Microalgae and Cyanobacteria Exopolysaccharides: An Untapped Raw Material for Cosmetic Use
Abstract
1. Introduction
2. Composition and Structure
3. Properties of EPSs of Interest for Skin Care Products
3.1. Techno-Functional Properties of Microalgal EPSs
3.2. Microalgal EPS Bio-Activities
4. Microalgae and Cyanobacteria Exopolysaccharides: Cosmetic Properties and Potential Uses
5. Patents Claiming the Use of Microalgal and Cyanobacterial EPSs in Skin Care
Microalgae or Cyanobacteria | EPS Preparation and Main Composition | Application/Potential Use | Applicant/Patent Number | Reference |
---|---|---|---|---|
Arthrospira spirulina or Spirulina platensis and Spirulina maxima | Sulfated polysaccharide comprising 2% to 60% by weight, based on the total weight of the polymer, of a rhamnose unit |
Cosmetic skin moisturizing product compatible with cutaneous tissues (skin and scalp). Compositions with the appearance of white or colored compositions in any form, such as ointment, milk, lotion, serum, paste, foam, aerosol, or stick. |
L’Oréal SA, FR2982152A1 | [118] |
Several microalgal and cyanobacteria strains; for example, Chlorella sp., Dunaliella sp., Tetraselmis sp., Anabaena sp, Aphanizomenon sp., Arthrospira sp., Nostoc sp., Isochrysis sp., Phaeodactylum sp., Skeletonema sp., Thalassiosira sp., Nannochloropsis sp., Porphyridium sp., among others | An EPS of wet, non-dialyzed, and non-lyophilized origin, added at 0.1–10% (wt) to the cream formulation. EPS composition not mentioned |
Cosmetic formulation for topical use on human hair, skin, mucous membranes, and nails. Microalgal EPS as an enhancer of rheology, stability, and sensory properties. Base cream for the addition of microalgal extracts as antioxidant, surfactant, emulsifier, emollient emulsifier, preservative, and antimicrobial. | Univ Fed Do Parana, BR102012004631A2 | [117] |
Genus Parachlorella | (i) Isolation and precipitation with alcohol, (ii) drying and forming a film, and (iii) contacting with water and forming a gel and air drying. EPS average size of between 0.1 and 400 microns. EPS composition not mentioned. | Skin care compositions for wrinkle reduction and for improving the health and appearance of skin |
Solazyme Inc. Algenist Brands Inc., US9095733B2 | [110] |
Parachlorella kessleri, Parachlorella beijerinckii, or Chlorella sorokiniana | EPS composition: 15–55 mole percent of rhamnose, 3–30 percent of moles of xylose, 1–25 mole percent of mannose, 1–45 mole percent of galactose, 0.5–10 mole percent of glucose, and 0.1–15 mole percent of glucuronic acid | Skin care products to deliver cosmeceutical ingredients, such as carotenoids, polyunsaturated fatty acids, moisturizing polysaccharides, superoxide dismutase, etc. | Algenist Holdings Inc., ES2718275T3 | [111] |
EPSs from PUFA-producing microalgae fermentation waste liquid of Schizochytrium sp., Cryptidnodinium koushii, Crypthecodinium cohnii SD401, or Nannochloropsis sp. | Disc centrifuge separation, micro-filtration in ceramic membrane, ultrafiltration (30 kDa) to concentrate (50–70% solids), and vacuum-drying (moisture 1%). 71–73% EPS, 9–11% peptide and protein, 3–4% monosaccharide content | Formulation of EPS as wall material in emulsions of a DHA, Tween 80, and gelatin solution protected against oxidation and spray-dried in microcapsules | Qingdao Institute of Bioenergy and Bioprocess Technology of CAS, CN108559006A | [32] |
Parachlorella, Porphyridium, Chaetoceros, Chlorella, Dunaliella, Isochrysis, Phaeodactylum, Tetraselmis, Botryococcus, Cholorococcum, Hormotilopsis, Neochloris, Ochromonas, Gyrodinium, Ellipsoidion, Rhodella, Gymnodinium, Spirulina, Cochlodinium, Nostoc, Cyanospira, Cyanothece, Tetraselmis, Chlamydomonas, Dysmorphococcus, Anabaena, Palmella, Anacystis, Phormidium, Anabaenopsis, Aphanocapsa, Cylindrotheca, Navicula, Gloeocapsa, Phaeocystis, Leptolyngbya, Symploca, Synechocystis, Stauroneis, and Achnanthes, preferably Parachlorella kessleri. | Isolation of microalgal EPS from the culture medium, drying at 40–180 °C to form a film insoluble in water, homogenizing the film into particles, formulating the particles into a non-aqueous material, oil phase of an oil-in-water emulsion, and generating 0.1–50 microns particles. EPS composition not mentioned. | Topical personal care products or by injection into skin or a skin tissue and wrinkle reduction | TerraVia Holdings Inc., EP3398606A1 | [112] |
Parachlorella sp. | Capsular exopolysaccharide obtained by separating the exopolysaccharide producing microalgal cells from the culture medium, heating the microalgal cells to release the cellular capsule, and removing the insoluble solids to produce an aqueous solution containing the EPS. EPS composition not mentioned. | Vehicle for personal care products |
KUEHNLE AGROSYSTEMS Inc., US20200232003A1 | [119] |
Glossomastix sp, Chrysotila dentata, Pavlova sp., Phaeodactylum tricornutum, and Synechococcus sp. | New depolymerized exopolysaccharides (30–100 kDa) and method of obtaining the EPIS, consisting of the following: pretreatment by high pressure (2.7 kbar), freeze-drying, and depolymerization by acid hydrolysis onto cationic resins (Amberlityst® 15 DRY) in batch or in continuous mode. EPS composition not mentioned. | Product to increase the production of collagen and/or hyaluronic acid to delay the effects of skin aging | Centre National de la Recherche Scientifique CNRS, Univ. Nantes, La Rochelle Univ., Sorbonne Univ., Univ. Clermont Auvergne, Univ. Rouen Normandie, FR2102020 | [116] |
Chlorella sp. | Precipitation, centrifugation, purification, and freeze-drying 131.79 kDa EPS; mainly comprises xylose, mannose, and ribose | Antioxidant activity (DPPH, hydroxyl, ABTS radicals, and superoxide anions) | Xiangtan University, CN110818814A | [22] |
Cyanobacteria of the genus Synechococcus CCMP 1333, Synechococcus PCC 7002, and Cyanothece Miami BG 043511 | EPS isolation, drying milling to a size of between 400 microns and 0.1 microns to prepare exopolysaccharide particles, and annealing the EPS particles. EPS composition not mentioned. | Topical personal care products, cosmetics for improving the health and appearance of skin, and wrinkle reduction composition | Heliobiosys, Inc., US20240358628A1 | [113] |
Cyanobacterium Spirulina platensis | Enhancer of rheology, stability, and sensory properties and antioxidant. EPS freeze-dried or wet, dialyzed or non-dialyzed. A total of 0.1–10% (wt) of the cream formulation. EPS composition not mentioned. | Novel products with antioxidant, anti-aging, healing, oil-reducing, antiacne, rheological, and sensory properties | Univ Fed Do Parana, BRPI1004637A2 | [120] |
