Cosmetic Considerations of Semaglutide
Abstract
1. Introduction
2. Mechanism of GLP-1 Agonist
3. Trends in Usage
4. Side Effects Associated with GLP-1 RA-Induced Weight Loss
4.1. Gastrointestinal
4.2. Volume Loss
4.3. Facial Aging
4.4. Skin Quality
5. Management
5.1. Skin Tightening
5.2. Filler
5.3. Fat Transfer
5.4. Surgical Interventions
5.5. Current Management
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| GLP-1 | Glucose-like protein-1 |
| GLP-1 RA | Glucose-like protein-1 receptor agonist |
| PPG | Preproglucagon (PPG) |
| DDP-4 | Dipeptidyl peptidase-4 |
| GIP | Glucose- dependent insulinotropic polypeptide |
| T2D | Type 2 diabetes |
| MRF | Monopolar capacitively couple radiofrequency |
| IGAIS | Investigator Global Aesthetic Improvement Scale |
| PLGA | Poly(lactic-co-glycolic acid |
| ADSC | Adipose-derived stem cell |
| UPL | Upper body lift |
| LBL | Lower body lift |
References
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef]
- Haslam, D. Weight management in obesity—Past and present. Int. J. Clin. Pract. 2016, 70, 206–217. [Google Scholar] [CrossRef]
- Mariam, Z.; Niazi, S.K. Glucagon-like peptide agonists: A prospective review. Endocrinol. Diabetes Metab. 2023, 7, e462. [Google Scholar] [CrossRef]
- Hayashi, Y. Glucagon regulates lipolysis and fatty acid oxidation through inositol triphosphate receptor 1 in the liver. J. Diabetes Investig. 2020, 12, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.; Niknam, M.; Momeni-Moghaddam, M.A.; Shabani, M.; Aria, H.; Bastin, A.; Teimouri, M.; Meshkani, R.; Akbari, H. Crosstalk between autophagy and insulin resistance: Evidence from different tissues. Eur. J. Med. Res. 2023, 28, 456. [Google Scholar] [CrossRef] [PubMed]
- Conceição-Furber, E.; Coskun, T.; Sloop, K.W.; Samms, R.J. Is Glucagon Receptor Activation the Thermogenic Solution for Treating Obesity? Front. Endocrinol. 2022, 13, 868037. [Google Scholar] [CrossRef]
- Zeigerer, A.; Sekar, R.; Kleinert, M.; Nason, S.; Habegger, K.M.; Müller, T.D. Glucagon’s Metabolic Action in Health and Disease. Compr. Physiol. 2021, 11, 1759. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006, 368, 1696–1705. [Google Scholar] [CrossRef]
- Liu, Q.K. Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. Front. Endocrinol. 2024, 15, 1431292. [Google Scholar] [CrossRef]
- Cornell, S. A review of GLP-1 receptor agonists in type 2 diabetes: A focus on the mechanism of action of once-weekly agents. J. Clin. Pharm. Ther. 2020, 45 (Suppl. S1), 17–27. [Google Scholar] [CrossRef]
- Müller, T.D.; Finan, B.; Bloom, S.; D’ALessio, D.; Drucker, D.; Flatt, P.; Fritsche, A.; Gribble, F.; Grill, H.; Habener, J.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef]
- Diz-Chaves, Y.; Mastoor, Z.; Spuch, C.; González-Matías, L.C.; Mallo, F. Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 9583. [Google Scholar] [CrossRef]
- Alfaris, N.; Waldrop, S.; Johnson, V.; Boaventura, B.; Kendrick, K.; Stanford, F.C. GLP-1 single, dual, and triple receptor agonists for treating type 2 diabetes and obesity: A narrative review. eClinicalMedicine 2024, 75, 102782. [Google Scholar] [CrossRef]
- Müller, T.D.; Clemmensen, C.; Finan, B.; Dimarchi, R.D.; Tschöp, M.H. Anti-obesity therapy: From rain-bow pills to polyagonists. Pharmacol. Rev. 2018, 70, 712–746. [Google Scholar] [CrossRef]
- Turkistani, Y. Glucagon-like peptide-1 receptor agonists: A review from a cardiovascular perspective. Front. Cardiovasc. Med. 2025, 12, 1535134. [Google Scholar] [CrossRef]
