Formulation of Topical Antioxidant Creams with Hydroxycitrate or Aglianico Del Vulture Red Wine Extract for the In Vitro Prevention of Blue Light-Induced Oxidative Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Cream Formulation and Preparation
2.3. Stability Testing of Cream
2.4. Cell Culture and Treatments
2.5. Evaluation of Cell Proliferation
2.6. ROS Assay
2.7. Statistical Analysis
3. Results
3.1. Quality Check of Cream
3.2. Effect of RWP or HCA on HaCaT Cell Proliferation
3.3. Effect of RWP or HCA on Blue Light-Induced ROS Production
3.4. Effect of Topical Creams Enriched with RWP or HCA on HaCat Cell Proliferation
3.5. Effect of Topical Creams Enriched with RWP or HCA on Blue Light-Induced ROS Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riedmann, U.; Dibben, C.; de Gruijl, F.R.; Gorman, S.; Hart, P.H.; Hoel, D.G.; Levy, C.; Lindqvist, P.G.; Norval, M.; Parikh, S.S. Beneficial health effects of ultraviolet radiation: Expert review and conference report. Photochem. Photobiol. Sci. 2025, 24, 867–893. [Google Scholar] [CrossRef]
- Maeda, K.; Hatao, M. Involvement of photooxidation of melanogenic precursors in prolonged pigmentation induced by ultraviolet A. J. Investig. Dermatol. 2004, 122, 503–509. [Google Scholar] [CrossRef]
- Battie, C.; Verschoore, M. Cutaneous solar ultraviolet exposure and clinical aspects of photodamage. Indian J. Dermatol. Venereol. Leprol. 2012, 78, 9. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Rokohl, A.C.; Guo, Y.; Chen, H.; Gao, T.; Kakkassery, V.; Heindl, L.M. Narrative review: Mechanism of ultraviolet radiation-induced basal cell carcinoma. Front. Oral Maxillofac. Med. 2023, 5. [Google Scholar] [CrossRef]
- Ramser, A.; Casey, A. Blue Light and Skin Health. J. Drugs Dermatol. JDD 2022, 21, 962–966. [Google Scholar] [CrossRef] [PubMed]
- Pourang, A.; Tisack, A.; Ezekwe, N.; Torres, A.E.; Kohli, I.; Hamzavi, I.H.; Lim, H.W. Effects of visible light on mechanisms of skin photoaging. Photodermatol. Photoimmunol. Photomed. 2022, 38, 191–196. [Google Scholar] [CrossRef]
- Regazzetti, C.; Sormani, L.; Debayle, D.; Bernerd, F.; Tulic, M.K.; De Donatis, G.M.; Chignon-Sicard, B.; Rocchi, S.; Passeron, T. Melanocytes sense blue light and regulate pigmentation through opsin-3. J. Investig. Dermatol. 2018, 138, 171–178. [Google Scholar] [CrossRef]
- Krassovka, J.M.; Suschek, C.V.; Prost, M.; Grotheer, V.; Schiefer, J.L.; Demir, E.; Fuchs, P.C.; Windolf, J.; Stürmer, E.K.; Opländer, C. The impact of non-toxic blue light (453 nm) on cellular antioxidative capacity, TGF-β1 signaling, and myofibrogenesis of human skin fibroblasts. J. Photochem. Photobiol. B Biol. 2020, 209, 111952. [Google Scholar] [CrossRef]
- De Gálvez, E.N.; Aguilera, J.; Solis, A.; de Gálvez, M.V.; de Andrés, J.R.; Herrera-Ceballos, E.; Gago-Calderon, A. The potential role of UV and blue light from the sun, artificial lighting, and electronic devices in melanogenesis and oxidative stress. J. Photochem. Photobiol. B Biol. 2022, 228, 112405. [Google Scholar] [CrossRef]
- Furukawa, J.Y.; Martinez, R.M.; Morocho-Jácome, A.L.; Castillo-Gómez, T.S.; Pereda-Contreras, V.J.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. Skin impacts from exposure to ultraviolet, visible, infrared, and artificial lights—A review. J. Cosmet. Laser Ther. 2021, 23, 1–7. [Google Scholar] [CrossRef]
