Chamomile Matters: Species- and Producer-Dependent Variation in Bulgarian Matricaria recutita L. and Chamaemelum nobile L. Essential Oils and Their Cosmetic Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil Samples and Their Sources
2.1.1. Balgarska Bilka Ltd.
2.1.2. Kateko Ltd.
2.2. GC–MS Analysis of Chemical Composition
2.3. Antioxidant Activity: ABTS Radical Scavenging Assay
2.4. Anti-Inflammatory Activity
2.5. UV Absorption and Calculation of Sun Protection Factor (SPF)
2.5.1. SPF Calculation
- CF is the correction factor (10);
- EE(λ) is the erythemal effect spectrum at each wavelength λ;
- I(λ) is the solar intensity spectrum at each wavelength λ;
- Abs(λ) is the absorbance of the sample at each wavelength λ.
2.5.2. Critical Wavelength and UVA/UVB Ratio Determination
2.6. Antimicrobial Activity: Agar Diffusion Assay
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of Chamomile Essential Oils (GC/MS Analysis)
3.1.1. German Chamomile (M. recutita L.) Essential Oil
3.1.2. Roman Chamomile (C. nobile L.) Essential Oil
3.2. Biological Activities of Chamomile Essential Oils
3.2.1. Antioxidant Activity (ABTS Assay)
- Balgarska Bilka Ltd.: Displayed potent antioxidant activity, with 95.2% inhibition at 3.125 μg/mL and an IC50 of 0.64 ± 0.01 μg/mL Trolox equivalent values reached 205.00 ± 0.01 mM TE/g EO.
- Kateko Ltd.: Exhibited 97.2% inhibition at 3.125 μg/mL, with an IC50 of 1.13 ± 0.01 μg/mL and a Trolox equivalent of 209.77 ± 0.58 mM TE/g EO.
- Balgarska Bilka Ltd.: Demonstrated greater antioxidant activity than Kateko’s oil, with 74.1% inhibition at 25 μg/mL and an IC50 of 6.20 ± 0.01 μg/mL (19.93 ± 0.42 mM TE/g EO).
- Kateko Ltd.: Showed lower activity, with 45.7% inhibition at 200 μg/mL and an IC50 of 210.07 ± 0.02 μg/mL (1.53 ± 0.01 mM TE/g EO).
3.2.2. Anti-Inflammatory Activity of the Essential Oils
3.2.3. Ultraviolet Protection of Chamomile Essential Oils
3.2.4. Antimicrobial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EO(s) | Essential oil(s) |
SPF | Sun Protection Factor |
RT | Retention time, min |
RI | Retention index |
TIC | Total Ion Current % |
SD | Standard Deviation |
Nd | not detected |
IZ | Inhibition zone |
References
- Dai, Y.L.; Li, Y.; Wang, Q.; Niu, F.J.; Li, K.W.; Wang, Y.Y.; Wang, J.; Zhou, C.Z.; Gao, L.N. Chamomile: A review of its traditional uses, chemical constituents, pharmacological activities and quality control studies. Molecules 2022, 28, 133. [Google Scholar] [CrossRef]
- Morillas-Cruz, A.Y.; Miranda-Huaman, M.J.; Moreno-Agustin, E.M.; Ganoza-Yupanqui, M.L. Chamaemelum nobile: A review of traditional uses, phytochemistry and pharmacology. Rev. Peru. Med. Integr. 2022, 7. Available online: https://rpmi.pe/index.php/rpmi/article/view/8 (accessed on 2 April 2025).