- Bull, S.T.; Nuffer, W.; Trujillo, J.M. Tirzepatide: A novel, first-in-class, dual GIP/GLP-1 receptor agonist. J. Diabetes Its Complicat. 2022, 36, 108332. [Google Scholar] [CrossRef]
- Trumper, A.; Trumper, K.; Horsch, D. Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in beta(INS-1)-cells. J. Endocrinol. 2002, 174, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig. 2010, 1, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M. The Role of GIP Receptor in the CNS for the Pathogenesis of Obesity. Diabetes 2021, 70, 1929–1937. [Google Scholar] [CrossRef]
- Holst, J.J.; Rosenkilde, M.M. GIP as a Therapeutic Target in Diabetes and Obesity: Insight from Incretin Co-agonists. J. Clin. Endocrinol. Metab. 2020, 105, e2710–e2716. [Google Scholar] [CrossRef] [PubMed]
- Aronne, L.J.; Horn, D.B.; le Roux, C.W.; Ho, W.; Falcon, B.L.; Valderas, E.G.; Das, S.; Lee, C.J.; Glass, L.C.; Senyucel, C.; et al. Tirzepatide as Compared with Semaglutide for the Treatment of Obesity. N. Engl. J. Med. 2025, 393, 26–36. [Google Scholar] [CrossRef]
- Ueda Yamaguchi, N.; de Almeida, L.; Carvalho Gomes Corrêa, R.; Grossi Milani, R.; Ueda Yamaguchi, M. Global Perspectives on Obesity and Being Overweight: A Bibliometric Analysis in Relation to Sustainable Development Goals. Int. J. Environ. Res. Public Health 2025, 22, 146. [Google Scholar] [CrossRef]
- Nardocci, M.; Polsky, J.Y.; Moubarac, J.-C. Consumption of ultra-processed foods is associated with obesity, diabetes and hypertension in Canadian adults. Can. J. Public Health 2020, 112, 421–429. [Google Scholar] [CrossRef]
- Bergmann, N.C.; Davies, M.J.; Lingvay, I.; Knop, F.K. Semaglutide for the treatment of overweight and obesity: A review. Diabetes Obes. Metab. 2022, 25, 18–35. [Google Scholar] [CrossRef]
- Vahora, I.; Moparthi, K.P.; Al Rushaidi, M.T.; Muddam, M.R.; Obajeun, O.A.; Abaza, A.; Jaramillo, A.P.; Idris, F.S.; Shaikh, H.A.; Mohammed, L. Efficacy of Glucagon-Like Peptide 1 (GLP-1) Receptor Agonists for Weight Loss Management in Non-Diabetic Patients. Cureus 2024, 16, e65050. [Google Scholar] [CrossRef] [PubMed]
- Moiz, A.; Filion, K.B.; Tsoukas, M.A.; Yu, O.H.; Peters, T.M.; Eisenberg, M.J. Mechanisms of GLP-1 Receptor Agonist-Induced Weight Loss: A Review of Central and Peripheral Pathways in Appetite and Energy Regulation. Am. J. Med. 2025, 138, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Arastu, N.; Cummins, O.; Uribe, W.; Nemec, E.C. Efficacy of subcutaneous semaglutide compared to placebo for weight loss in obese, non-diabetic adults: A systematic review & meta-analysis. Int. J. Clin. Pharm. 2022, 44, 852–859. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Wang, Q.-W.; Yang, X.-Y.; Yang, W.; Li, D.-R.; Jin, J.-Y.; Zhang, H.-C.; Zhang, X.-F. GLP−1 receptor agonists for the treatment of obesity: Role as a promising approach. Front. Endocrinol. 2023, 14, 1085799. [Google Scholar] [CrossRef] [PubMed]
- Ansari, H.U.H.; Qazi, S.U.; Sajid, F.; Altaf, Z.; Ghazanfar, S.; Naveed, N.; Ashfaq, A.S.; Siddiqui, A.H.; Iqbal, H.; Qazi, S. Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists on Body Weight and Cardiometabolic Parameters in Individuals With Obesity and Without Diabetes: A Systematic Review and Meta-Analysis. Endocr. Pract. 2024, 30, 160–171. [Google Scholar] [CrossRef]
- Mahase, E. GLP-1 agonists: US sees 700% increase over four years in number of patients without diabetes starting treatment. BMJ 2024, 386, q1645. [Google Scholar] [CrossRef]