Cell wall-less microalgal strain Chlorophyceae class or Volvocales order, Chlamydomonadaceae family, and Chlamydomonas reinhardtii | Concentration by lyophilization or by tangential flow filtration IMAC-enriched microalgal culture supernatant comprises between 1 μg/L and 0.1 g/L of proteins and between 0.001 mg/L and 10 g/L of carbohydrates | Cosmetic or cosmeceutical composition for wound healing or skin damage repair, increased proliferation of fibroblasts for the treatment of skin aging, photoaging, and cutaneous senescence | Greenaltech, S.L Gat Biosciencies SL, US12268772B2 | [115] |
6. Conclusions, Challenges, and Expected Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Costa, J.A.V.; Lucas, B.F.; Alvarenga, A.G.P.; Moreira, J.B.; De Morais, M.G. Microalgae Polysaccharides: An Overview of Production, Characterization, and Potential Applications. Polysaccharides 2021, 2, 759–772. [Google Scholar] [CrossRef]
- Franco-Morgado, M.; Amador-Espejo, G.G.; Pérez-Cortés, M.; Gutiérrez-Uribe, J.A. Microalgae and Cyanobacteria Polysaccharides: Important Link for Nutrient Recycling and Revalorization of Agro-Industrial Wastewater. Appl. Food Res. 2023, 3, 100296. [Google Scholar] [CrossRef]
- De Philippis, R. Exocellular Polysaccharides from Cyanobacteria and Their Possible Applications. FEMS Microbiol. Rev. 1998, 22, 151–175. [Google Scholar] [CrossRef]
- Magnabosco, C.; Santaniello, G.; Romano, G. Microalgae: A Promising Source of Bioactive Polysaccharides for Biotechnological Applications. Molecules 2025, 30, 2055. [Google Scholar] [CrossRef]
- Gupta, A.; Barrow, C.J.; Puri, M. Multiproduct Biorefinery from Marine Thraustochytrids towards a Circular Bioeconomy. Trends Biotechnol. 2022, 40, 448–462. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Johir, M.A.H.; Mahlia, T.M.I.; Silitonga, A.S.; Zhang, X.; Liu, Q.; Nghiem, L.D. Microalgae-Derived Biolubricants: Challenges and Opportunities. Sci. Total Environ. 2024, 954, 176759. [Google Scholar] [CrossRef]
- Jakhu, S.; Sharma, Y.; Sharma, K.; Vaid, K.; Dhar, H.; Kumar, V.; Singh, R.P.; Shekh, A.; Kumar, G. Production and Characterization of Microalgal Exopolysaccharide as a Reducing and Stabilizing Agent for Green Synthesis of Gold-Nanoparticle: A Case Study with a Chlorella Sp. from Himalayan High-Altitude Psychrophilic Habitat. J. Appl. Phycol. 2021, 33, 3899–3914. [Google Scholar] [CrossRef]
- Chaudhuri, R.; Athiyappan, K.D.; Balasubramanian, P. From Algae to Medicine: Unveiling the Therapeutic Potential of Microalgal Exopolysaccharides. In Microbial Biotechnology: Integrated Microbial Engineering for B3—Bioenergy, Bioremediation, and Bioproducts; Elsevier: Amsterdam, The Netherlands, 2025; pp. 271–305. [Google Scholar] [CrossRef]
- Arad, S.; Levy-Ontman, O. Red Microalgal Cell-Wall Polysaccharides: Biotechnological Aspects. Curr. Opin. Biotechnol. 2010, 21, 358–364. [Google Scholar] [CrossRef]
- Delattre, C.; Pierre, G.; Laroche, C.; Michaud, P. Production, Extraction and Characterization of Microalgal and Cyanobacterial Exopolysaccharides. Biotechnol. Adv. 2016, 34, 1159–1179. [Google Scholar] [CrossRef]
- Pierre, G.; Delattre, C.; Dubessay, P.; Jubeau, S.; Vialleix, C.; Cadoret, J.-P.; Probert, I.; Michaud, P. What Is in Store for EPS Microalgae in the Next Decade? Molecules 2019, 24, 4296. [Google Scholar] [CrossRef]
- De Philippis, R.; Colica, G.; Micheletti, E. Exopolysaccharide-Producing Cyanobacteria in Heavy Metal Removal from Water: Molecular Basis and Practical Applicability of the Biosorption Process. Appl. Microbiol. Biotechnol. 2011, 92, 697–708. [Google Scholar] [CrossRef]
- Cruz, D.; Vasconcelos, V.; Pierre, G.; Michaud, P.; Delattre, C. Exopolysaccharides from Cyanobacteria: Strategies for Bioprocess Development. Appl. Sci. 2020, 10, 3763. [Google Scholar] [CrossRef]
- Sanniyasi, E.; Patrick, A.P.R.; Rajagopalan, K.; Gopal, R.K.; Damodharan, R. Characterization and in Vitro Anticancer Potential of Exopolysaccharide Extracted from a Freshwater Diatom Nitzschia Palea (Kütz.) W.Sm. 1856. Sci. Rep. 2022, 12, 22114. [Google Scholar] [CrossRef]
- Laroche, C. Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. Mar. Drugs 2022, 20, 336. [Google Scholar] [CrossRef]
- Gaignard, C.; Laroche, C.; Pierre, G.; Dubessay, P.; Delattre, C.; Gardarin, C.; Gourvil, P.; Probert, I.; Dubuffet, A.; Michaud, P. Screening of Marine Microalgae: Investigation of New Exopolysaccharide Producers. Algal Res. 2019, 44, 101711. [Google Scholar] [CrossRef]
- Baptista, S.; Torres, C.A.V.; Sevrin, C.; Grandfils, C.; Reis, M.A.M.; Freitas, F. Extraction of the Bacterial Extracellular Polysaccharide FucoPol by Membrane-Based Methods: Efficiency and Impact on Biopolymer Properties. Polymers 2022, 14, 390. [Google Scholar] [CrossRef]
- Navarro Gallón, S.M.; Alpaslan, E.; Wang, M.; Larese-Casanova, P.; Londoño, M.E.; Atehortúa, L.; Pavón, J.J.; Webster, T.J. Characterization and Study of the Antibacterial Mechanisms of Silver Nanoparticles Prepared with Microalgal Exopolysaccharides. Mater. Sci. Eng. C 2019, 99, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, O.N.; Bobby, M.N.; Kondi, V.; Halder, G.; Kargarzadeh, H.; Ikbal, A.M.A.; Bhunia, B.; Thomas, S.; Efferth, T.; Chattopadhyay, D.; et al. Comprehensive Review on Recent Trends and Perspectives of Natural Exo-Polysaccharides: Pioneering Nano-Biotechnological Tools. Int. J. Biol. Macromol. 2024, 265, 130747. [Google Scholar] [CrossRef] [PubMed]
- Cheirsilp, B.; Maneechote, W.; Srinuanpan, S.; Angelidaki, I. Microalgae as Tools for Bio-Circular-Green Economy: Zero-Waste Approaches for Sustainable Production and Biorefineries of Microalgal Biomass. Bioresour. Technol. 2023, 387, 129620. [Google Scholar] [CrossRef]
- Pessoa, L.C.; Attar, S.B.-E.; Sanchez-Zurano, A.; Ciardi, M.; Morillas-Espana, A.; Ruiz-Martínez, C.; Fernandez, I.; Arrabal-Campos, F.M.; Pontes, L.A.M.; Cardoso, L.G.; et al. Exopolysaccharides as Bio-Based Rheology Modifiers from Microalgae Produced on Dairy Industry Waste: Towards a Circular Bioeconomy Approach. Int. J. Biol. Macromol. 2024, 279, 135246. [Google Scholar] [CrossRef]
- Li, Y.; Lei, Z.; Zhou, R.; Tang, Y.; Shen, X.; Jia, S. A Chlorella Exopolysaccharide with Antioxidant Activity. CN110818814A, 21 February 2020. Available online: https://patents.google.com/patent/CN110818814A/en (accessed on 30 June 2025).
