Exploring Skin Biometrics, Sensory Profiles, and Rheology of Two Photoprotective Formulations with Natural Extracts: A Commercial Product Versus a Vegan Test Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients and Specifications of Formulations
2.2. Evaluation of Formulation pH
2.3. SPF Determination
2.4. Rheological Analysis
2.4.1. Continuous Flow Shear Rheometry
2.4.2. Oscillatory Rheometry
2.5. Evaluation of Formulation by Cutaneous Biometrics
2.5.1. Experimental Conditions and Climate Description
2.5.2. Selection of Test Subjects
Inclusion Criteria
Exclusion Criteria
2.5.3. Sample Application
2.5.4. Assessment of Cutaneous Sebum Content
2.5.5. Assessment of Skin Hydration Level
2.5.6. Assessment of Transepidermal Water Loss (TEWL)
2.5.7. Assessment of Erythema Level and Melanin Content
2.5.8. Assessment of Skin Color
2.5.9. Evaluation of Cutaneous pH
2.6. Sensorial Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. SPF of the Formulations
3.2. Rheological Analysis Results
3.2.1. Continuous Flow Shear Rheometry
3.2.2. Oscillatory Rheometry
3.3. Evaluation of Formulations by Cutaneous Biometrics
3.3.1. Distribution of Skin Tones and Ages Among Male and Female Volunteers
3.3.2. Analysis of Cutaneous Sebum Levels
3.3.3. Analysis of Skin Hydration
3.3.4. Analysis of Transepidermal Water Loss
3.3.5. Analysis of Erythema and Melanin Assessment
3.3.6. Analysis of Skin Color
3.4. Formulation pH and Skin pH
3.5. Sensorial Analysis Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michalak, M.; Pierzak, M.; Kręcisz, B.; Suliga, E. Bioactive compounds for skin health: A review. Nutrients 2021, 13, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Tortora, G.J.; Derrickson, B.; Tortora, G.J. Principles of Anatomy and Physiology, 12th ed.; Wiley: Hoboken, NJ, USA, 2009; 1288p. [Google Scholar]
- Ansary, T.M.; Hossain, M.R.; Kamiya, K.; Komine, M.; Ohtsuki, M. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int. J. Mol. Sci. 2021, 22, 3974. [Google Scholar] [CrossRef] [PubMed]
- Afaq, F. Natural agents: Cellular and molecular mechanisms of photoprotection. Arch. Biochem. Biophys. 2011, 508, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Sgarbi, F.C.; Carmo EDDo Rosa, L.E.B. Radiação ultravioleta e carcinogênese. Rev. Ciencias Médicas 2007, 16, 245–250. [Google Scholar]
- Scandalios, J.G. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 2005, 38, 995–1014. [Google Scholar] [CrossRef]
- Nunes, K.C.; Lazarin-Bidoia, D.; Ueda-Nakamura, T.; Lautenschlager, S.O.S.; Michel, R.; Auzély-Velty, R.; Nakamura, C.V. Syringic acid protective role: Combatting oxidative stress induced by UVB radiation in L-929 fibroblasts. J. Photochem. Photobiol. B Biol. 2025, 264, 113104. [Google Scholar] [CrossRef]
- Ngoc, L.T.N.; Tran, V.V.; Moon, J.Y.; Chae, M.; Park, D.; Lee, Y.C. Recent trends of sunscreen cosmetic: An update review. Cosmetics 2019, 6, 64. [Google Scholar] [CrossRef]
- Ribeiro, F.M.; Volpato, H.; Lazarin-Bidóia, D.; Desoti, V.C.; de Souza, R.O.; Fonseca, M.J.V.; Ueda-Nakamura, T.; Nakamura, C.V.; Silva, S.d.O. The extended production of UV-induced reactive oxygen species in L929 fibroblasts is attenuated by posttreatment with Arrabidaea chica through scavenging mechanisms. J. Photochem. Photobiol. B Biol. 2018, 178, 175–181. [Google Scholar] [CrossRef]
- Masaki, H. Role of antioxidants in the skin: Anti-aging effects. J. Dermatol. Sci. 2010, 58, 85–90. [Google Scholar] [CrossRef]
- Limón-Pacheco, J.; Gonsebatt, M.E. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009, 674, 137–147. [Google Scholar] [CrossRef]
- Felippim, E.C.; Marcato, P.D.; Maria, P.; Gonçalves, B.; Campos, M. Development of Photoprotective Formulations Containing Nanostructured Lipid Carriers: Sun Protection Factor, Physical-Mechanical and Sensorial Properties. AAPS Pharmscitech 2020, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Piccinino, D.; Capecchi, E.; Tomaino, E.; Gabellone, S.; Gigli, V.; Avitabile, D.; Saladino, R. Nano-structured lignin as green antioxidant and uv shielding ingredient for sunscreen applications. Antioxidants 2021, 10, 274. [Google Scholar] [CrossRef] [PubMed]