- Watanabe, J.H.; Kwon, J.; Nan, B.; Reikes, A. Trends in glucagon-like peptide 1 receptor agonist use, 2014 to 2022. J. Am. Pharm. Assoc. 2023, 64, 133–138. [Google Scholar] [CrossRef]
- Ibrahim, A.R.N.; Orayj, K.M. Impact of ADA Guidelines and Medication Shortage on GLP-1 Receptor Agonists Prescribing Trends in the UK: A Time-Series Analysis with Country-Specific Insights. J. Clin. Med. 2024, 13, 6256. [Google Scholar] [CrossRef] [PubMed]
- Wharton, S.; Calanna, S.; Davies, M.; Dicker, D.; Goldman, B.; Lingvay, I.; Mosenzon, O.; Rubino, D.M.; Thomsen, M.; Wadden, T.A.; et al. Gastrointestinal tolerability of once-weekly semaglutide 2.4 mg in adults with overweight or obesity, and the relationship between gastrointestinal adverse events and weight loss. Diabetes Obes. Metab. 2021, 24, 94–105. [Google Scholar] [CrossRef]
- Holst, J.J.; Andersen, D.B.; Grunddal, K.V. Actions of glucagon-like peptide-1 receptor ligands in the gut. Br. J. Pharmacol. 2022, 179, 727–742. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.Y.; Bea, S.; Yoon, D.; Hong, B.; Bae, J.H.; Cho, Y.M.; Shin, J.-Y. Incretin-based drugs and the risk of gallbladder or biliary tract diseases among patients with type 2 diabetes across categories of body mass index: A nationwide cohort study. Lancet Reg. Health West. Pac. 2025, 56, 101242. [Google Scholar] [CrossRef] [PubMed]
- Nerild, H.H.; Brønden, A.; Gether, I.M.; Hellmann, P.H.; Baekdal, M.; Gillum, M.P.; Svenningsen, J.S.; Hartmann, B.; Rathor, N.; Angelene, H.; et al. Liraglutide changes postprandial responses of gut hormones involved in the regulation of gallbladder motility. Diabetes Obes. Metab. 2023, 25, 1632–1637. [Google Scholar] [CrossRef]
- Chung, L.T.K.; Hosaka, T.; Yoshida, M.; Harada, N.; Sakaue, H.; Sakai, T.; Nakaya, Y. Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression. Biochem. Biophys. Res. Commun. 2009, 390, 613–618. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Ridha, Z.; Fabi, S.G.; Zubair, R.; Dayan, S.H. Decoding the Implications of Glucagon-like Peptide-1 Receptor Agonists on Accelerated Facial and Skin Aging. Aesthetic Surg. J. 2024, 44, NP809–NP818. [Google Scholar] [CrossRef]
- Nogueiras, R.; Pérez-Tilve, D.; Veyrat-Durebex, C.; Morgan, D.A.; Varela, L.; Haynes, W.G.; Patterson, J.T.; Disse, E.; Pfluger, P.T.; López, M.; et al. Direct Control of Peripheral Lipid Deposition by CNS GLP-1 Receptor Signaling Is Mediated by the Sympathetic Nervous System and Blunted in Diet-Induced Obesity. J. Neurosci. 2009, 29, 5916–5925. [Google Scholar] [CrossRef]
- Schmidt, B.A.; Horsley, V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 2013, 140, 1517–1527. [Google Scholar] [CrossRef]
- Steiner, B.M.; Berry, D.C. The Regulation of Adipose Tissue Health by Estrogens. Front. Endocrinol. 2022, 13, 889923. [Google Scholar] [CrossRef]
- Thornton, M.J. Estrogens and aging skin. Derm.-Endocrinol. 2013, 5, 264–270. [Google Scholar] [CrossRef]
- Bolognia, J.; Braverman, I.; Rousseau, M.; Sarrel, P. Skin changes in menopause. Maturitas 1989, 11, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, S.; Thornton, J. Effect of estrogens on skin aging and the potential role of SERMs. Clin. Interv. Aging 2007, 2, 283–297. [Google Scholar] [CrossRef]
- Thornton, M.J. Oestrogen functions in skin and skin appendages. Expert Opin. Ther. Targets 2005, 9, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Thornton, M.J. The biological actions of estrogens on skin. Exp. Dermatol. 2002, 11, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Piérard-Franchimont, C.; Cornil, F.; Dehavay, J.; Deleixhe-Mauhin, F.; Letot, B.; Piérard, G. Climacteric skin ageing of the face—A prospective longitudinal comparative trial on the effect of oral hormone replacement therapy. Maturitas 1999, 32, 87–93. [Google Scholar] [CrossRef]