- Liberti, D.; Imbimbo, P.; Giustino, E.; D’Elia, L.; Silva, M.; Barreira, L.; Monti, D.M. Shedding Light on the Hidden Benefit of Porphyridium Cruentum Culture. Antioxidants 2023, 12, 337. [Google Scholar] [CrossRef]
- Debnath, S.; Muthuraj, M.; Bandyopadhyay, T.K.; Bobby, M.N.; Vanitha, K.; Tiwari, O.N.; Bhunia, B. Engineering Strategies and Applications of Cyanobacterial Exopolysaccharides: A Review on Past Achievements and Recent Perspectives. Carbohydr. Polym. 2024, 328, 121686. [Google Scholar] [CrossRef]
- Bafana, A. Characterization and Optimization of Production of Exopolysaccharide from Chlamydomonas Reinhardtii. Carbohydr. Polym. 2013, 95, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.G.; Santos, T.D.; Moraes, L.; Vaz, B.S.; Morais, E.G.; Costa, J.A.V. Exopolysaccharides from Microalgae: Production in a Biorefinery Framework and Potential Applications. Bioresour. Technol. Rep. 2022, 18, 101006. [Google Scholar] [CrossRef]
- Moreira, J.B.; Kuntzler, S.G.; Bezerra, P.Q.M.; Cassuriaga, A.P.A.; Zaparoli, M.; Da Silva, J.L.V.; Costa, J.A.V.; De Morais, M.G. Recent Advances of Microalgae Exopolysaccharides for Application as Bioflocculants. Polysaccharides 2022, 3, 264–276. [Google Scholar] [CrossRef]
- Park, G.-T.; Go, R.-E.; Lee, H.-M.; Lee, G.-A.; Kim, C.-W.; Seo, J.-W.; Hong, W.-K.; Choi, K.-C.; Hwang, K.-A. Potential Anti-Proliferative and Immunomodulatory Effects of Marine Microalgal Exopolysaccharide on Various Human Cancer Cells and Lymphocytes In Vitro. Mar. Biotechnol. 2017, 19, 136–146. [Google Scholar] [CrossRef]
- Capek, P.; Matulová, M.; Molitorisová, M.; Kazimierová, I. Chlorella Vulgaris α-L-Arabino-α-L-Rhamno-α,β-D-Galactan Structure and Mechanisms of Its Anti-Inflammatory and Anti-Remodelling Effects. Int. J. Biol. Macromol. 2020, 162, 188–198. [Google Scholar] [CrossRef]
- Concórdio-Reis, P.; David, H.; Reis, M.A.M.; Amorim, A.; Freitas, F. Bioprospecting for New Exopolysaccharide-Producing Microalgae of Marine Origin. Int. Microbiol. 2023, 26, 1123–1130. [Google Scholar] [CrossRef]
- Zhou, R.; Qian, Y.; Lei, Z.; Tang, Y.; Li, Y. Production and Characterization of Exopolysaccharides from Salinity-Induced Auxenochlorella Protothecoides and the Analysis of Anti-Inflammatory Activity. Int. J. Biol. Macromol. 2023, 240, 124217. [Google Scholar] [CrossRef]
- Song, X.; Wang, Z.; Wang, S.; Wang, Y.; Cui, Q.; Feng, Y. The Method and Its Application of Exocellular Polysaccharide Are Prepared Using the Microalgae Fermentation Waste Liquid of Production PUFA. CN108559006A, 21 September 2018. Available online: https://patents.google.com/patent/CN108559006A/en?oq=CN108559006A (accessed on 30 June 2025).
- Borjas Esqueda, A.; Gardarin, C.; Laroche, C. Exploring the Diversity of Red Microalgae for Exopolysaccharide Production. Mar. Drugs 2022, 20, 246. [Google Scholar] [CrossRef]
- De Philippis, R.; Sili, C.; Paperi, R.; Vincenzini, M. Exopolysaccharide-Producing Cyanobacteria and Their Possible Exploitation: A Review. J. Appl. Phycol. 2001, 13, 293–299. [Google Scholar] [CrossRef]
- Severo, I.A.; Dias, R.R.; Do Nascimento, T.C.; Deprá, M.C.; Maroneze, M.M.; Zepka, L.Q.; Jacob-Lopes, E. Microalgae-Derived Polysaccharides: Potential Building Blocks for Biomedical Applications. World J. Microbiol. Biotechnol. 2022, 38, 150. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ji, L.; Yuan, Y.; Rui, D.; Li, J.; Cheng, P.; Sun, L.; Fan, J. Recent Advances in Polysaccharide-Dominated Extracellular Polymeric Substances from Microalgae: A Review. Int. J. Biol. Macromol. 2025, 302, 140572. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Kim, S.M. Characterization and Immunomodulatory Activities of Polysaccharides Extracted from Green Alga Chlorella Ellipsoidea. Int. J. Biol. Macromol. 2017, 95, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, S.; Gato, A.; Lamela, M.; Freire-Garabal, M.; Calleja, J.M. Anti-inflammatory and Immunomodulatory Activities of Polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 2003, 17, 665–670. [Google Scholar] [CrossRef]
- Yim, J.H.; Kim, S.J.; Ahn, S.H.; Lee, C.K.; Rhie, K.T.; Lee, H.K. Antiviral Effects of Sulfated Exopolysaccharide from the Marine Microalga Gyrodinium Impudicum Strain KG03. Mar. Biotechnol. 2004, 6, 17–25. [Google Scholar] [CrossRef]
- Barboríková, J. Extracellular Polysaccharide Produced by Chlorella Vulgaris—Chemical Characterization and Anti-Asthmatic Profile. Int. J. Biol. Macromol. 2019, 135, 1–11. [Google Scholar] [CrossRef]
- Gardeva, E.; Toshkova, R.; Minkova, K.; Gigova, L. Cancer Protective Action of Polysaccharide, Derived from Red Microalga Porphyridium cruentum —A Biological Background. Biotechnol. Biotechnol. Equip. 2009, 23 (Suppl. S1), 783–787. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, Z.-J.; Xie, D.; Sun, X.; Yang, W.; Zhao, X.; Xu, N. Characterization and Potential Antitumor Activity of Polysaccharide from Gracilariopsis Lemaneiformis. Mar. Drugs 2017, 15, 100. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Ren, Y.; Chen, F. Characterization of Exopolysaccharides Produced by Microalgae with Antitumor Activity on Human Colon Cancer Cells. Int. J. Biol. Macromol. 2019, 128, 761–767. [Google Scholar] [CrossRef]
- Dai, J.; Wu, Y.; Chen, S.; Zhu, S.; Yin, H.; Wang, M.; Tang, J. Sugar Compositional Determination of Polysaccharides from Dunaliella Salina by Modified RP-HPLC Method of Precolumn Derivatization with 1-Phenyl-3-Methyl-5-Pyrazolone. Carbohydr. Polym. 2010, 82, 629–635. [Google Scholar] [CrossRef]
- Amna Kashif, S.; Hwang, Y.J.; Park, J.K. Potent Biomedical Applications of Isolated Polysaccharides from Marine Microalgae Tetraselmis Species. Bioprocess Biosyst. Eng. 2018, 41, 1611–1620. [Google Scholar] [CrossRef]
- Shen, S.; Jia, S.; Wu, Y.; Yan, R.; Lin, Y.-H.; Zhao, D.; Han, P. Effect of Culture Conditions on the Physicochemical Properties and Antioxidant Activities of Polysaccharides from Nostoc Flagelliforme. Carbohydr. Polym. 2018, 198, 426–433. [Google Scholar] [CrossRef]
- Quan, Y.; Yang, S.; Wan, J.; Su, T.; Zhang, J.; Wang, Z. Optimization for the Extraction of Polysaccharides from Nostoc Commune and Its Antioxidant and Antibacterial Activities. J. Taiwan Inst. Chem. Eng. 2015, 52, 14–21. [Google Scholar] [CrossRef]