- Sullivan, C.; Triscari, J. Metabolic regulation as a control for lipid disorders. I. Influence of (—)-hydroxycitrate on experimentally induced obesity in the rodent. Am. J. Clin. Nutr. 1977, 30, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Onakpoya, I.; Hung, S.K.; Perry, R.; Wider, B.; Ernst, E. The use of Garcinia extract (hydroxycitric acid) as a weight loss supplement: A systematic review and meta-analysis of randomised clinical trials. J. Obes. 2011, 2011, 509038. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, M.; Brüne, B.; Namgaladze, D. Exploring the role of ATP-citrate lyase in the immune system. Front. Immunol. 2021, 12, 632526. [Google Scholar] [CrossRef] [PubMed]
- Infantino, V.; Pierri, C.L.; Iacobazzi, V. Metabolic routes in inflammation: The citrate pathway and its potential as therapeutic target. Curr. Med. Chem. 2019, 26, 7104–7116. [Google Scholar] [CrossRef]
- Vassallo, A.; Santoro, V.; Pappalardo, I.; Santarsiero, A.; Convertini, P.; De Luca, M.; Martelli, G.; Infantino, V.; Caddeo, C. Liposome-mediated inhibition of inflammation by hydroxycitrate. Nanomaterials 2020, 10, 2080. [Google Scholar] [CrossRef]
- Santarsiero, A.; Convertini, P.; Vassallo, A.; Santoro, V.; Todisco, S.; Iacobazzi, D.; Fondufe-Mittendorf, Y.; Martelli, G.; de Oliveira, M.R.; Montanaro, R. Phenolic compounds of red wine Aglianico del Vulture modulate the functional activity of macrophages via inhibition of NF-κB and the citrate pathway. Oxidative Med. Cell. Longev. 2021, 2021, 5533793. [Google Scholar] [CrossRef]
- Savino, M.; Basile, T.; Alba, V.; Bolettieri, D.; Paradiso, F.; Tamborra, P.; Suriano, S.; Tarricone, L. Detection of Intra-Varietal Diversity Based on Differences in the Accumulation of Secondary Metabolites for Winemaking Management of High-Quality Red Wines. Beverages 2017, 3, 45. [Google Scholar] [CrossRef]
- Tat, L.; Comuzzo, P.; Battistutta, F.; Zironi, R. Sweet-like off-flavor in Aglianico del Vulture wine: Ethyl phenylacetate as the mainly involved compound. J. Agric. Food Chem. 2007, 55, 5205–5212. [Google Scholar] [CrossRef]
- Bruno, M.R.; Ponticelli, M.; Sinisgalli, C.; Milella, L.; Todaro, L.; Faraone, I. Natural Bioactive Compounds from Orchard Biomass Waste and Cosmetic Applications. Forests 2025, 16, 79. [Google Scholar] [CrossRef]
- Donthi, M.R.; Munnangi, S.R.; Krishna, K.V.; Saha, R.N.; Singhvi, G.; Dubey, S.K. Nanoemulgel: A novel nano carrier as a tool for topical drug delivery. Pharmaceutics 2023, 15, 164. [Google Scholar] [CrossRef]
- Sohail, M.; Baig, M.M.F.A.; Akhtar, N.; Chen, Y.; Xie, B.; Li, B. Topical lycopene emulgel significantly improves biophysical parameters of human skin. Eur. J. Pharm. Biopharm. 2022, 180, 281–288. [Google Scholar] [CrossRef]
- Kamaruzaman, N.; Yusop, S.M. Determination of stability of cosmetic formulations incorporated with water-soluble elastin isolated from poultry. J. King Saud Univ. -Sci. 2021, 33, 101519. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Yeoh, T.; Shah, J.C.; Walsh, T. Assessing and predicting physical stability of emulsion-based topical semisolid products: A review. J. Pharm. Sci. 2023, 112, 1772–1793. [Google Scholar] [CrossRef]
- Tabari, M.R.; Osterwalder, U. Standardization: ISO and Cosmetics. In Handbook of Cosmetic Science and Technology; CRC Press: Abingdon, UK, 2022; pp. 419–425. [Google Scholar]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.; Barreiro, M.F. Cosmetics preservation: A review on present strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [PubMed]