- Sah, A.; Naseef, P.P.; Kuruniyan, M.S.; Jain, G.K.; Zakir, F.; Aggarwal, G. A comprehensive study of therapeutic applications of chamomile. Pharmaceuticals 2022, 15, 1284. [Google Scholar] [CrossRef]
- Petkova, M.; Tahsin, N.; Yancheva, S.; Yancheva, H. Development of the Production of Aromatic Oil Crops in Bulgaria. In Proceedings of the China-Bulgaria Rural Revitalisation Development Cooperation Forum; Bulgaria, S., Ed.; Institute of Agricultural Economics: Sofia, Bulgaria, 2018; p. 71. [Google Scholar]
- Chauhan, E.S.; Jaya, A. Chamomile an Ancient Aromatic Plant—A Review. J. Ayurveda Med. Sci. 2017, 2, 251–255. [Google Scholar] [CrossRef]
- El Mihyaoui, A.; Esteves da Silva, J.C.G.; Charfi, S.; Castillo, M.E.C.; Lamarti, A.; Arnao, M.B. Chamomile (Matricaria chamomilla L.): A Review of Ethnomedicinal Use, Phytochemistry and Pharmacological Uses. Life 2022, 12, 479. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, N.; Nyczka, A.; Piwowarski, J.P.; Granica, S. Traditional Use of Chamomile Flowers (Matricariae flos) in Inflammatory-Associated Skin Disorders. Prospect. Pharm. Sci. 2024, 22, 59–73. [Google Scholar] [CrossRef]
- Chen, G.; Lv, C.; Nie, Q.; Li, X.; Lv, Y.; Liao, G.; Liu, S.; Ge, W.; Chen, J.; Du, Y. Essential Oil of Matricaria chamomilla Alleviates Psoriatic-Like Skin Inflammation by Inhibiting PI3K/Akt/mTOR and p38MAPK Signaling Pathway. Clin. Cosmet. Investig. Dermatol. 2024, 17, 59–77. [Google Scholar] [CrossRef]
- Sarkic, A.; Stappen, I. Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef]
- Dos Santos, D.S.; Barreto, R.S.S.; Serafini, M.R.; Gouveia, D.N.; Marques, R.S.; Nascimento, L.C.; Nascimento, J.C.; Guimarães, A.G. Phytomedicines Containing Matricaria Species for the Treatment of Skin Diseases: A Biotechnological Approach. Fitoterapia 2019, 138, 104267. [Google Scholar] [CrossRef]
- Nezhad-Mokhtari, P.; Kazeminava, F.; Abdollahi, B.; Gholizadeh, P.; Heydari, A.; Elmi, F.; Abbaszadeh, M.; Samadi Kafil, H. Matricaria chamomilla Essential Oil-Loaded Hybrid Electrospun Nanofibers Based on Polycaprolactone/Sulfonated Chitosan/ZIF-8 Nanoparticles for Wound Healing Acceleration. Int. J. Biol. Macromol. 2023, 247, 125718. [Google Scholar] [CrossRef]
- Höferl, M.; Wanner, J.; Tabanca, N.; Ali, A.; Gochev, V.; Schmidt, E.; Kaul, V.K.; Singh, V.; Jirovetz, L. Biological Activity of Matricaria chamomilla Essential Oils of Various Chemotypes. Planta Med. Int. Open 2020, 7, e114–e121. [Google Scholar] [CrossRef]
- Salehi, A.; Hazrati, S.; Behzadi, Y. Comparison of Essential Oil Content and Composition in Two German Chamomile (Matricaria chamomilla L.) Genotypes. J. Hortic. Sci. 2023, 18, 506–509. [Google Scholar] [CrossRef]
- Yadav, N.; Shakya, P.; Kumar, A.; Guatam, R.D.; Chauhan, R.; Kumar, D.; Kumar, A.; Singh, S.; Singh, S. Investigation on Pollination Approaches, Reproductive Biology and Essential Oil Variation during Floral Development in German Chamomile (Matricaria chamomilla L.). Sci. Rep. 2022, 12, 15285. [Google Scholar] [CrossRef]
- Shakya, P.; Thakur, R.; Sharan, H.; Yadav, N.; Kumar, M.; Chauhan, R.; Kumar, D.; Kumar, A.; Singh, S.; Singh, S. GGE Biplot and Regression-Based Multi-Environment Investigations for Higher Yield and Essential Oil Content in German Chamomile (Matricaria chamomilla L.). Ind. Crops Prod. 2023, 193, 116145. [Google Scholar] [CrossRef]
- Filipović, V.; Marković, T.; Dimitrijević, S.; Song, A.; Prijić, Ž.; Mikić, S.; Čutović, N.; Ugrenović, V. The First Study on Cultivating Roman Chamomile (Chamaemelum nobile (L.) All.) for Its Flower and Essential Oil in Southeast Serbia. Horticulturae 2024, 10, 396. [Google Scholar] [CrossRef]
- Shakir, N.; Anwaar, S.; Jabeen, N.; Anwar, T.; Qureshi, H.; Munazir, M.; Zaman, W.; Soufan, W. Impact of NaCl Stress on Phytoconstituents and Bioactivity of Matricaria chamomilla: A Multi-Analytical Approach. Sci. Rep. 2024, 14, 19717. [Google Scholar] [CrossRef]
- Hendawy, S.F.; Omer, E.A.; El-Gohary, A.E.; El-Gendy, A.G.; Hussein, M.S.; Salaheldin, S.; Soliman, W.S. Effect of Soil and Irrigation Water Salinity on the Productivity and Essential Oil Constituents of Chamomile (Chamomilla recutita L.). J. Essent. Oil Bear. Plants 2019, 22, 962–971. [Google Scholar] [CrossRef]