- Raposo, M.; De Morais, R.; Bernardo De Morais, A. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae. Mar. Drugs 2013, 11, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Santoyo, S.; Jaime, L.; Plaza, M.; Herrero, M.; Rodriguez-Meizoso, I.; Ibañez, E.; Reglero, G. Antiviral Compounds Obtained from Microalgae Commonly Used as Carotenoid Sources. J. Appl. Phycol. 2012, 24, 731–741. [Google Scholar] [CrossRef]
- Hernandezcorona, A.; Nieves, I.; Meckes, M.; Chamorro, G.; Barron, B. Antiviral Activity of Spirulina Maxima against Herpes Simplex Virus Type 2. Antivir. Res. 2002, 56, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Ai, C.; Chen, Y.; Gao, X.; Zhong, R.; Liu, B.; Chen, X.; Zhao, C. Physicochemical Characterization of a Polysaccharide from Green Microalga Chlorella pyrenoidosa and Its Hypolipidemic Activity via Gut Microbiota Regulation in Rats. J. Agric. Food Chem. 2020, 68, 1186–1197. [Google Scholar] [CrossRef]
- Majdoub, H.; Mansour, M.B.; Chaubet, F.; Roudesli, M.S.; Maaroufi, R.M. Anticoagulant Activity of a Sulfated Polysaccharide from the Green Alga Arthrospira Platensis. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2009, 1790, 1377–1381. [Google Scholar] [CrossRef]
- Setyaningsih, I.; Prasetyo, H.; Agungpriyono, D.R.; Tarman, K. Antihyperglycemic Activity of Porphyridium Cruentum Biomass and Extra-Cellular Polysaccharide in Streptozotocin-Induced Diabetic Rats. Int. J. Biol. Macromol. 2020, 156, 1381–1386. [Google Scholar] [CrossRef]
- De Medeiros, V.P.B.; De Souza, E.L.; De Albuquerque, T.M.R.; Da Costa Sassi, C.F.; Dos Santos Lima, M.; Sivieri, K.; Pimentel, T.C.; Magnani, M. Freshwater Microalgae Biomasses Exert a Prebiotic Effect on Human Colonic Microbiota. Algal Res. 2021, 60, 102547. [Google Scholar] [CrossRef]
- Tiwari, O.N.; Mondal, A.; Bhunia, B.; Bandyopadhyay, T.K.; Jaladi, P.; Oinam, G.; Indrama, T. Purification, Characterization and Biotechnological Potential of New Exopolysaccharide Polymers Produced by Cyanobacterium anabaena sp. CCC 745. CCC 745. 2019, 178, 121695. [Google Scholar] [CrossRef]
- Jindal, N.; Pal Singh, D.; Singh Khattar, J. Optimization, Characterization, and Flow Properties of Exopolysaccharides Produced by the Cyanobacterium Lyngbya stagnina: Exopolysaccharides from Lyngbya stagnina. J. Basic. Microbiol. 2013, 53, 902–912. [Google Scholar] [CrossRef]
- Li, T.-T.; Huang, Z.-R.; Jia, R.-B.; Lv, X.-C.; Zhao, C.; Liu, B. Spirulina Platensis Polysaccharides Attenuate Lipid and Carbohydrate Metabolism Disorder in High-Sucrose and High-Fat Diet-Fed Rats in Association with Intestinal Microbiota. Food Res. Int. 2021, 147, 110530. [Google Scholar] [CrossRef]
- Rajasekar, P.; Palanisamy, S.; Anjali, R.; Vinosha, M.; Elakkiya, M.; Marudhupandi, T.; Tabarsa, M.; You, S.; Prabhu, N.M. Isolation and Structural Characterization of Sulfated Polysaccharide from Spirulina Platensis and Its Bioactive Potential: In Vitro Antioxidant, Antibacterial Activity and Zebrafish Growth and Reproductive Performance. Int. J. Biol. Macromol. 2019, 141, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-X.; Liu, X.-Y.; Xiao, Z.; Huang, Y.-F.; Liu, B. Antioxidant Activities of Polysaccharides Obtained from Chlorella Pyrenoidosa via Different Ethanol Concentrations. Int. J. Biol. Macromol. 2016, 91, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Q.; Lin, A.P.; Sun, Y.; Deng, Y.M. Chemo- and Radio-Protective Effects of Polysaccharide of Spirulina Platensis on Hemopoietic System of Mice and Dogs. Acta Pharmacol. Sin. 2001, 22, 1121–1124. [Google Scholar]
- Algosource. Available online: http://www.algosource.com (accessed on 15 June 2025).
- Micoperibeg. Available online: http://www.micoperibg.eu (accessed on 30 June 2025).
- Corbion, TerraVia (formely Solazyme). Available online: https://www.corbion.com/en/ (accessed on 30 May 2025).
- Givaudan. Available online: https://www.givaudan.com/fragrance-beauty/active-beauty/products/hydrintense (accessed on 30 June 2025).
- Rachidi, F.; Benhima, R.; Sbabou, L.; El Arroussi, H. Microalgae Polysaccharides Bio-Stimulating Effect on Tomato Plants: Growth and Metabolic Distribution. Biotechnol. Rep. 2020, 25, e00426. [Google Scholar] [CrossRef]
- Park, C.-H.; Li, X.R.; Zhao, Y.; Jia, R.L.; Hur, J.-S. Rapid Development of Cyanobacterial Crust in the Field for Combating Desertification. PLoS ONE 2017, 12, e0179903. [Google Scholar] [CrossRef]
- Xu, Y.; Rossi, F.; Colica, G.; Deng, S.; De Philippis, R.; Chen, L. Use of Cyanobacterial Polysaccharides to Promote Shrub Performances in Desert Soils: A Potential Approach for the Restoration of Desertified Areas. Biol. Fertil. Soils 2013, 49, 143–152. [Google Scholar] [CrossRef]
- Guehaz, K.; Boual, Z.; Abdou, I.; Telli, A.; Belkhalfa, H. Microalgae’s Polysaccharides, Are They Potent Antioxidants? Critical Review. Arch. Microbiol. 2024, 206, 14. [Google Scholar] [CrossRef]
- Mota, R.; Vidal, R.; Pandeirada, C.; Flores, C.; Adessi, A.; De Philippis, R.; Nunes, C.; Coimbra, M.A.; Tamagnini, P. Cyanoflan: A Cyanobacterial Sulfated Carbohydrate Polymer with Emulsifying Properties. Carbohydr. Polym. 2020, 229, 115525. [Google Scholar] [CrossRef]
- Bernaerts, T.M.M.; Gheysen, L.; Foubert, I.; Hendrickx, M.E.; Van Loey, A.M. The Potential of Microalgae and Their Biopolymers as Structuring Ingredients in Food: A Review. Biotechnol. Adv. 2019, 37, 107419. [Google Scholar] [CrossRef]
- Dulong, V.; Rihouey, C.; Gaignard, C.; Bridiau, N.; Gourvil, P.; Laroche, C.; Pierre, G.; Varacavoudin, T.; Probert, I.; Maugard, T.; et al. Exopolysaccharide from Marine Microalgae Belonging to the Glossomastix Genus: Fragile Gel Behavior and Suspension Stability. Bioengineered 2024, 15, 2296257. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Mota, R.; Leite, J.P.; Tamagnini, P.; Gales, L.; Rocha, F. Application of a Cyanobacterial Extracellular Polymeric Substance in the Microencapsulation of Vitamin B12. Powder Technol. 2019, 343, 644–651. [Google Scholar] [CrossRef]
- Fattom, A.; Shilo, M. Production of Emulcyan by Phormidium J-1: Its Activity and Function. FEMS Microbiol. Lett. 1985, 31, 3–9. [Google Scholar] [CrossRef]
- Shilo, M.; Fattom, A. Polymeric Substance and Method of Separating and Culturing Bacteria. US5250201A, 5 October 1993. Available online: https://patents.google.com/patent/US5250201A/en (accessed on 30 May 2025).