- El-Mahdy, M.A.; Zhu, Q.; Wang, Q.E.; Wani, G.; Patnaik, S.; Zhao, Q.; Arafa, E.S.; Barakat, B.; Mir, S.N.; Wani, A.A. Naringenin protects HaCaT human keratinocytes against UVB-induced apoptosis and enhances the removal of cyclobutane pyrimidine dimers from the genome. Photochem. Photobiol. 2008, 84, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-Y.; Kim, J.-S. Cherry fruit anthocyanins cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside protect against blue light-induced cytotoxicity in HaCaT cells. Appl. Biol. Chem. 2023, 66, 3. [Google Scholar] [CrossRef]
- Suitthimeathegorn, O.; Yang, C.; Ma, Y.; Liu, W. Direct and indirect effects of blue light exposure on skin: A review of published literature. Ski. Pharmacol. Physiol. 2022, 35, 305–318. [Google Scholar] [CrossRef]
- Kondo, S.; Ozawa, N.; Sakurai, T. The effect of degeneration of elastic fibres on loss of elasticity and wrinkle formation. Int. J. Cosmet. Sci. 2025, 47, 205–212. [Google Scholar] [CrossRef]
Ingredients | Concentration Intervals | |
---|---|---|
PHASE A | ||
A1 | Water | ≥50%–≤75% |
A2 | Glycerine | ≥1%–≤5% |
A3 | Xanthane gum | ≥0.1%–≤1% |
A4 | Acrylates/C10-30 alkyl acrylate crosspolymer | ≥0.1%–≤1% |
PHASE B | ||
B1 | Simmondsia chinensis (Link) oil | ≥1%–≤5% |
B2 | Helianthus annus L. seed | ≥1%–≤5% |
B3 | Butyrospermum parkii Kotschy butter | ≥1%–≤5% |
B4 | Potassium palmitoyl hydrolyzed wheat protein, glyceryl stearate, cetearyl alcohol | ≥1%–≤5% |
B4 | Lecithin, tocopherol, ascorbyl palmitate, and citric acid | ≥0.1%–≤1% |
PHASE C | ||
C1 | Sodiuml, sodium PCA, glycine, fructose, urea, niacinamide, inositol, lactic acid | ≥1%–≤5% |
C2 | Sodium hyaluronate | ≥0.1%–≤1% |
C3 | Water | ≥10%–≤25% |
C4 | Phenoxyethanol, ethylhexylglycerin | ≥1%–≤5% |
C5 | Parfum | ≥0.1%–≤1% |
C6 | Sodium hydroxide 20% | ≥0.1%–≤1% |
PARAMETERS | TIME 0 (Zero) | |
---|---|---|
APPEARANCE | Consistency | Emulsion |
Presence of lumps | No | |
Creaming | No | |
Sedimentation | No | |
COLOR | Visual assessment | Milk white |
ODOR | Direct from the jar | Characteristic |
pH | pH ± 0.5 | 6.04 |
VISCOSITY (mPS) | 20 °C, impeller 6, RPM 20 | 14,910 mPS-74.5% |
SEPARATION UNDER MECHANICAL STRESS | Visual assessment after centrifugation at 3000 rpm for 30 min | No visible separation |
PARAMETERS | TIME 0 (Zero) Start Point | TIME 10 Days | TIME 20 Days | TIME 28 Days End Point | |
---|---|---|---|---|---|
APPEARANCE | Consistency | Emulsion | Emulsion | Emulsion | Emulsion |
Presence of lumps | No | No | No | No | |
Creaming | No | No | No | No | |
Sedimentation | No | No | No | No | |
COLOR | Visual assessment | Milk white | Milk white | Milk white | Milk white |
ODOR | Direct from the jar | Characteristic | Characteristic (no changes) | Characteristic (no changes) | Characteristic (no changes) |
pH | pH ± 0.5 | 6.02 | 6.02 | 6.02 | 6.02 |
VISCOSITY (mPS) | 20 °C, impeller 6, RPM 20 | 14,910 mPS-74.5% | 14,910 mPS-74.5% | 14,910 mPS-74.5% | 14,910 mPS-74.5% |
SEPARATION UNDER MECHANICAL STRESS | Visual assessment after centrifugation at 3000 rpm for 30 min | No visible separation | No visible separation | No visible separation | No visible separation |
MICROBIOLOGICAL ANALYSIS | Bacteria test | No growth | No growth | No growth | No growth |