- Jeshni, M.G.; Mousavinik, M.; Khammari, I.; Rahimi, M. The Changes of Yield and Essential Oil Components of German Chamomile (Matricaria recutita L.) under Application of Phosphorus and Zinc Fertilizers and Drought Stress Conditions. J. Saudi Soc. Agric. Sci. 2017, 16, 60–65. [Google Scholar] [CrossRef]
- Zarezadeh, S.; Riahi, H.; Shariatmadari, Z.; Sonboli, A. Effects of Cyanobacterial Suspensions as Bio-Fertilizers on Growth Factors and the Essential Oil Composition of Chamomile (Matricaria chamomilla L.). J. Appl. Phycol. 2020, 32, 1231–1241. [Google Scholar] [CrossRef]
- Rathore, S.; Kumar, R. Agronomic Interventions Affect the Growth, Yield, and Essential Oil Composition of German Chamomile (Matricaria chamomilla L.) in the Western Himalaya. Ind. Crops Prod. 2021, 171, 113873. [Google Scholar] [CrossRef]
- Ghasemi, M.; Babaeian Jelodar, N.; Modarresi, M.; Bagheri, N.; Jamali, A. Increase of Chamazulene and α-Bisabolol Contents in the Essential Oil of German Chamomile (Matricaria chamomilla L.) Using Salicylic Acid Treatments under Normal and Heat Stress Conditions. Foods 2016, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Subhdara, K.; Dhyani Jakhmola, K.; Khanduri, S.; Chandra, G. Heat Stress-Induced Changes in Growth and Essential Oil Profile of German Chamomile (Matricaria chamomilla). Asian J. Biol. Life Sci. 2024, 13, 432–438. [Google Scholar] [CrossRef]
- Galea, C.; Cocos, D.; Feier, R.; Moales, D. The Use of Essential Oils in the Development of Dermato-Cosmetic Products. Med. Mater. 2023, 3, 31–36. [Google Scholar] [CrossRef]
- Pastare, L.; Berga, M.; Kienkas, L.; Boroduskis, M.; Ramata-Stunda, A.; Reihmane, D.; Senkovs, M.; Skudrins, G.; Nakurte, I. Exploring the Potential of Supercritical Fluid Extraction of Matricaria chamomilla White Ray Florets as a Source of Bioactive (Cosmetic) Ingredients. Antioxidants 2023, 12, 1092. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, Y.E.; Soliman, S.S.; Ismail, T.A.; Hassan, M.A.; Abdelkader, M.A.; Abdel Latef, A.A.H.; Al-Khayri, J.M.; Alshamrani, S.M.; Safhi, F.A.; Awad, M.F.; et al. Improvement of German Chamomile (Matricaria recutita L.) for Mechanical Harvesting, High Flower Yield and Essential Oil Content Using Physical and Chemical Mutagenesis. Plants 2022, 11, 2940. [Google Scholar] [CrossRef]
- Aćimović, M.G.; Lončar, B.; Kiprovski, B.; Stanković-Jeremić, J.; Todosijević, M.; Pezo, L.L.; Jeremić, J. Chamomile Essential Oil Quality after Postharvest Separation Treatments. Ratar. Povrt. 2021, 58, 72–78. [Google Scholar] [CrossRef]
- Abbas, A.M.; Seddik, M.A.; Gahory, A.-A.; Salaheldin, S.; Soliman, W.S. Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions. Sustainability 2021, 13, 5083. [Google Scholar] [CrossRef]
- Karaca, N.; Demirci, B.; Gavahian, M.; Demirci, F. Enhanced Bioactivity of Rosemary, Sage, Lavender, and Chamomile Essential Oils by Fractionation, Combination, and Emulsification. ACS Omega 2023, 8, 10941–10953. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, Z.; Dang, J.; Li, D.; Yu, D.; Qu, C.; Wu, Q. GC–MS Combined with Fast GC E-Nose for the Analysis of Volatile Components of Chamomile (Matricaria chamomilla L.). Foods 2024, 13, 1865. [Google Scholar] [CrossRef]
- European Pharmacopoeia (Ph. Eur.), 10th ed.; EDQM Council of Europe: Strasbourg, France, 2022; p. 1531.
- ISO 19332:2020; Oil of Blue Chamomile [Chamomilla recutita (L.) Rauschert syn. Matricaria chamomilla auct.]. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO/FDIS 24600:2025; Essential oil of roman chamomile (Chamaemelum nobile (L.) All. syn. Anthemis nobilis L.). International Organization for Standardization: Geneva, Switzerland, 2025. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:24600:dis:ed-1:v1:en (accessed on 3 April 2025).
- Final Report of the Safety Assessment of Chamomilla recutita (Matricaria)-Derived Ingredients as Used in Cosmetics; Cosmetic Ingredient Review Expert Panel: Washington, DC, USA, 2013.