- Borah, D.; Rethinam, G.; Gopalakrishnan, S.; Rout, J.; Alharbi, N.S.; Alharbi, S.A.; Nooruddin, T. Ozone Enhanced Production of Potentially Useful Exopolymers from the Cyanobacterium Nostoc Muscorum. Polym. Test. 2020, 84, 106385. [Google Scholar] [CrossRef]
- Hayashi, T.; Hayashi, K.; Maeda, M.; Kojima, I. Calcium Spirulan, an Inhibitor of Enveloped Virus Replication, from a Blue-Green Alga Spirulina platensis. J. Nat. Prod. 1996, 59, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Radonić, A.; Thulke, S.; Achenbach, J.; Kurth, A.; Vreemann, A.; König, T.; Walter, C.; Possinger, K.; Nitsche, A. Anionic Polysaccharides From Phototrophic Microorganisms Exhibit Antiviral Activities to Vaccinia Virus. J. Antivir. Antiretrovir. 2011, 2, 51–55. [Google Scholar] [CrossRef]
- Motoyama, K.; Tanida, Y.; Hata, K.; Hayashi, T.; Hashim, I.I.A.; Higashi, T.; Ishitsuka, Y.; Kondo, Y.; Irie, T.; Kaneko, S.; et al. Anti-Inflammatory Effects of Novel Polysaccharide Sacran Extracted from Cyanobacterium Aphanothece sacrum in Various Inflammatory Animal Models. Biol. Pharm. Bull. 2016, 39, 1172–1178. [Google Scholar] [CrossRef]
- Ivanova, J.; Konstantinidou, A.; Kabaivanova, L.; Georgieva, A.; Vladov, I.; Petkova, S. Examination of Exopolysaccharides from Porphyridium Cruentum for Estimation of Their Potential Antitumour Activity in Vitro. C. R. Acad. Bulg. Sci. 2022, 75, 1146–1155. [Google Scholar] [CrossRef]
- Mousavian, Z.; Safavi, M.; Azizmohseni, F.; Hadizadeh, M.; Mirdamadi, S. Characterization, Antioxidant and Anticoagulant Properties of Exopolysaccharide from Marine Microalgae. AMB Express 2022, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Uhliariková, I.; Matulová, M.; Capek, P. Structural Features of the Bioactive Cyanobacterium Nostoc Sp. Exopolysaccharide. Int. J. Biol. Macromol. 2020, 164, 2284–2292. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Baranwal, M.; Pandey, S.K.; Reddy, M.S. Hetero-Polysaccharides Secreted from Dunaliella Salina Exhibit Immunomodulatory Activity Against Peripheral Blood Mononuclear Cells and RAW 264.7 Macrophages. Indian. J. Microbiol. 2019, 59, 428–435. [Google Scholar] [CrossRef]
- Gouda, M.; Tadda, M.A.; Zhao, Y.; Farmanullah, F.; Chu, B.; Li, X.; He, Y. Microalgae Bioactive Carbohydrates as a Novel Sustainable and Eco-Friendly Source of Prebiotics: Emerging Health Functionality and Recent Technologies for Extraction and Detection. Front. Nutr. 2022, 9, 806692. [Google Scholar] [CrossRef]
- Castro, V.; Oliveira, R.; Dias, A.C.P. Microalgae and Cyanobacteria as Sources of Bioactive Compounds for Cosmetic Applications: A Systematic Review. Algal Res. 2023, 76, 103287. [Google Scholar] [CrossRef]
- Matsui, M.S.; Muizzuddin, N.; Arad, S.; Marenus, K. Sulfated Polysaccharides from Red Microalgae Have Antiinflammatory Properties In Vitro and In Vivo. ABAB 2003, 104, 13–22. [Google Scholar] [CrossRef]
- Kanekiyo, K.; Lee, J.-B.; Hayashi, K.; Takenaka, H.; Hayakawa, Y.; Endo, S.; Hayashi, T. Isolation of an Antiviral Polysaccharide, Nostoflan, from a Terrestrial Cyanobacterium, Nostoc f lagelliforme. J. Nat. Prod. 2005, 68, 1037–1041. [Google Scholar] [CrossRef]
- Chen, B.; You, W.; Huang, J.; Yu, Y.; Chen, W. Isolation and Antioxidant Property of the Extracellular Polysaccharide from Rhodella Reticulata. World J. Microbiol. Biotechnol. 2010, 26, 833–840. [Google Scholar] [CrossRef]
- Challouf, R.; Trabelsi, L.; Ben Dhieb, R.; El Abed, O.; Yahia, A.; Ghozzi, K.; Ben Ammar, J.; Omran, H.; Ben Ouada, H. Evaluation of Cytotoxicity and Biological Activities in Extracellular Polysaccharides Released by Cyanobacterium Arthrospira Platensis. Braz. Arch. Biol. Technol. 2011, 54, 831–838. [Google Scholar] [CrossRef]
- Díaz Bayona, K.C.; Navarro Gallón, S.M.; Estrada, A.L.; Colorado-Rios, J.; Atehortúa, G.L.; Martinez Martinez, A. Activity of Sulfated Polysaccharides from Microalgae Porphyridium Cruentum over Degenerative Mechanisms of the Skin. Int. J. Sci. Adv. Technol. 2012, 2, 85–92. [Google Scholar]
- Han, P.; Sun, Y.; Wu, X.; Yuan, Y.; Dai, Y.; Jia, S. Emulsifying, Flocculating, and Physicochemical Properties of Exopolysaccharide Produced by Cyanobacterium Nostoc Flagelliforme. Appl. Biochem. Biotechnol. 2014, 172, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Raposo, M.F.D.J.; De Morais, A.M.M.B.; De Morais, R.M.S.C. Influence of Sulphate on the Composition and Antibacterial and Antiviral Properties of the Exopolysaccharide from Porphyridium Cruentum. Life Sci. 2014, 101, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.H.; Abou-ElWaf, G.S.; Shaaban-De, S.A.; Hassan, N.I. Characterization and Antioxidant Activity of Exopolysaccharide Secreted by Nostoc Carneum. Int. J. Pharmacol. 2015, 11, 432–439. [Google Scholar] [CrossRef]
- Gudmundsdottir, A.B.; Omarsdottir, S.; Brynjolfsdottir, A.; Paulsen, B.S.; Olafsdottir, E.S.; Freysdottir, J. Exopolysaccharides from Cyanobacterium Aponinum from the Blue Lagoon in Iceland Increase IL-10 Secretion by Human Dendritic Cells and Their Ability to Reduce the IL-17+RORγt+/IL-10+FoxP3+ Ratio in CD4+ T Cells. Immunol. Lett. 2015, 163, 157–162. [Google Scholar] [CrossRef]
- Trabelsi, L.; Chaieb, O.; Mnari, A.; Abid-Essafi, S.; Aleya, L. Partial Characterization and Antioxidant and Antiproliferative Activities of the Aqueous Extracellular Polysaccharides from the Thermophilic Microalgae Graesiella Sp. BMC Complement. Altern. Med. 2016, 16, 210. [Google Scholar] [CrossRef]