- Mutalik, S.; Shetty, P.K.; Venuvanka, V.; Jagani, H.V.; Gejjalagere, C.H.; Nayak, U.Y.; Musmade, P.B.; Reddy, M.S.; Kalthur, G.; Udupa, N.; et al. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. Int. J. Nanomed. 2015, 10, 6477–6491. [Google Scholar] [CrossRef]
- Joshi, H.; Hegde, A.R.; Shetty, P.K.; Gollavilli, H.; Managuli, R.S.; Kalthur, G.; Mutalik, S. Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and in vivo evaluations. Photodermatol. Photoimmunol. Photomed. 2018, 34, 69–81. [Google Scholar] [CrossRef]
- Draghici-Popa, A.M.; Buliga, D.I.; Popa, I.; Tomas, S.T.; Stan, R.; Boscornea, A.C. Cosmetic products with potential photoprotective effects based on natural compounds extracted from waste of the winemaking industry. Molecules 2024, 29, 2775. [Google Scholar] [CrossRef]
- Morocho-Jácome, A.L.; Freire, T.B.; de Oliveira, A.C.; de Almeida, T.S.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. In vivo SPF from multifunctional sunscreen systems developed with natural compounds—A review. J. Cosmet. Dermatol. 2021, 20, 729–737. [Google Scholar] [CrossRef]
- Huang, N. Rheological Characterization of Pharmaceutical and Cosmetic Formulations for Cutaneous Applications. Curr. Pharm. Des. 2019, 25, 2349–2363. [Google Scholar] [CrossRef]
- Heinrich, U.; Koop, U.; Leneveu-Duchemin, M.; Osterrieder, K.; Bielfeldt, S.; Chkarnat, C.; Degwert, J.; Häntschel, D.; Jaspers, S.; Nissen, H.; et al. Multicentre comparison of skin hydration in terms of physical-, physiological- and product-dependent parameters by the capacitive method (Corneometer CM 825). Int. J. Cosmet. Sci. 2003, 25, 45–53. [Google Scholar] [CrossRef]
- Andrei, F. Sensory Science in Cosmetics. In Cosmetic Industry—Trends, Products and Quality Control; IntechOpen: London, UK, 2025; pp. 1–29. [Google Scholar]
- Böger, B.R.; Lonni, A.A.S.G.; Benassi, M.d.T. Characterization and Sensory Evaluation of a Cosmeceutical Formulation for the Eye Area with Microencapsulated Roasted Coffee Oil. Cosmetics 2025, 10, 24. [Google Scholar] [CrossRef]
- Wang, I.-C.; Jiang, Y.-R.; Wang, Y.-W.; Li, C.-Y. Exploring the multisensory attractiveness of cosmetic packaging: A study of visual and tactile design elements and attractiveness factors. Sustainability 2024, 16, 5716. [Google Scholar] [CrossRef]
- Flor, J.; Mazin, M.R.; Ferreira, L.A. Cosméticos Naturais, Orgânicos e Veganos. Cosmet. Toilet. 2019, 31, 30–36. [Google Scholar]
- Lee, J.; Kwon, K.H. Good ingredients from foods to vegan cosmetics after COVID-19 pandemic. J. Cosmet. Dermatol. 2022, 21, 3190–3199. [Google Scholar] [CrossRef] [PubMed]
- Miguel, I.; Coelho, A.; Bairrada, C.M. Modelling attitude towards consumption of vegan products. Sustainability 2021, 13, 9. [Google Scholar] [CrossRef]
- Mansur, J.S.; Breder, M.N.R.; Mansur, M.C.A.; Azulay, R.D. Determinação do fator de proteção solar por espectrofotometria. An. Bras. Dermatol. 1986, 61, 121–124. [Google Scholar]
- Bruschi, M.L.; Jones, D.S.; Panzeri, H.; Gremião, M.P.D.; Freitas, O.; Lara, E.H.G. Semisolid Systems Containing Propolis for the Treatment of Periodontal Disease: In Vitro Release Kinetics, Syringeability, Rheological, Textural, and Mucoadhesive Properties. Semisolid Syst. Treat. Periodontal Dis. 2007, 96, 2074–2089. [Google Scholar] [CrossRef]
- Hemphill, T.; Campos, W.; Pilehvari, A. Yield-power law model more accurately predicts mud rheology. Oil Gas. J. 1993, 91, 45–50. [Google Scholar]
- Santos, R.S.; da Silva, J.B.; Rosseto, H.C.; Vecchi, C.F.; Campanholi, K.d.S.S.; Caetano, W.; Bruschi, M.L. Emulgels containing propolis and curcumin: The effect of type of vegetable oil, poly(acrylic acid) and bioactive agent on physicochemical stability, mechanical and rheological properties. Gels 2021, 7, 120. [Google Scholar] [CrossRef]
- Weather Atlas. January Weather Forecast Maringá, Brazil. Available online: https://www.weather-atlas.com/en/brazil/maringa-weather-january (accessed on 15 August 2024).