- Johnson, W.; Boyer, I.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Amended Safety Assessment of Chamomilla recutita-Derived Ingredients as Used in Cosmetics. Int. J. Toxicol. 2018, 37 (Suppl. S2), 51S–79S. [Google Scholar] [CrossRef]
- Avonto, C.; Wang, Z.; Ahn, J.; Verma, R.P.; Sadrieh, N.; Dale, O.; Khan, S.I.; Chittiboyina, A.G.; Khan, I.A. Integrated Testing Strategy for the Safety of Botanical Ingredients: A Case Study with German Chamomile Constituents. Appl. Vitr. Toxicol. 2021, 7, 126–136. [Google Scholar] [CrossRef]
- Vella, F.M.; Cautela, D.; Laratta, B. Determination of Antioxidant Activity and Sun Protection Factor of Commercial Essential Oils. Biol. Life Sci. Forum 2021, 6, 96. [Google Scholar] [CrossRef]
- Zhou, Y.; He, L.; Wang, W.; Wei, G.; Ma, L.; Liu, H.; Yao, L. Artemisia sieversiana Ehrhart ex Willd. Essential Oil and Its Main Component, Chamazulene: Their Photo-protective Effect against UVB-Induced Cellular Damage and Potential as Novel Natural Sunscreen Additives. ACS Sustain. Chem. Eng. 2023, 11, 17675–17686. [Google Scholar] [CrossRef]
- Humaira, N.; Aisyah, Y.; Muzaifa, M.; Irfan, I.; Erika, C. Evaluation of Sun Protection Factor (SPF) Value of Essential Oils and Its Application in Sunscreen Cream. IOP Conf. Ser. Earth Environ. Sci. 2025, 1476, 012050. [Google Scholar] [CrossRef]
- Ivanov, I.; Petkova, N.; Tumbarski, J.; Dincheva, I.; Badjakov, I.; Denev, P.; Pavlov, A. GC-MS Characterization of N-Hexane Soluble Fraction from Dandelion (Taraxacum officinale Weber ex F.H. Wigg.) Aerial Parts and Its Antioxidant and Antimicrobial Properties. Z. Naturforsch. C 2017, 73, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.; Vrancheva, R.; Marchev, A.; Petkova, N.; Aneva, I.; Denev, P.; Georgiev, V.; Pavlov, A. Antioxidant Activities and Phenolic Compounds in Bulgarian Fumaria Species. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 296–306. [Google Scholar]
- Kaur, C.D.; Saraf, S. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacogn. Res. 2010, 2, 22–25. [Google Scholar] [CrossRef]
- Malsawmtluangi, C.; Nath, D.K.; Jamatia, I.; Lianhimgthangi; Zarzoliana, E.; Pachuau, L. Determination of Sun Protection Factor (SPF) number of some aqueous herbal extracts. J. App. Pharm. Sci. 2013, 3, 150–151. [Google Scholar] [CrossRef]
- Diffey, B.L.; Tanner, P.R.; Matts, P.J.; Nash, J.F. In vitro assessment of the broad-spectrum ultraviolet protection of sunscreen products. J. Am. Acad. Dermatol. 2000, 43, 1024–1035. [Google Scholar] [CrossRef]
- Springsteen, A.; Yurek, R.; Frazier, M.; Carr, K.F. In vitro measurement of sun protection factor of sunscreens by diffuse transmittance. Anal. Chim. Acta 1999, 380, 155–164. [Google Scholar] [CrossRef]
- Tumbarski, Y.; Ivanov, I.; Todorova, M.; Gerasimova, A.; Dincheva, I.; Makedonski, L.; Nikolova, K. Chemical Composition and Biological Activities of St John’s Wort (Hypericum perforatum L.) Essential Oil from Bulgaria. Appl. Sci. 2024, 14, 11754. [Google Scholar] [CrossRef]