- Tiwari, O.N.; Muthuraj, M.; Bhunia, B.; Bandyopadhyay, T.K.; Annapurna, K.; Sahu, M.; Indrama, T. Biosynthesis, Purification and Structure-Property Relationships of New Cyanobacterial Exopolysaccharides. Polym. Test. 2020, 89, 106592. [Google Scholar] [CrossRef]
- Zampieri, R.M.; Adessi, A.; Caldara, F.; Codato, A.; Furlan, M.; Rampazzo, C.; De Philippis, R.; La Rocca, N.; Dalla Valle, L. Anti-Inflammatory Activity of Exopolysaccharides from Phormidium Sp. ETS05, the Most Abundant Cyanobacterium of the Therapeutic Euganean Thermal Muds, Using the Zebrafish Model. Biomolecules 2020, 10, 582. [Google Scholar] [CrossRef]
- Risjani, Y.; Mutmainnah, N.; Manurung, P.; Wulan, S.N.; Yunianta. Exopolysaccharide from Porphyridium Cruentum (Purpureum) Is Not Toxic and Stimulates Immune Response against Vibriosis: The Assessment Using Zebrafish and White Shrimp Litopenaeus Vannamei. Mar. Drugs 2021, 19, 133. [Google Scholar] [CrossRef]
- Parra-Riofrío, G.; García-Márquez, J.; Casas-Arrojo, V.; Uribe-Tapia, E.; Abdala-Díaz, R.T. Antioxidant and Cytotoxic Effects on Tumor Cells of Exopolysaccharides from Tetraselmis Suecica (Kylin) Butcher Grown Under Autotrophic and Heterotrophic Conditions. Mar. Drugs 2020, 18, 534. [Google Scholar] [CrossRef]
- Drira, M.; Elleuch, J.; Ben Hlima, H.; Hentati, F.; Gardarin, C.; Rihouey, C.; Le Cerf, D.; Michaud, P.; Abdelkafi, S.; Fendri, I. Optimization of Exopolysaccharides Production by Porphyridium Sordidum and Their Potential to Induce Defense Responses in Arabidopsis Thaliana against Fusarium Oxysporum. Biomolecules 2021, 11, 282. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, X.; Alves, A.; Ribeiro, M.P.; Lazzari, M.; Coutinho, P.; Otero, A. Biochemical Characterization of Nostoc Sp. Exopolysaccharides and Evaluation of Potential Use in Wound Healing. Carbohydr. Polym. 2021, 254, 117303. [Google Scholar] [CrossRef] [PubMed]
- Patwal, T.; Baranwal, M. Scenedesmus Acutus Extracellular Polysaccharides Produced under Increased Concentration of Sulphur and Phosphorus Exhibited Enhanced Proliferation of Peripheral Blood Mononuclear Cells. 3 Biotech 2021, 11, 171. [Google Scholar] [CrossRef] [PubMed]
- Uhliariková, I.; Matulová, M.; Košťálová, Z.; Lukavský, J.; Capek, P. Lactylated Acidic Exopolysaccharide Produced by the Cyanobacterium Nostoc Cf. Linckia. Carbohydr. Polym. 2022, 276, 118801. [Google Scholar] [CrossRef]
- Gongi, W.; Gomez Pinchetti, J.L.; Cordeiro, N.; Ouada, H.B. Extracellular Polymeric Substances Produced by the Thermophilic Cyanobacterium Gloeocapsa Gelatinosa: Characterization and Assessment of Their Antioxidant and Metal-Chelating Activities. Mar. Drugs 2022, 20, 227. [Google Scholar] [CrossRef]
- Wang, W.-N.; Li, T.; Li, Y.; Zhang, Y.; Wu, H.-L.; Xiang, W.-Z.; Li, A.-F. Exopolysaccharides from the Energy Microalga Strain Botryococcus Braunii: Purification, Characterization, and Antioxidant Activity. Foods 2022, 11, 110. [Google Scholar] [CrossRef]
- Toucheteau, C.; Deffains, V.; Gaignard, C.; Rihouey, C.; Laroche, C.; Pierre, G.; Lépine, O.; Probert, I.; Le Cerf, D.; Michaud, P.; et al. Role of Some Structural Features in EPS from Microalgae Stimulating Collagen Production by Human Dermal Fibroblasts. Bioengineered 2023, 14, 2254027. [Google Scholar] [CrossRef]
- Mansour, F.B.; Guermazi, W.; Chamkha, M.; Bellassoued, K.; Salah, H.B.; Harrath, A.H.; Aldahmash, W.; Rahman, M.A.; Ayadi, H. Bioactive Potential of the Sulfated Exopolysaccharides From the Brown Microalga Halamphora sp.: Antioxidant, Antimicrobial, and Antiapoptotic Profiles. Anal. Sci. Adv. 2024, 5, e202400030. [Google Scholar] [CrossRef]
- Harbaoui, A.; Khelifi, N.; Aissaoui, N.; Muzard, M.; Martinez, A.; Smaali, I. A Novel Bioactive and Functional Exopolysaccharide from the Cyanobacterial Strain Arthrospira Maxima Cultivated under Salinity Stress. Bioprocess Biosyst. Eng. 2025, 48, 445–460. [Google Scholar] [CrossRef]
- Chehouri, M. Marennine et Exopolysaccharides de La Microalgue Bleue Haslea Ostrearia: Potentiel d’application Cosmétique et Pharmaceutique. 2024. Available online: https://semaphore.uqar.ca/id/eprint/3199/ (accessed on 30 June 2025).
- Vazquez-Ayala, L.; Angel-Olarte, C.D.; Escobar-García, D.M.; Rosales-Mendoza, S.; Solis-Andrade, I.; Pozos-Guillen, A.; Palestino, G. Chitosan Sponges Loaded with Metformin and Microalgae as Dressing for Wound Healing: A Study in Diabetic Bio-Models. Int. J. Biol. Macromol. 2024, 254, 127691. [Google Scholar] [CrossRef]
- Avila, J.; Brooks, G.; Day, A.G.; Somanchi, A. Compositions for Improving the Health and Appearance of Skin. US9095733B2, 4 August 2015. Available online: https://patents.google.com/patent/US9095733B2/en (accessed on 30 June 2025).
- Coragliotti, A.; Franklin, S.; Day, A.; Decker, S. Microalgae Polysaccharide Compositions. ES2718275T3, 28 June 2019. Available online: https://patents.google.com/patent/ES2718275T3/en?oq=ES2718275T3 (accessed on 30 June 2025).
- Dillon, H.F.; Somanchi, A.; Zaman, A.; Rao, K.; Wolfson, J.; Day, A.G.; Coragliotti, A. Compositions Dérivées de Microalgues Destinées à Améliorer la Santé et L’aspect de la peau. EP3398606A1, 7 November 2018. Available online: https://patents.google.com/patent/EP3398606A1/fr (accessed on 30 June 2025).