- Grosman, N.; Hvidberg, E.; Schou, J. The Effect of Oestrogenic Treatment on the Acid Mucopolysaccharide Pattern in Skin of Mice. Acta Pharmacol. Toxicol. 1972, 30, 458–464. [Google Scholar] [CrossRef]
- Brincat, M.; Baron, Y.M.; Galea, R. Estrogens and the skin. Climacteric 2005, 8, 110–123. [Google Scholar] [CrossRef]
- Pivazyan, L.; Avetisyan, J.; Loshkareva, M.; Abdurakhmanova, A. Skin Rejuvenation in Women using Menopausal Hormone Therapy: A Systematic Review and Meta-Analysis. J. Menopausal Med. 2023, 29, 97–111. [Google Scholar] [CrossRef]
- O’Neill, E.S.; Wiegmann, A.L.; Parrella, N.; Pittman, T.; Hood, K.; Kurlander, D. Injectable Weight Loss Medications in Plastic Surgery: What We Know, Perioperative Considerations, and Recommendations for the Future. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5516. [Google Scholar] [CrossRef]
- Lambros, V. Val Facial Aging: A 54-Year, Three-Dimensional Population Study. Plast. Reconstr. Surg. 2020, 145, 921–928. [Google Scholar] [CrossRef]
- Couto, R.A.; Waltzman, J.T.; Tadisina, K.K.; Rueda, S.; Richards, B.G.; Schleicher, W.F.; Marten, E.; Larson, J.D.; Rotemberg, S.C.; Zins, J.E. Objective Assessment of Facial Rejuvenation After Massive Weight Loss. Aesthetic Plast. Surg. 2015, 39, 847–855. [Google Scholar] [CrossRef]
- Humphrey, C.D.; Lawrence, A.C. Implications of Ozempic and Other Semaglutide Medications for Facial Plastic Surgeons. Facial Plast. Surg. 2023, 39, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Sami, K.; Elshahat, A.; Moussa, M.; Abbas, A.; Mahmoud, A. Image analyzer study of the skin in patients with morbid obesity and massive weight loss. Eplasty 2015, 15, e4. [Google Scholar] [PubMed]
- Rocha, R.I.; Junior, W.C.; Modolin, M.L.A.; Takahashi, G.G.; Caldini, E.T.E.G.; Gemperli, R. Skin Changes Due to Massive Weight Loss: Histological Changes and the Causes of the Limited Results of Contouring Surgeries. Obes. Surg. 2021, 31, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Hany, M.; Zidan, A.; Ghozlan, N.A.; Ghozlan, M.N.; Abouelnasr, A.A.; Sheta, E.; Hamed, Y.; Kholosy, H.; Soffar, M.; El Midany, W.M.; et al. Comparison of Histological Skin Changes After Massive Weight Loss in Post-bariatric and Non-bariatric Patients. Obes. Surg. 2024, 34, 855–865. [Google Scholar] [CrossRef]
- Taraschi, F.; Salgarello, M. GLP-1 Agonists in Plastic Surgery: Impact on Aesthetic Outcomes—Two Case Reports. Aesthetic Plast. Surg. 2025, 49, 4527–4530. [Google Scholar] [CrossRef]
- Draelos, Z.; Baalbaki, N.; Cook, S.; Raab, S.; Colón, G. The effect of a ceramide-containing product on stratum corneum lipid levels in dry legs. J. Drugs Dermatol. 2020, 19, 372–376. [Google Scholar] [CrossRef]
- Mailhac, A.; Pedersen, L.; Pottegård, A.; Søndergaard, J.; Mogensen, T.; Sørensen, H.T.; Thomsen, R.W. Semaglutide (Ozempic®) Use in Denmark 2018 Through 2023—User Trends and off-Label Prescribing for Weight Loss. Clin. Epidemiol. 2024, 16, 307–318. [Google Scholar] [CrossRef]
- Baggett, A. Clinical Features of Ozempic Face|BioRender [Internet]. 2025. Available online: https://app.biorender.com/citation/68a297146460b30eca97e2f9 (accessed on 28 September 2025).
- Baggett, A. “Ozempic Face” Management|BioRender [Internet]. 2025. Available online: https://app.biorender.com/citation/68a2982d948430ca9ae6cf47 (accessed on 28 September 2025).