- Satyal, P.; Shrestha, S. Composition and Bioactivities of an (E)-β-Farnesene Chemotype of Chamomile (Matricaria chamomilla) Essential Oil from Nepal. Nat. Prod. Commun. 2015, 10, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Acimovic, M.; Stankovic, J.; Cvetkovic, M.; Kiprovski, B.; Todosijevic, M. Essential Oil Quality of Tetraploid Chamomile Cultivars Grown in Serbia. J. Essent. Oil Bear. Plants 2018, 21, 15–22. [Google Scholar] [CrossRef]
- Acimovic, M.; Jeremić, J.; Simić, K.; Ivanović, S.; Ljujić, J.; Cabarkapa, I.; Radojcin, M.; Todosijević, M.; Cvetkovic, M. Essential Oil Quality of Chamomile Grown in Province of Vojvodina. Letop. Naucn. Rad. Poljopr. Fak. 2021, 45, 63–70. [Google Scholar]
- Rather, M.A.; Dar, B.A.; Dar, M.Y.; Wani, B.A.; Shah, W.A.; Bhat, B.A.; Ganai, B.A.; Bhat, K.A.; Anand, R.; Qurishi, M.A. Chemical Composition, Antioxidant and Antibacterial Activities of the Leaf Essential Oil of Juglans regia L. and Its Constituents. Phytomedicine 2012, 19, 1185–1190. [Google Scholar] [CrossRef]
- Alimi, D.; Hraoui, M.; Hajri, A.; Taamalli, W.; Selmi, S.; Sebai, H. Bioactivity and Molecular Docking Studies of Selected Plant Compounds. J. Sci. Food Agric. 2024, 104, 4391–4399. [Google Scholar] [CrossRef]
- Wu, H.; Yang, K.; Dong, L.; Ye, J.; Xu, F. Classification, Distribution, Biosynthesis, and Regulation of Secondary Metabolites in Matricaria chamomilla. Horticulturae 2022, 8, 1135. [Google Scholar] [CrossRef]
- Noori, K.; Omidi, H.; Pirahmadi, L. Morphological Characteristics, Essential Oil, Chamazulene Percentage, and Anti-Oxidation Enzymes Activity Changes of Chamomile (Matricaria recutita) Under the Soil and Water Salinity. J. Fundam. Appl. Sci. 2016, 8, 2293–2310. [Google Scholar]
- Mollova, S.; Stanev, S.; Bozhilov, D.; Manolov, S.; Mazova, N.; Koleva, Y.; Stoyanova, A. Chemical Composition and Antioxidant Activity of Roman Chamomile (Anthemis nobilis L.) Essential Oil. Nat. Prod. Commun. 2024, 264, 264–271. [Google Scholar]
- Johnson, W., Jr.; Heldreth, B.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Anthemis nobilis-Derived Ingredients as Used in Cosmetics. Int. J. Toxicol. 2017, 36 (Suppl. S1), 57S–66S. [Google Scholar] [CrossRef]
- Fırat, Z.; Demirci, F.; Demirci, B. Antioxidant Activity of Chamomile Essential Oil and Main Components. Nat. Volatiles Essent. Oils 2018, 5, 11–16. [Google Scholar]
- Couteau, C.A.C.; Paparis, E.; Coiffard, L.J.M. An in vitro study of fixed and essential oils claimed to have photoprotective properties. J. Photochem. Photobiol. A Chem. 2022, 426, 113743. [Google Scholar] [CrossRef]
- Shahrivari, S.; Alizadeh, S.; Ghassemi-Golezani, K.; Aryakia, E. A comprehensive study on essential oil compositions, antioxidant, anticholinesterase and antityrosinase activities of three Iranian Artemisia species. Sci. Rep. 2022, 12, 7234. [Google Scholar] [CrossRef] [PubMed]
- Gabbanini, S.; Neba, J.N.; Matera, R.; Valgimigli, L. Photochemical and Oxidative Degradation of Chamazulene Contained in Artemisia, Matricaria and Achillea Essential Oils and Setup of Protection Strategies. Molecules 2024, 29, 2604. [Google Scholar] [CrossRef]