- Fitzpatrick, T.B.; Pathak, M.; Parrish, J.A. Protection of Human Skin Against the Effects of the Sunburn Ultraviolet (290–320 nm), in Sunlight and Man, Normal and Abnormal Photobiological Responses; University of Tokyo: Tokyo, Japan, 1974; p. 751. [Google Scholar]
- Martini, A.P.M.; Maia Campos, P.M.B.G. Influence of visible light on cutaneous hyperchromias: Clinical efficacy of broad-spectrum sunscreens. Photodermatol. Photoimmunol. Photomed. 2018, 34, 241–248. [Google Scholar] [CrossRef]
- Courage-Khazaka-Scientific-Devices. Multi Probe Adapter 9. 2022. Available online: https://www.courage-khazaka.de/de/wissenschaftliche-produkte/alle/sondensysteme/16-wissenschaftliche-produkte/alle-produkte/75-mpa-d (accessed on 7 December 2022).
- Qassem, M.; Kyriacou, P. Review of Modern Techniques for the Assessment of Skin Hydration. Cosmetics 2019, 6, 19. [Google Scholar] [CrossRef]
- Courage-Khazaka-Scientific-Devices. Information and Operating Instructions for the Multi Probe Adapter MPA and Its Probes; Courage + Khazaka electronic GmbH: Köln, Germany, 2007. [Google Scholar]
- Seno, S.; Shimazu, H.; Kobayashi, H.; Kogure, E.; Watanabe, A.; Isoyama, T. Quantitative evaluation of skin barrier function using water evaporation time related to transepidermal water loss. Skin. Res. Technol. 2023, 29, e13242. [Google Scholar] [CrossRef]
- Prudencio, S.; Prude, H.; Ceratti, V.S. Avaliação sensorial de formulações fotoprotetoras em diferentes bases cosméticas. Rev. Saúde e Pesqui. 2012, 5, 487–494. [Google Scholar]
- Mbanga, L.; Mulenga, M.; Mpiana, P.T.; Bokolo, K.; Mumbwa, M.; Mvingu, K. Determination of sun protection factor (SPF) of some body creams and lotions marketed in Kinshasa by ultraviolet spectrophotometry. Int. J. Adv. Res. Chem. Sci. 2014, 1, 7–13. [Google Scholar]
- Yarovaya, L. Correlation between sensory and instrumental characterization of developed sunscreens containing grape seed extract and a commercial product. Int. J. Cosmet. Sci. 2022, 44, 569–587. [Google Scholar] [CrossRef]
- Souza, C.; de Freitas, L.A.P.; Maia Campos, P.M.B.G. Topical Formulation Containing Beeswax-Based Nanoparticles Improved In Vivo Skin Barrier Function. AAPS Pharmscitech 2017, 18, 2505–2516. Available online: http://link.springer.com/10.1208/s12249-017-0737-x (accessed on 7 December 2022). [CrossRef]
- Arancibia, C.; Castro, C.; Jublot, L.; Costell, E.; Bayarri, S. Colour, rheology, flavour release and sensory perception of dairy desserts. Influence of thickener and fat content. LWT Food Sci. Technol. 2015, 62, 408–416. [Google Scholar] [CrossRef]
- Osterwalder, U.; Sohn, M.; Herzog, B. Global state of sunscreens. Photodermatol. Photoimmunol. Photomed. 2014, 30, 62–80. [Google Scholar] [CrossRef]
- Chow, P.S.; Lim, R.T.Y.; Cyriac, F.; Shah, J.C.; Badruddoza, A.Z.M.; Yeoh, T.; Yagnik, C.K.; Tee, X.Y.; Wong, A.B.H.; Chia, V.D.; et al. The Effect of Process Parameters on the Microstructure, Stability, and Sensorial Properties of an Emulsion Cream Formulation. Pharmaceutics 2024, 16, 773. [Google Scholar] [CrossRef]
