin and hair care domains where, due to their extraordinary versatility, they represent most of the finite products. Being thermodynamically unstable, one key aspect of their formulation is the [...] Read more.
Emulsions play a crucial part in the whole beauty and care market, especially in skin and hair care domains where, due to their extraordinary versatility, they represent most of the finite products. Being thermodynamically unstable, one key aspect of their formulation is the use of stabilizers that ensure a long lifetime under different conditions. In this framework a key role is related to rheology modifiers, which include all those raw ingredients added to achieve, among others, desirable inflow characteristics that would not be possible to gain in their absence. In this review, strong attention was dedicated to different polymers and formulation strategies to understand the key role of these ingredients, widely used in emulsion-based cosmetics formulations. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

27 pages, 1232 KiB  
Review
Physicochemical Properties and Composition of Peristomal Skin Care Products: A Narrative Review
by Agnieszka Kulawik-Pióro, Małgorzata Miastkowska, Katarzyna Bialik-Wąs, Piotr Zelga and Anna Piotrowska
Cosmetics 2025, 12(2), 74; https://doi.org/10.3390/cosmetics12020074 - 9 Apr 2025
Viewed by 994
Abstract
People who have gone through stoma surgery face different problems and difficulties every day, although most of these issues improve significantly with time. The quality of life of ostomy patients has been proven to be strictly related to self-care ability. So, it is [...] Read more.
People who have gone through stoma surgery face different problems and difficulties every day, although most of these issues improve significantly with time. The quality of life of ostomy patients has been proven to be strictly related to self-care ability. So, it is essential for patients to properly maintain the ostomy site, including proper daily self-care and regeneration of the skin around the stoma, to avoid stoma-related complications. This review was undertaken using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. The main aim of the literature review was to analyse and present the characteristics of medical products used in ostomy care currently existing on the market. The intervention and management of stoma problems with appliances and accessories are also summarised. This literature review is limited to a critical analysis of the scientific and professional literature and informational materials developed by manufacturers of stoma accessories. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

Other

Jump to: Research, Review

19 pages, 946 KiB  
Systematic Review
Skin Aging and Type I Collagen: A Systematic Review of Interventions with Potential Collagen-Related Effects
by Ofek Bar and Skaidra Valiukevičienė
Cosmetics 2025, 12(4), 129; https://doi.org/10.3390/cosmetics12040129 - 20 Jun 2025
Viewed by 1026
Abstract
Aging leads to a decline in skin function due to intrinsic factors (genetics, hormones) and extrinsic factors (sun exposure, pollutants). Type I collagen plays a vital role in maintaining skin integrity and elasticity. As aging progresses, collagen synthesis diminishes, resulting in weakened skin [...] Read more.
Aging leads to a decline in skin function due to intrinsic factors (genetics, hormones) and extrinsic factors (sun exposure, pollutants). Type I collagen plays a vital role in maintaining skin integrity and elasticity. As aging progresses, collagen synthesis diminishes, resulting in weakened skin structure and wrinkle formation. This systematic review explores the role of type I collagen in skin aging by summarizing key clinical findings. A systematic search was conducted using PubMed and ScienceDirect as the primary databases, including studies published between 2014 and 2025 that addressed type I collagen and skin aging. Eleven clinical studies were selected following PRISMA guidelines. The results consistently show the decline of type I collagen as a central contributor to dermal thinning, loss of elasticity, and the appearance of wrinkles and sagging. Clinical trials demonstrate that collagen supplementation, particularly from hydrolyzed fish cartilage and low-molecular-weight peptides, enhances collagen production, improves skin hydration and texture, and reduces signs of photoaging. Overall, the evidence emphasizes the critical role of type I collagen in skin aging and suggests that targeted collagen supplementation may serve as an effective strategy to maintain skin structure and combat visible signs of aging. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

17 pages, 2020 KiB  
Systematic Review
Berry Fruit Extracts as Topical Cosmeceuticals for Skin Health Applications: A Systematic Review
by Filipe Silveira Azevedo, Allan Rodrigues Pires, Mary Ann Lila, Giuseppe Valacchi, Roberta Targino Hoskin, Mariaurea Matias Sarandy, Rômulo Dias Novaes and Reggiani Vilela Goncalves
Cosmetics 2025, 12(3), 87; https://doi.org/10.3390/cosmetics12030087 - 23 Apr 2025
Viewed by 1049
Abstract
Berries are a popular source of natural bioactive compounds with distinctive aspects and sensory attributes. In this review, the term “berry” refers to generally round, small, colorful, and juicy fruits with English common names ending in “berry”. They have high phenolic content, which [...] Read more.
Berries are a popular source of natural bioactive compounds with distinctive aspects and sensory attributes. In this review, the term “berry” refers to generally round, small, colorful, and juicy fruits with English common names ending in “berry”. They have high phenolic content, which has been linked to their health-relevant properties. To gather information on the potential of berries for treating skin inflammatory diseases, this systematic review was conducted following PRISMA guidelines (PROSPERO registration number CRD 42024549567), based on studies from PubMed, Scopus, Web of Science, and Embase. It focused on preclinical murine model studies, with bias and methodological quality assessed using SYRCLE’s RoB tool. Studies showed evidence that berries have anti-inflammatory and antioxidant properties due to compounds like anthocyanins, cyanidins, polyphenols, and catechins. Berry exposure reduced oxidative stress markers, such as malondialdehyde, carbonylated proteins, nitric oxide, 8-OHdG, and pyrimidine dimers. This stress reduction was associated with NF-κB and COX-2 pathway downregulation, lower IL-6, IL-1β, TNF-α, and MAPK, and increased IL-10. Morphological outcomes included increased collagen, elastin, glycosaminoglycans, and proteoglycans and reduced metalloproteinases. Bias analysis revealed a low risk, suggesting reliable studies. Berry treatments improved wound healing and extracellular matrix (ECM) production, supporting their potential in pharmaceutical topical formulation. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

Back to TopTop