UVA Ratio | Star Category | Category Descriptor |
---|---|---|
0.0 to <0.2 | - | Too low for UVA claim |
0.2 to <0.4 | * | Moderate |
0.4 to <0.6 | ** | Good |
0.6 to <0.8 | *** | Superior |
≥0.8 | **** | Maximum |
Peak | RT | RI Calc | RI Lit | Name | TIC ± SD% | |
---|---|---|---|---|---|---|
Balgarska Bilka Ltd. | Kateko Ltd. | |||||
1 | 8.49 | 901 | 906 | Santolina triene | 0.11 ± 0.001 a | 0.09 ± 0.002 a |
2 | 9.42 | 931 | 932 | α-Pinene | 0.47 ± 0.02 a | 0.12 ± 0.01 b |
3 | 10.72 | 966 | 969 | Sabinene | 0.17 ± 0.01 b | 0.34 ± 0.02 a |
4 | 10.85 | 975 | 974 | β-Pinene | 0.13 ± 0.01 a | 0.10 ± 0.01 a |
5 | 11.30 | 984 | 988 | β-Myrcene | 0.09 ± 0.001 a | 0.07 ± 0.003 a |
6 | 12.41 | 1020 | 1020 | p-Cymene | 0.12 ± 0.01 b | 0.28 ± 0.02 a |
7 | 12.58 | 1025 | 1024 | Limonene | 0.08 ± 0.001 a | 0.09 ± 0.001 a |
8 | 12.62 | 1027 | 1026 | Eucalyptol | 0.10 ± 0.01 a | 0.13 ± 0.01 a |
9 | 12.81 | 1036 | 1032 | (Z)-β-Ocimene | 0.12 ± 0.01 b | 0.20 ± 0.01 a |
10 | 13.15 | 1045 | 1044 | (E)-β-Ocimene | 0.63 ± 0.05 b | 1.21 ± 0.04 a |
11 | 13.55 | 1053 | 1054 | γ-Terpinene | 0.49 ± 0.03 b | 1.04 ± 0.06 a |
12 | 14.35 | 1088 | 1086 | Terpinolene | >LOQ | 0.45 ± 0.04 |
13 | 22.71 | 1372 | 1374 | α-Copaene | 0.52 ± 0.025 a | 0.27 ± 0.02 b |
14 | 22.88 | 1378 | 1380 | Ethyl-(4E)-decenoate | 0.18 ± 0.01 a | 0.22 ± 0.02 a |
15 | 23.05 | 1388 | 1389 | β-Elemene | 0.87 ± 0.04 b | 1.15 ± 0.05 a |
16 | 23.85 | 1415 | 1417 | β-Caryophyllene | 0.80 ± 0.04 a | 0.50 ± 0.02 b |
17 | 24.36 | 1422 | 1423 | 4,8-β-epoxy-Caryophyllane | 0.37 ± 0.03 a | 0.19 ± 0.01 b |
18 | 24.76 | 1440 | 1440 | (Z)-β-Farnesene | 29.99 ± 0.34 a | 31.80 ± 0.75 a |
19 | 24.87 | 1452 | 1452 | α-Caryophyllene | 0.29 ± 0.02 a | 0.25 ± 0.02 a |
20 | 25.25 | 1478 | 1478 | γ-Muurolene | 0.35 ± 0.04 a | 0.40 ± 0.03 a |
21 | 25.44 | 1487 | 1484 | Germacrene D | 4.94 ± 0.11 b | 6.22 ± 0.12 a |
22 | 25.60 | 1496 | 1498 | α-Selinene | 0.92 ± 0.10 b | 1.45 ± 0.08 a |
23 | 25.68 | 1498 | 1498 | Ledene | 0.33 ± 0.02 b | 0.41 ± 0.02 a |
24 | 25.77 | 1502 | 1500 | Bicyclogermacrene | 5.36 ± 0.13 a | 3.23 ± 0.07 b |
25 | 25.94 | 1507 | 1505 | (E,E)-α-Farnesene | 3.15 ± 0.11 b | 9.69 ± 0.04 a |
26 | 26.03 | 1511 | 1510 | β-Bisabolene | 0.20 ± 0.02 a | 0.23 ± 0.01 a |
27 | 26.20 | 1516 | 1514 | γ-Cadinene | 0.13 ± 0.02 a | 0.16 ± 0.01 a |
28 | 26.28 | 1524 | 1522 | δ-Cadinene | 0.43 ± 0.05 b | 0.57 ± 0.01 a |
29 | 26.45 | 1538 | 1537 | α-Cadinene | 0.87 ± 0.03 | >LOQ |
30 | 27.30 | 1571 | 1570 | (E)-Nerolidol | 0.21 ± 0.02 a | 0.10 ± 0.02 b |
31 | 27.72 | 1579 | 1577 | Spathulenol | 1.32 ± 0.03 a | 0.58 ± 0.03 b |
32 | 27.94 | 1585 | 1582 | Caryophyllene oxide | 0.44 ± 0.02 a | 0.35 ± 0.03 b |
33 | 28.14 | 1607 | 1602 | Ledol | 0.35 ± 0.03 a | 0.24 ± 0.03 b |
34 | 29.52 | 1652 | 1656 | α-Bisabolol oxide B | 10.80 ± 0.45 b | 13.68 ± 0.76 a |
35 | 30.13 | 1681 | 1684 | α-Bisabolone oxide A | 8.69 ± 0.23 a | 5.07 ± 0.22 b |
36 | 30.17 | 1688 | 1686 | α-Bisabolol | 0.43 ± 0.02 b | 1.70 ± 0.05 a |
37 | 31.21 | 1740 | 1730 | Chamazulene | 12.25 ± 0.34 a | 5.86 ± 0.05 b |