- Said, R.; Cássia, H.; Bassi, J.; Félix, C.; Caetano, W.; Luciano, M. The effect of carbomer 934P and different vegetable oils on physical stability, mechanical and rheological properties of emulsion-based systems containing propolis. J. Mol. Liq. 2020, 307, 112969. [Google Scholar] [CrossRef]
- Huang, Z.; Delparastan, P.; Burch, P.; Cheng, J.; Cao, Y.; Messersmith, P.B. Injectable dynamic covalent hydrogels of boronic acid polymers cross-linked by bioactive plant-derived polyphenols. Trans. Annu. Meet. Soc. Biomater. Annu. Int. Biomater. Symp. 2019, 40, 61. [Google Scholar] [CrossRef]
- Tadros, T.F. Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Adv. Colloid. Interface Sci. 1996, 68, 97–200. [Google Scholar] [CrossRef]
- Krutmann, J. New Developments in Photoprotection of Human Skin. Skin. Pharmacol. Appl. Skin. Physiol. 2001, 14, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Hoover, E.; Aslam, S.; Krishnamurthy, K. Physiology, Sebaceous Glands. StatPearls Publishing. 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499819/ (accessed on 24 May 2024).
- Man, M.; Xin, S.; Song, S.; Cho, S.; Zhang, X.; Tu, C.; Feingold, K.; Elias, P. Variation of skin surface pH, sebum content and stratum corneum hydration with age and gender in a large chinese population. Skin. Pharmacol. Physiol. 2009, 22, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Maan, A.A.; Nazir, A.; Khan, M.K.I.; Ahmad, T.; Zia, R.; Murid, M.; Abrar, M. The therapeutic properties and applications of Aloe vera: A review. J. Herb. Med. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Melo, M.O.; Campos, P.M.B.G. Técnicas para Avaliar a Hidratação e a Oleosidade da Pele. Cosmet. Toilet. 2016, 28, 30–34. [Google Scholar]
- Melo, M.O.; Campos, P.M.B.G. Função de Barreira da Pele e pH Cutâneo. Bioengenharia Cutânea 2016, 28, 34–38. [Google Scholar]
- Matsumura, Y.; Ananthaswamy, H.N. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharmacol. 2004, 195, 298–308. [Google Scholar] [CrossRef]
- Vitale, M.; Truchuelo, M.T.; Nobile, V.; Gómez-Sánchez, M.J. Clinical Tolerability and Efficacy Establishment of a New Cosmetic Treatment Regimen Intended for Sensitive Skin. Appl. Sci. 2024, 14, 6252. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, X.; Chen, F.; Wang, M. Dietary polyphenols as photoprotective agents against UV radiation. J. Funct. Foods 2017, 30, 108–118. [Google Scholar] [CrossRef]
- Balboa, E.M.; Conde, E.; Moure, A.; Falqué, E.; Domínguez, H. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem. 2013, 138, 1764–1785. [Google Scholar] [CrossRef]
- Pugliese, A.G.; Tomas-barberan, F.A.; Truchado, P.; Genovese, M.I.; Prestes, L. Flavonoids, Proanthocyanidins, Vitamin C, and Antioxidant Activity of Theobroma grandif lorum (Cupuassu) Pulp and Seeds. J. Agric. Food Chem. 2013, 61, 2720–2728. [Google Scholar] [CrossRef]
- Chakraborty, K.; Joseph, D.; Joy, M.; Raola, V.K. Characterization of substituted aryl meroterpenoids from red seaweed Hypnea musciformis as potential antioxidants. Food Chem. 2016, 212, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dinish, U.S.; Aguirre, J.; Bi, R.; Dev, K.; Attia, A.B.E.; Nitkunanantharajah, S.; Lim, Q.H.; Schwarz, M.; Yew, Y.W.; et al. Optoacoustic mesoscopy analysis and quantitative estimation of specific imaging metrics in Fitzpatrick skin phototypes II to V. J. Biophotonics. 2019, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lim, J. Hedonic scaling: A review of methods and theory. Food Qual. Prefer. 2011, 22, 733–747. [Google Scholar] [CrossRef]