- Mancinelli, R.; Smernoff, D. Cyanobacterial Polysaccharide Compositions. US20240358628A1, 31 October 2024. Available online: https://patents.google.com/patent/US20240358628A1/en?oq=US20240358628A1 (accessed on 30 June 2025).
- Loing, E.; Briatte, S.; Vayssier, C.; Beaulieu, M.; Dionne, P.; Richert, L.; Moppert, X. Cosmetic Compositions Comprising Exopolysaccharides Derived From Microbial Mats, and Use Thereof. EP2265249A1, 29 December 2010. Available online: https://patents.google.com/patent/EP2265249A1/en?oq=EP2265249A1 (accessed on 30 June 2025).
- Turk, O.D.; De Yebra, J.S.; Roca, J.M.; Cerro, M.T.L.; Lopez, C. IMAC-Enriched Microalgal Culture Supernatant and Uses Thereof. PAZUS12268772B2, 8 April 2025. Available online: https://patents.google.com/patent/US12268772B2/en?oq=US12268772B2 (accessed on 30 June 2025).
- Goncalves, O.; Pruvost, J.; Massé, A.; Decamp, A.; Probert, I. Nouveaux Exopolysaccharides Dépolymérisés, Issus de Micro-algues, Leur Procédé de Préparation et Leurs Utilisations en Cosmétique Pour Retarder Les Effets du Vieillissement Cutané FR2102020. Available online: https://hal.science/hal-03506901v1 (accessed on 30 June 2025).
- Soccol, C.R.; Novak, A.C.; Soccol, A.T.; Sydney, E.B.; De, A.S.; Process for Production of Exopolissacarides, Biomass and Antioxidant Extracts. Br102012004631a2, 22 October 2013. Available online: https://patents.google.com/patent/BR102012004631A2/en?oq=BR102012004631A2 (accessed on 15 June 2025).
- Potter, A.; Malle, G.; Donovan, M. Non-Therapeutic Cosmetic Method, Useful for Improving Barrier Function of Skin and/or for Hydrating Skin Using Sulfated Polysaccharide with Rhamnose Pattern, Comprises Applying a Composition Comprising Sulfated Polysaccharide on Skin. FR2982152A1, 10 May 2013. Available online: https://patents.google.com/patent/FR2982152A1/en?oq=FR2982152A1 (accessed on 15 June 2025).
- Kuehnle, A.R.; Schurr, R.J.; Perez, M.C.; Nolasco, N.A.B. Subterranean Microalgae for Production of Microbial Biomass, Substances, and Compositions. US20200232003A1, 23 July 2020. Available online: https://patents.google.com/patent/US20200232003A1/en?oq=US20200232003A1 (accessed on 15 June 2025).
- Soccol, C.R.; Novak, A.C.; Borges, I.V.L.; Cosmetic Products Containing Extracts and Microalgal Components and Processes for Their Production. BRPI1004637A2, 26 June 2012. Available online: https://patents.google.com/patent/BRPI1004637A2/en?oq=BRPI1004637A2 (accessed on 30 June 2025).
- Zhang, G.; Xu, C.; Zhou, Y.; Chang, G. Microalgae Broth Exopolysaccharide and Its Preparation Method and Use. CN105685766A, 22 June 2016. Available online: https://patents.google.com/patent/CN105685766A/en?oq=CN105685766A (accessed on 20 June 2025).
- Michaud, P. Polysaccharides from Microalgae, What’s Future? AIBM 2018, 8, 555732. [Google Scholar] [CrossRef]
- Cristofoli, N.L.; Lima, A.R.; Rosa Da Costa, A.M.; Evtyugin, D.; Silva, C.; Varela, J.; Vieira, M.C. Structural Characterization of Exopolysaccharides Obtained from Porphyridium Cruentum Exhausted Culture Medium. Food Bioprod. Process. 2023, 138, 162–171. [Google Scholar] [CrossRef]
- Gargouch, N.; Elleuch, F.; Karkouch, I.; Tabbene, O.; Pichon, C.; Gardarin, C.; Rihouey, C.; Picton, L.; Abdelkafi, S.; Fendri, I.; et al. Potential of Exopolysaccharide from Porphyridium Marinum to Contend with Bacterial Proliferation, Biofilm Formation, and Breast Cancer. Mar. Drugs 2021, 19, 66. [Google Scholar] [CrossRef]
- Kaur, M.; Bhatia, S.; Gupta, U.; Decker, E.; Tak, Y.; Bali, M.; Gupta, V.K.; Dar, R.A.; Bala, S. Microalgal Bioactive Metabolites as Promising Implements in Nutraceuticals and Pharmaceuticals: Inspiring Therapy for Health Benefits. Phytochem. Rev. 2023, 22, 903–933. [Google Scholar] [CrossRef]
- Morocho-Jácome, A.L.; Monteiro de Carvalho, J.C.; Martini Rosolia, D.; Robles Velasco, M.V.; Garcia de Sousa Cabral, L.; Rijo, P.; Rosado, C.; Rolim Baby, A. Exploiting the Potential of Ankistrodesmus Braunii Polysaccharides: In Vitro Antioxidant Activity and In Vivo Cutaneous Biocompatibility. Biomed. Biopharm. Res. 2025, 22, 1–13. [Google Scholar] [CrossRef]
- Cruz, A.M.; Gonçalves, M.C.; Marques, M.S.; Veiga, F.; Paiva-Santos, A.C.; Pires, P.C. In Vitro Models for Anti-Aging Efficacy Assessment: A Critical Update in Dermocosmetic Research. Cosmetics 2023, 10, 66. [Google Scholar] [CrossRef]
Genus/Species/Strain | EPS | Type of Study | Activity | Reference | Potential Cosmetic Use |
---|---|---|---|---|---|
Spirulina platensis | Calcium spirulan (Rha, Rib, Man, Fru, Gal, Xyl, Glu, GlcA, GalA, sulfate, and calcium) | In vitro | Antiviral: replication inhibition of several enveloped viruses | [76] | Antimicrobial (active ingredient/preservative) |
Porphyridium sp. | Main sugars: Xyl, Glc, and Gal; glycoproteins; and sulfate | In vitro In vivo (human subjects) | In vitro: inhibition migration of polymorphonuclear leucocytes In vivo: inhibition induced cutaneous erythema | [85] | Anti-inflammatory |
Nostoc flagelliforme | Nostoflan (Glc, Gal, Xyl, and Man) | In vitro | Potent anti-herpes simplex virus type 1 (HSV-1) activity | [86] | Antimicrobial (active ingredient/preservative) |
Arthrospira platensis | Calcium spirulan | In vitro | Antiviral: inhibition of orthopoxvirus and other enveloped viruses | [77] | Antimicrobial (active ingredient/preservative) |
Rhodella reticulata | Deproteinized EPSs | In vitro | Antioxidant | [87] | Antioxidant |
Arthrospira platensis | Methanolic and aqueous EPS extracts (composition not reported) | In vitro | Antibacterial Antioxidant | [88] | Antibacterial (preservative) Antioxidant |
Porphyridium cruentum | Main sugars: Xyl, Gal, and Glu | In vitro | Inhibition of collagenase, elastase, and hyaluronidase activity | [89] | Anti-aging |