- Narins, D.J.; Narins, R.S. Non-Surgical Radiofrequency Facelift. J. Drugs Dermatol. 2003, 2, 495–500. [Google Scholar]
- Hantash, B.M.; Renton, B.; Berkowitz, R.L.; Stridde, B.C.; Newman, J. Pilot clinical study of a novel minimally invasive bipolar microneedle radiofrequency device. Lasers Surg. Med. 2009, 41, 87–95. [Google Scholar] [CrossRef]
- Bassichis, B.A.; Dayan, S.; Thomas, J.R. Use of a nonablative radiofrequency device to rejuvenate the upper one-third of the face. Otolaryngol. Head Neck Surg. 2004, 130, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.; Chiang, S.; Keller, G.; Rawnsley, J.; Blackwell, K.; Elashoff, D. Clinical evaluation of non-ablative radiofrequency facial rejuvenation. J. Cosmet. Laser Ther. 2004, 6, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Austin, G.K.; Struble, S.L.; Quatela, V.C. Evaluating the effectiveness and safety of radiofrequency for face and neck rejuvenation: A systematic review. Lasers Surg. Med. 2022, 54, 27–45. [Google Scholar] [CrossRef]
- Migliardi, R.; Tofani, F.; Donati, L. Non-Invasive Peri-Orbital Rejuvenation: Radiofrequency Dual Radiowave Energy Source (RF) and Light Emission Diode System (LED). Orbit 2009, 28, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Oni, G.; Hoxworth, R.; Teotia, S.; Brown, S.; Kenkel, J.M. Evaluation of a microfocused ultrasound system for improving skin laxity and tightening in the lower face. Aesthetic Surg. J. 2014, 34, 1099–1110. [Google Scholar] [CrossRef]
- Scarcella, G.; Pennati, B.M. A temperature-controlled radio frequency combined with ultrasounds and laser for skin laxity and cellulitis. SAGE Open Med. Case Rep. 2024, 12, 2050313X241230444. [Google Scholar] [CrossRef]
- Newman, J. Review of soft tissue augmentation in the face. Clin. Cosmet. Investig. Dermatol. CCID 2009, 2, 141–150. [Google Scholar] [CrossRef]
- Siperstein, R.; Nestor, E.; Meran, S.; Grunebaum, L. Asplit-face, blind, randomized placebo-controlled clinical trial investigating the efficacy and safety of hyaluronic acid filler for the correction of atrophic facial scars. J. Cosmet. Dermatol. 2022, 21, 3768–3778. [Google Scholar] [CrossRef]
- Narins, R.S.; Brandt, F.; Leyden, J.; Lorenc, Z.P.; Rubin, M.; Smith, S. A randomized, double-blind, multi-center comparison of the efficacy and tolerability of restylane versus zyplast for the correction of nasolabial folds. Dermatol. Surg. 2003, 29, 588–595. [Google Scholar] [CrossRef]
- Lheritier, C.M.; Converset, S.; Rzany, B.-J.; Cartier, H.; Ascher, B. Efficacy of a New Hyaluronic Acid Dermal Filler on Nasolabial Folds Correction: A Prospective, Comparative, Double-Blinded Clinical Trial. Dermatol. Surg. 2024, 50, 746–751. [Google Scholar] [CrossRef]
- Larsen, N.E.; Pollak, C.T.; Reiner, K.; Leshchiner, E.; Balazs, E.A. Hylan gel biomaterial: Dermal and immunologic compatibility. J. Biomed. Mater. Res. 1993, 27, 1129–1134. [Google Scholar] [CrossRef]
- Talarico, S.; Meski, A.P.; Buratini, L.; Manela-Azulay, M.; Simpson, H.; Sidou, F.; Kerrouche, N. High patient satisfaction of a hyaluronic acid filler producing enduring full-facial volume restoration: An 18-month open multicenter study. Dermatol. Surg. 2015, 41, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Delorenzi, C.; Weinberg, M.; Solish, N.; Swift, A. The long-term efficacy and safety of a subcutaneously injected large-particle stabilized hyaluronic acid–based gel of nonanimal origin in esthetic facial contouring. Dermatol. Surg. 2009, 35, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Callan, P.; Halstead, M.B.; Rogers, J.D.; Goodman, G.J.; Liew, S.; Muzikants, P.; Scamp, T.; Carlisle, I. Efficacy and safety of a hyaluronic acid filler in subjects treated for correction of midface volume deficiency: A 24 month study. Clin. Cosmet. Investig. Dermatol. 2013, 6, 81–89. [Google Scholar] [CrossRef]