Formulation | SPF ± SD |
---|---|
P1 | 25.21 ± 1.09 |
P2 | 12.10 ± 0.43 |
Temperature (°C). | n (dimensionless) | τ0 (Pa) | Hysteresis Area (Pa/s) | |
P1 | ||||
4 | c 35.08 ± 1.41 | 0.27 ± 0.01 | g 36.50 ± 2.57 | a 89,097.50 ± 9034.23 |
25 | d 14.66 ± 0.95 | 0.37 ± 0.00 | 17.37 ± 2.47 | 12,934.00 ± 832.60 |
34 | e 12.29 ± 0.46 | 0.35 ± 0.02 | 17.80 ± 2.82 | b 30,046.67 ± 2832.85 |
40 | f 13.88 ± 1.48 | 0.30 ± 0.02 | h 11.82 ± 3.04 | 57,483.33 ± 6890.91 |
P2 | ||||
4 | c 41.25 ± 2.68 | 0.26 ± 0.00 | g 15.45 ± 4.56 | a 105,525.00 ± 1951.71 |
25 | d 22.67 ± 0.47 | 0.32 ± 0.00 | 22.73 ± 0.81 | 26,993.33 ± 12.79 |
34 | e 20.95 ± 1.31 | 0.33 ± 0.00 | 18.07 ± 3.31 | b 61,085.00 ± 2990.85 |
40 | f 24.38 ± 5.13 | 0.28 ± 0.01 | h 2.93 ± 0.85 | 66,178.00 ± 13,671.29 |
Volunteers | Age | Skin Tone |
---|---|---|
Male | 26; 18; 19; 25; 22; 23; 22; 31; 20; 22; 20; 18; 28; 26 | III; III; III; II; III; II; II; III; III; II, II, III; III; III |
Female | 27; 29; 20; 28; 33; 19; 20; 30; 24; 30; 51; 35; 59; 26 | II; II; II; III; III; III; II; II; III; III; III; II; III; II |
Formulation | pH ± SD |
---|---|
P1 | 7.48 ± 0.13 |
P2 | 7.40 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, K.C.; Alves, B.L.; dos Santos, R.S.; de Araújo, L.A.; Bergamasco, R.; Bruschi, M.L.; Ueda-Nakamura, T.; Lautenschlager, S.d.O.S.; Nakamura, C.V. Exploring Skin Biometrics, Sensory Profiles, and Rheology of Two Photoprotective Formulations with Natural Extracts: A Commercial Product Versus a Vegan Test Formulation. Cosmetics 2025, 12, 112. https://doi.org/10.3390/cosmetics12030112
Nunes KC, Alves BL, dos Santos RS, de Araújo LA, Bergamasco R, Bruschi ML, Ueda-Nakamura T, Lautenschlager SdOS, Nakamura CV. Exploring Skin Biometrics, Sensory Profiles, and Rheology of Two Photoprotective Formulations with Natural Extracts: A Commercial Product Versus a Vegan Test Formulation. Cosmetics. 2025; 12(3):112. https://doi.org/10.3390/cosmetics12030112
Chicago/Turabian StyleNunes, Karine Campos, Bruna Lendzion Alves, Rafaela Said dos Santos, Lennon Alonso de Araújo, Rosângela Bergamasco, Marcos Luciano Bruschi, Tânia Ueda-Nakamura, Sueli de Oliveira Silva Lautenschlager, and Celso Vataru Nakamura. 2025. "Exploring Skin Biometrics, Sensory Profiles, and Rheology of Two Photoprotective Formulations with Natural Extracts: A Commercial Product Versus a Vegan Test Formulation" Cosmetics 12, no. 3: 112. https://doi.org/10.3390/cosmetics12030112
APA StyleNunes, K. C., Alves, B. L., dos Santos, R. S., de Araújo, L. A., Bergamasco, R., Bruschi, M. L., Ueda-Nakamura, T., Lautenschlager, S. d. O. S., & Nakamura, C. V. (2025). Exploring Skin Biometrics, Sensory Profiles, and Rheology of Two Photoprotective Formulations with Natural Extracts: A Commercial Product Versus a Vegan Test Formulation. Cosmetics, 12(3), 112. https://doi.org/10.3390/cosmetics12030112