Nostoc flagelliforme | Glc (41.2%), Gal (21.1%), Man (21.0%), Fru (2.5%), Rib (3.6%), Xyl (1.7%), Ara (0.6%), Rha (3.0%), Fuc (0.9%), and GlcA (4.3%) | Cosmetic formulation: rheological test | Strong emulsion-stabilizing capacity | [90] | Emulsifier and stabilizer |
Porphyridium cruentum | Carbohydrates and uronic acids; Main sugars: Gal, Glu, and Ara; Minor sugars: Man, Fuc, Xyl, and Rha | In vitro Rheological test | Antibacterial and antiviral activities High viscosity values at low shear rates | [91] | Antibacterial (preservative) Rheological agent |
Nostoc carneum | Xyl, Glu, and uronic acids | In vitro Rheological test | Antioxidant Pseudoplastic fluid behavior | [92] | Antioxidant Gelling and emulsifier agent |
Cyanobacterium aponinum | GalA/Fuc/3-OMe-GalA/Glc/Ara/Gal/Man/Rha in a molar ratio of 24:24:17:16:10:4:3:2 | In vitro | Production of immunosuppressive cytokine IL-10 | [93] | Anti-inflammatory |
Graesiella sp. | Carbohydrate (52%), uronic acids (23%), ester sulfate (11%), and protein (12%); Carbohydrate fraction: Glc, Gal, Man, Fuc, Rha, Xyl, Ara, and Rib | In vitro | Scavenging activity | [94] | Antioxidant |
Anabaena sp. CCC 745 | Heteropolysaccharide composed of Glc, Xyl, Rha, and GlcA | In vitro Rheological test | Antioxidant Pseudoplastic fluid behavior | [55] | Antioxidant Rheological agent |
Anabaena sp. CCC 746 | Main monosaccharides: Glc, Xyl, and GlcA | In vitro Rheological test | Antioxidant scavenging activity Pseudoplastic fluid behavior | [95] | Antioxidant Rheological agent |
Phormidium sp. ETS05 | Xyl, Rha, Glc, Man, Ara, GlcN, GalA, and GlcA | In vitro | Anti-inflammatory activity | [96] | Anti-inflammatory |
Porphyridium cruentum | Glc and carboxylic acid compounds | In vitro | Immune response against vibriosis | [97] | Antibacterial (preservative) |
Tetraselmis suecica | Glc (23–37%), GlcA (20–25%), Man (2–36%), Gal (3–25%), galactoryranoside (5–27%), GalA, (0.1–3%), Ara (5%), Xyl (0.3–3%) Rib, Rha, and Fuc (1%) | In vitro | Antioxidant | [98] | Antioxidant |
Porphyridium sordidum | Gal (~40%), Xyl (~30%) and Glu (~30%) | In vitro | Plant antifungal activity | [99] | Antifungal (preservative) |
Nostoc sp. | α-Rib, α-Glc, α-LAra, α-Xyl, α-LRha, β-Man, β-Gal, GalA, and β-LFuc | In vitro | Fibroblast proliferation and migration | [100] | Wound healing Skin barrier repair |
Scenedesmus acutus | Octa-saccharides | In vitro | Antioxidant | [101] | Antioxidant |
Chlorella sorokiniana, Chlorella sp., Picochlorum sp. | Sulfated EPSs | In vitro | Antioxidant | [80] | Antioxidant |
Nostoc cf. linckia | Dominant neutral saccharides, Glu, Gal, Xyl, and Man, and minor amounts of Rha, Fuc, and Ara | In vitro | Antioxidant | [102] | Antioxidant |
Gloeocapsa gelatinosa | Man (~22%), Xyl (~9%), Ara (~10%) GalA (~7%), and GlcA (~8%), Rha (~12%), and Fuc (~40%) | In vitro | Free radicals’ scavenger Antioxidant Metal chelating activity | [103] | Antioxidant Chelating agent |
Botryococcus braunii | HMW heteropolysaccharides: uronic acid (7.43–8.83%), protein (2.30–4.04%), and sulfate groups (1.52–1.95%). Gal (52.34–54.12%), Glc (34.60–35.53%), Ara (9.41–10.32%), and Fuc (1.80–1.99%) | In vitro | Antioxidant | [104] | Antioxidant |
Porphyridium cruentum (CCALA415) | Neutral monosaccharides: D- and L-Gal, D-Glc, D-Xyl, D-GlcA, and sulfate groups | In vitro | Anti-inflammatory Antioxidant Enhancement of wound closure | [23] | Anti-inflammatory Antioxidant Skin barrier repair |
Porphyridium cruentum, Chrysotila dentata, Pavlova sp., Diacronema ennorea, Glossomastix sp., Phaeodactylum tricornutum, Synechococcus sp. | P. cruentum EPS: Gal (44%), Xyl (39%), and Glc (14%). C. dentata, Pavlova sp., D. ennorea, P. tricornutum, and Synechococcus sp. EPS: Gal (26–38%) and Ara/Xyl (36%/17%), Rha/Glc (47%/11%), Rha/Ara (33%/17%), Glc/Ara (42%/13%), and Glc/Fuc (38%/24%). Glossomastix sp. EPS Fuc/Rha/GalA (40%/31%/21%) | In vitro | MMP-1 inhibition Stimulation of collagen production in cell lines CDD-1059Sk and CDD-1090Sk | [105] | Stimulation of skin collagen production (preventing ageing) |
Auxenochlorella protothecoides | Gal (42.41%) and Rha (35.29%) | In vitro | Inhibition of the inflammatory response in lipopolysaccharide-induced RAW264.7 cells | [31] | Anti-inflammatory |
Halamphora sp. | Xyl (40.55%), L-Gal (13.25%), D-Gal (13.00%), Glc (9.95%), and ribitol (9.82%) | In vitro | Antimicrobial activity | [106] | Antimicrobial (preservative) |
Glossomastix sp. | Rha and Fuc as major monosaccharides and Gal, GalA, and GlcA as minor monosaccharides | Rheological test | Anti-settling stabilizers | [71] | Rheological agent |
Arthrospira maxima | Heteropolymer, with Man, Xyl, and GlcA | In vitro | Antibacterial activity Antioxidant | [107] | Antibacterial (preservative) Antioxidant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourelle, M.L.; Díaz-Seoane, F.; Inoubli, S.; Gómez, C.P.; Legido, J.L. Microalgae and Cyanobacteria Exopolysaccharides: An Untapped Raw Material for Cosmetic Use. Cosmetics 2025, 12, 200. https://doi.org/10.3390/cosmetics12050200
Mourelle ML, Díaz-Seoane F, Inoubli S, Gómez CP, Legido JL. Microalgae and Cyanobacteria Exopolysaccharides: An Untapped Raw Material for Cosmetic Use. Cosmetics. 2025; 12(5):200. https://doi.org/10.3390/cosmetics12050200
Chicago/Turabian StyleMourelle, María Lourdes, Francisco Díaz-Seoane, Sheyma Inoubli, Carmen Paula Gómez, and José Luis Legido. 2025. "Microalgae and Cyanobacteria Exopolysaccharides: An Untapped Raw Material for Cosmetic Use" Cosmetics 12, no. 5: 200. https://doi.org/10.3390/cosmetics12050200
APA StyleMourelle, M. L., Díaz-Seoane, F., Inoubli, S., Gómez, C. P., & Legido, J. L. (2025). Microalgae and Cyanobacteria Exopolysaccharides: An Untapped Raw Material for Cosmetic Use. Cosmetics, 12(5), 200. https://doi.org/10.3390/cosmetics12050200