38 | 31.58 | 1751 | 1748 | α-Bisabolol oxide A | 6.08 ± 0.23 b | 7.29 ± 0.04 a |
39 | 33.46 | 1828 | 1821 | (2Z,6E)-Farnesyl acetate | 0.35 ± 0.02 a | 0.37 ± 0.02 a |
40 | 34.30 | 1884 | 1872 | (Z)-Spiroether | 5.37 ± 0.21 a | 3.40 ± 0.05 b |
41 | 34.54 | 1892 | 1890 | (E)-Spiroether | 1.20 ± 0.08 a | 0.12 ± 0.01 b |
Peak | RT | RI Calc | RI Lit | Name | TIC ± SD% | |
---|---|---|---|---|---|---|
Balgarska Bilka Ltd. | Kateko Ltd. | |||||
1 | 8.85 | 909 | 908 | Isobutyl isobutyrate | 2.06 ± 0.07 b | 7.70 ± 0.25 a |
2 | 9.05 | 920 | 918 | 2-Methylbut-2-en-1-yl acetate | >LOQ | 1.01 ± 0.05 |
3 | 9.34 | 927 | 925 | 2-Methylallyl isobutyrate | >LOQ | 0.44 ± 0.07 |
4 | 9.42 | 931 | 932 | α-Pinene | 2.49 ± 0.04 b | 6.88 ± 0.04 a |
5 | 9.65 | 939 | 940 | Isobutyl methacrylate | 0.81 ± 0.01 b | 1.73 ± 0.01 a |
6 | 9.94 | 946 | 946 | Camphene | 0.35 ± 0.01 b | 0.72 ± 0.04 a |
7 | 10.12 | 955 | 955 | 2-Methylallyl methacrylate | >LOQ | 0.40 ± 0.02 |
8 | 10.85 | 976 | 974 | β-Pinene | 0.60 ± 0.02 a | 0.49 ± 0.03 b |
9 | 11.30 | 986 | 988 | β-Myrcene | 0.67 ± 0.02 | >LOQ |
10 | 11.39 | 994 | 994 | Propyl angelate | 0.98 ± 0.02 b | 1.71 ± 0.01 a |
11 | 11.72 | 1012 | 1014 | α-Terpinene | 0.26 ± 0.01 b | 0.81 ± 0.01 a |
12 | 11.85 | 1015 | 1016 | Isobutyl isovalerate | >LOD | 0.20 ± 0.01 |
13 | 12.03 | 1018 | 1018 | Isoamyl isobutanoate | >LOD | 0.39 ± 0.02 |
14 | 12.13 | 1021 | 1020 | 2-Metylbutyl isobutyrate | 0.85 ± 0.02 b | 3.23 ± 0.02 a |
15 | 12.58 | 1025 | 1024 | Limonene | 10.37 ± 0.11 a | 0.15 ± 0.001 b |
16 | 12.81 | 1036 | 1032 | (Z)-β-Ocimene | 0.29 ± 0.01 | >LOD |
17 | 13.16 | 1041 | 1040 | Isoamyl methacrylate | 8.29 ± 0.21 a | 0.76 ± 0.03 b |
18 | 13.28 | 1047 | 1045 | Isobutyl angelate | 15.73 ± 0.17 b | 28.61 ± 0.72 a |
19 | 13.69 | 1069 | 1070 | Methylallyl angelate | 6.88 ± 0.14 b | 8.50 ± 0.16 a |
20 | 14.46 | 1081 | 1085 | Butyl angelate | 0.27 ± 0.02 b | 1.58 ± 0.01 a |
21 | 14.54 | 1086 | 1088 | Isobutyl tiglate | 0.22 ± 0.03 b | 1.13 ± 0.01 a |
22 | 14.91 | 1107 | 1100 | 2-Methylbutyl 2-methylbutyrate | 0.18 ± 0.01 b | 0.52 ± 0.01 a |
23 | 16.07 | 1136 | 1135 | (E)-Pinocarveol | 1.99 ± 0.05 b | 2.94 ± 0.02 a |
24 | 16.26 | 1152 | 1148 | Pentan-2-yl 2-methylbut-2-enoate | 2.03 ± 0.03 b | 5.03 ± 0.04 a |
25 | 16.39 | 1161 | 1163 | 2-Methylbutyl angelate | 3.97 ± 0.03 b | 16.56 ± 0.27 a |
26 | 16.71 | 1177 | 1182 | (Z)-Pinocarveol | 0.88 ± 0.02 b | 1.74 ± 0.01 a |
27 | 17.22 | 1188 | 1186 | Isobutyl 2-(1-hydroxyethyl)acrylate | >LOD | 0.34 ± 0.01 |
28 | 17.55 | 1191 | 1191 | (E)-2-Methyl-2-butenyl angelate | 0.10 ± 0.002 b | 2.28 ± 0.01 a |
29 | 17.68 | 1196 | 1195 | Myrtenal | 0.57 ± 0.01 b | 0.90 ± 0.01 a |
30 | 18.96 | 1250 | 1249 | 2-Hydroxy-2-methyl-3-butenyl (2E)-2-methyl-2-butenoate | >LOD | 1.13 ± 0.01 |
31 | 19.28 | 1269 | 1271 | 3-Methylamylangelate | 0.26 ± 0.01 a | 0.33 ± 0.01 a |
32 | 20.17 | 1284 | 1287 | Isopentyl 2-(1-hydroxyethyl)acrylate | >LOD | 0.35 ± 0.01 |
33 | 20.67 | 1300 | 1300 | n-Tridecane | 0.33 ± 0.02 | >LOD |
34 | 22.71 | 1365 | 1364 | Decanoic acid | 0.77 ± 0.04 | >LOD |