- Rzany, B.; Cartier, H.; Kestemont, P.; Trevidic, P.; Sattler, G.; Kerrouche, N.; Dhuin, J.-C.; Ma, M.Y. Full-face rejuvenation using a range of hyaluronic acid fillers: Efficacy, safety, and patient satisfaction over 6 months. Dermatol. Surg. 2012, 38, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Brandt, F.S.; Cazzaniga, A. Hyaluronic acid gel fillers in the management of facial aging. Clin. Interv. Aging 2008, 3, 153–159. [Google Scholar] [CrossRef]
- Farhi, D.; Trevidic, P.; Kestemont, P.; Boineau, D.; Cartier, H.; Bodokh, I.; Brun, P.; Ascher, A.; Savary, J.; for the Emervel French Survey Group. The Emervel French Survey: A Prospective Real-Practice Descriptive Study of 1,822 Patients Treated for Facial Rejuvenation with a New Hyaluronic Acid Filler. J. Drugs Dermatol. JDD 2013, 12, e88–e93. [Google Scholar]
- Scarborough, D.A.; Schuen, W.; Bisaccia, E. Fat Transfer for Aging Skin: Technique for Rhytids. Dermatol. Surg. Oncol. 1990, 16, 651–655. [Google Scholar] [CrossRef]
- Coleman, S.R. Structural Fat Grafts. Clin. Plast. Surg. 2001, 28, 111–119. [Google Scholar] [CrossRef]
- Coleman, S.R. Long-Term survival of fat transplants: Controlled demonstrations. Aesthetic Plast. Surg. 1995, 19, 421–425. [Google Scholar] [CrossRef]
- Gornitsky, J.; Viezel-Mathieu, A.; Alnaif, N.; Azzi, A.J.; Gilardino, M.S. A systematic review of the effectiveness and complications of fat grafting in the facial region. JPRAS Open 2019, 19, 87–97. [Google Scholar] [CrossRef]
- Strong, A.L.; Rohrich, R.J.; Tonnard, P.L.; Vargo, J.D.; Cederna, P.S. Technical Precision with Autologous Fat Grafting for Facial Rejuvenation: A Review of the Evolving Science. Plast. Reconstr. Surg. 2024, 153, 360–377. [Google Scholar] [CrossRef]
- Groen, J.-W.; Krastev, T.K.; Hommes, J.; Wilschut, J.A.; Ritt, M.J.P.F.; van der Hulst, R.R.J.W. Autologous Fat Transfer for Facial Rejuvenation: A Systematic Review on Technique, Efficacy, and Satisfaction. Plast. Reconstr. Surg. Glob. Open 2017, 5, e1606. [Google Scholar] [CrossRef]
- Lv, Q.; Li, X.; Qi, Y.; Gu, Y.; Liu, Z.; Ma, G.-E. Volume Retention After Facial Fat Grafting and Relevant Factors: A Systematic Review and Meta-analysis. Aesthetic Plast. Surg. 2021, 45, 506–520. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Lawrence, W.R.; Diaz-Starokozheva, L.; Salazar-Puerta, A.I.; Ott, N.; Goebel, E.R.; Damughatla, A.; Vidal, P.; Gallentine, S.; Moore, J.T.; et al. Injectable pulverized electrospun poly(lactic-co-glycolic acid) fibers improve human adipose tissue engraftment and volume retention. J. Biomed. Mater. Res. Part A 2023, 111, 1722–1733. [Google Scholar] [CrossRef] [PubMed]
- Krastev, T.K.; Beugels, J.; Hommes, J.; Piatkowski, A.; Mathijssen, I.; Van Der Hulst, R. Efficacy and safety of autologous fat transfer in facial reconstructive surgery a systematic review and meta-analysis. JAMA Facial Plast. Surg. 2018, 20, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Jang, K.A.; Sung, J.H.; Park, J.S.; Kwon, Y.H.; Kim, K.J.; Kim, W.S. Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol. Surg. 2008, 34, 1323–1326. [Google Scholar] [CrossRef]