Yeasts and molds | Absent | Absent | Absent | Absent | |
Pathogens | Absent | Absent | Absent | Absent |
PARAMETERS | TIME 0 (Zero) Start Point | TIME 10 Days | TIME 20 Days | TIME 28 Days End Point | |
---|---|---|---|---|---|
APPEARANCE | Consistency | Emulsion | Emulsion | Emulsion | Emulsion |
Presence of lumps | No | No | No | No | |
Creaming | No | No | No | No | |
Sedimentation | No | No | No | No | |
COLOR | Visual assessment | Milk white | Milk white | Milk white | Milk white |
ODOR | Direct from the jar | Characteristic | Characteristic (no changes) | Characteristic (no changes) | Characteristic (no changes) |
pH | pH ± 0.5 | 6.04 | 6.04 | 5.71 | 5.71 |
VISCOSITY (mPS) | 20 °C, impeller 6, RPM 20 | 14,640 mPS-73.2% | 14,640 mPS-73.2% | 14,640 mPS-73.2% | 14,640 mPS-73.2% |
SEPARATION UNDER MECHANICAL STRESS | Visual assessment after centrifugation at 3000 rpm for 30 min | No visible separation | No visible separation | No visible separation | No visible separation |
MICROBIOLOGICAL ANALYSIS | Bacteria test | No growth | No growth | No growth | No growth |
Yeasts and molds | Absent | Absent | Absent | Absent | |
Pathogens | Absent | Absent | Absent | Absent |
PARAMETERS | TIME 0 (Zero) Start Point | TIME 28 Days End Point | |
---|---|---|---|
APPEARANCE | Consistency | Emulsion | Emulsion |
Presence of lumps | No | No | |
Creaming | No | No | |
Sedimentation | No | No | |
COLOR | Visual assessment | Milk white | Milk white |
ODOR | Direct from the jar | Characteristic | Characteristic (no changes) |
pH | pH ± 0.5 | 6.04 | 5.71 |
VISCOSITY (mPS) | 20 °C, impeller 6, RPM 20 | 14,910 mPS-74.5% | 14,640 mPS-73.2% |
SEPARATION UNDER MECHANICAL STRESS | Visual assessment after centrifugation at 3000 rpm for 30 min | No visible separation | No visible separation |
MICROBIOLOGICAL ANALYSIS | Bacteria test | No growth | No growth |
Yeasts and molds | Absent | Absent | |
Pathogens | Absent | Absent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappalardo, I.; Faraone, I.; Santarsiero, A.; Miraglia, A.; Convertini, P.; Vassallo, A. Formulation of Topical Antioxidant Creams with Hydroxycitrate or Aglianico Del Vulture Red Wine Extract for the In Vitro Prevention of Blue Light-Induced Oxidative Stress. Cosmetics 2025, 12, 218. https://doi.org/10.3390/cosmetics12050218
Pappalardo I, Faraone I, Santarsiero A, Miraglia A, Convertini P, Vassallo A. Formulation of Topical Antioxidant Creams with Hydroxycitrate or Aglianico Del Vulture Red Wine Extract for the In Vitro Prevention of Blue Light-Induced Oxidative Stress. Cosmetics. 2025; 12(5):218. https://doi.org/10.3390/cosmetics12050218
Chicago/Turabian StylePappalardo, Ilaria, Immacolata Faraone, Anna Santarsiero, Alessandra Miraglia, Paolo Convertini, and Antonio Vassallo. 2025. "Formulation of Topical Antioxidant Creams with Hydroxycitrate or Aglianico Del Vulture Red Wine Extract for the In Vitro Prevention of Blue Light-Induced Oxidative Stress" Cosmetics 12, no. 5: 218. https://doi.org/10.3390/cosmetics12050218
APA StylePappalardo, I., Faraone, I., Santarsiero, A., Miraglia, A., Convertini, P., & Vassallo, A. (2025). Formulation of Topical Antioxidant Creams with Hydroxycitrate or Aglianico Del Vulture Red Wine Extract for the In Vitro Prevention of Blue Light-Induced Oxidative Stress. Cosmetics, 12(5), 218. https://doi.org/10.3390/cosmetics12050218