- Kim, W.-S.; Park, B.-S.; Sung, J.-H. Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch. Dermatol. Res. 2009, 301, 329–336. [Google Scholar] [CrossRef]
- Tremp, M.; Delko, T.; Kraljević, M.; Zingg, U.; Rieger, U.M.; Haug, M.; Kalbermatten, D.F. Outcome in body-contouring surgery after massive weight loss: A prospective matched single-blind study. J. Plast. Reconstr. Aesthetic Surg. 2015, 68, 1410–1416. [Google Scholar] [CrossRef]
- Handal, M.; Handal, J.; Finkelstein, P.; Kichler, K.; Nevill, T.J. Cosmetic Procedures After Massive Weight Loss Surgery: A Guide for Prospective Patients. Cureus 2024, 16, e72864. [Google Scholar] [CrossRef]
- Giordano, S.; Salval, A.; di Summa, P.; Oranges, C.M. Evolving Body Contouring Strategies for Patients After Massive Weight Loss: Insights from Bariatric and Pharmacologic Interventions. Surgeries 2025, 6, 42. [Google Scholar] [CrossRef]
- Gunnarsson, G.L.; Gudjonsdottir, L.R.B.; Koidil, A.; Haukeland, L.; Berg, E.; Thomsen, J.B. Efficacy of Liposuction of the Posterior Arm Fat Pad in Axillobrachioplasty after Massive Weigh Loss: A Pilot Study. Plast. Reconstr. Surg. Glob. Open 2024, 12, e6251. [Google Scholar] [CrossRef]
- Cannistrà, C.; Lori, E.; Arapis, K.; Gallo, G.; Varanese, M.; Pironi, D.; De Luca, A.; Frusone, F.; Amabile, M.I.; Sorrenti, S.; et al. Abdominoplasty after massive weight loss. Safety preservation fascia technique and clinical outcomes in a large single series-comparative study. Front. Surg. 2024, 11, 1337948. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, D.J.; Davila, A.A. Update on Oblique Flankplasty: Easily Executed, Long-Lasting, Integral Component of Total Body Lift Surgery. Aesthetic Surg. J. 2023, 44, NP77–NP86. [Google Scholar] [CrossRef] [PubMed]
- Elsaka, D.M.M.; Nassar, A.T.; Abdel-Wahab, M.M.; Samy, M. Post Massive Weight Loss Brachioplasty Aesthetic Outcome and Complications. Egypt. J. Hosp. Med. 2023, 92, 2653. [Google Scholar] [CrossRef]
- Cuomo, R.; Cuccaro, C.; Seth, I.; Rozen, W.M.; Vastarella, M.G.; Lombardo, G.A.G.; Ciancio, F.; Pagliara, D.; Pieretti, G.; Ciccarelli, F. Experience in Post-Bariatric Abdominoplasty for Patients with Significant Weight Loss: A Prospective Study. J. Pers. Med. 2024, 14, 681. [Google Scholar] [CrossRef]
- Berkane, Y.M.; Saget, F.M.; Lupon, E.M.; Mocquard, C.M.; Pluvy, I.M.; Watier, E.; Lellouch, A.G.; Duisit, J.M.; Chaput, B.; Bertheuil, N. Abdominoplasty and Lower Body Lift Surgery Improves the Quality of Life after Massive Weight Loss: A Prospective Multicenter Study. Plast. Reconstr. Surg. 2024, 153, 1101E–1110E. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, G.; Huang, J.; Shen, C.; Cai, Z.; Yin, X.; Yin, Y.; Zhang, B. A systematic review of body contouring surgery in post-bariatric patients to determine its prevalence, effects on quality of life, desire, and barriers. Obes. Rev. 2021, 22, e13201. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baggett, A.; Saadi, C.; Saadi, R.; Patel, V. Cosmetic Considerations of Semaglutide. Cosmetics 2025, 12, 221. https://doi.org/10.3390/cosmetics12050221
Baggett A, Saadi C, Saadi R, Patel V. Cosmetic Considerations of Semaglutide. Cosmetics. 2025; 12(5):221. https://doi.org/10.3390/cosmetics12050221
Chicago/Turabian StyleBaggett, Alaina, Carissa Saadi, Robert Saadi, and Vijay Patel. 2025. "Cosmetic Considerations of Semaglutide" Cosmetics 12, no. 5: 221. https://doi.org/10.3390/cosmetics12050221
APA StyleBaggett, A., Saadi, C., Saadi, R., & Patel, V. (2025). Cosmetic Considerations of Semaglutide. Cosmetics, 12(5), 221. https://doi.org/10.3390/cosmetics12050221