35 | 22.88 | 1409 | 1409 | α-Gurjunene | 0.60 ± 0.03 | >LOD |
36 | 23.85 | 1417 | 1417 | β-Caryophyllene | 3.64 ± 0.10 a | 0.67 ± 0.02 b |
37 | 24.17 | 1431 | 1432 | (E)-α-Bergamotene | 1.32 ± 0.03 | >LOD |
38 | 24.69 | 1440 | 1440 | (Z)-β-Farnesene | 11.34 ± 0.16 | >LOD |
39 | 24.77 | 1452 | 1452 | α-Caryophyllene | 0.58 ± 0.07 | >LOD |
40 | 25.31 | 1480 | 1481 | γ-Curcumene | 1.72 ± 0.02 | >LOD |
41 | 25.44 | 1487 | 1484 | Germacrene D | 10.52 ± 0.17 a | 0.48 ± 0.01 b |
42 | 25.60 | 1495 | 1498 | α-Selinene | 0.34 ± 0.02 | >LOD |
43 | 25.77 | 1502 | 1500 | Bicyclogermacrene | 2.28 ± 0.06 | >LOD |
44 | 25.94 | 1509 | 1505 | (E,E)-α-Farnesene | 0.65 ± 0.01 | >LOD |
45 | 26.03 | 1514 | 1510 | β-Bisabolene | 0.35 ± 0.01 | >LOD |
46 | 26.20 | 1516 | 1514 | γ-Cadinene | 1.06 ± 0.03 | >LOD |
47 | 26.28 | 1524 | 1522 | δ-Cadinene | 2.21 ± 0.03 | >LOD |
48 | 27.72 | 1579 | 1577 | Spathulenol | 0.55 ± 0.02 | >LOD |
49 | 27.94 | 1585 | 1582 | Caryophyllene oxide | 0.43 ± 0.02 | >LOD |
Concentration, μg/mL | Inhibition, % | mM TE/g EO |
---|---|---|
M. recutita L. (Balgarska Bilka Ltd.) | ||
3.125 | 95.19 ± 0.01 | 205.00 ± 0.01 |
1.60 | 81.10 ± 0.48 | 340.99 ± 2.01 |
0.78 | 59.95 ± 0.20 | 516.52 ± 1.76 |
0.39 | 30.14 ± 0.20 | 517.47 ± 3.53 |
0.195 | 17.21 ± 0.14 | 587.59 ± 4.70 |
0.097 | 9.47 ± 0.34 | 642.83 ± 23.64 |
M. recutita L. (Kateko Ltd.) | ||
3.125 | 97.21 ± 1.43 | 209.77 ± 0.58 |
1.60 | 72.79 ± 0.20 | 301.67 ± 6.02 |
0.78 | 30.00 ± 0.20 | 258.73 ± 1.76 |
0.39 | 16.35 ± 0.41 | 281.30 ± 3.53 |
0.195 | 9.81 ± 0. 41 | 321.43 ± 14.11 |
0.097 | 5.58 ± 0.01 | 365.32 ± 9.46 |
C. nobile L. (Balgarska Bilka Ltd.) | ||
25.00 | 74.09 ± 1.56 | 19.93 ± 0.42 |
12.50 | 69.28 ± 1.70 | 37.26 ± 0.92 |
6.25 | 51.15 ± 1.90 | 54.97 ± 2.05 |
3.125 | 39.71 ± 0.41 | 85.23 ± 0.88 |
1.60 | 32.07 ± 0.34 | 137.46 ± 1.47 |
C. nobile L. (Kateko Ltd.) | ||
200.00 | 45.65 ± 0.06 | 1.53 ± 0.01 |
100.00 | 35.20 ± 0.01 | 2.36 ± 0.01 |
50.00 | 27.09 ± 0.39 | 3.62 ± 0.05 |
25.00 | 19.63 ± 0.71 | 5.24 ± 0.19 |
12.50 | 14.02 ± 0.79 | 7.44 ± 0.42 |
6.25 | 9.18 ± 0.55 | 9.66 ± 0.59 |
3.125 | 8.45 ± 0.79 | 17.76 ± 1.70 |
Parameter | Concentration, mg/mL | ||
---|---|---|---|
0.10 | 0.50 | 1.00 | |
M. recutita L. (Balgarska Bilka Ltd.) | |||
SPF value | 13.13 ± 0.02 | 26.26 ± 0.01 | 26.56 ± 0.02 |
λc, nm | 360 | 370 | 375 |
UVA/UVB ratio | 1.09 ± 0.01 | 1.68 ± 0.01 | 2.07 ± 0.01 |
M. recutita L. (Kateko Ltd.) | |||
SPF value | 6.55 ± 0.01 | 23.14 ± 0.01 | 26.93 ± 0.02 |
λc, nm | 365 | 365 | 375 |
UVA/UVB ratio | 1.23 ± 0.01 | 1.28 ± 0.01 | 1.78 ± 0.01 |
C. nobile L. (Balgarska Bilka Ltd.) | |||
SPF value | 2.13 ± 0.01 | 8.58 ± 0.01 | 15.65 ± 0.01 |
λc, nm | 360 | 360 | 360 |
UVA/UVB ratio | 0.67 ± 0.01 | 0.68 ± 0.01 | 0.74 ± 0.01 |
C. nobile L. (Kateko Ltd.) | |||
SPF value | 1.11 ± 0.01 | 4.65 ± 0.01 | 8.98 ± 0.01 |
UVA/UVB ratio | 0.85 ± 0.01 | 0.78 ± 0.01 | 0.80 ± 0.01 |
Test Microorganisms | Inhibition Zone (IZ), mm * | ||||
---|---|---|---|---|---|
1 10 mg/mL | 2 10 mg/mL | 3 10 mg/mL | 4 10 mg/mL | 5 MeOH | |
B. subtilis ATCC 6633 | 9 ± 0.00 a | 9 ± 0.00 a | 8 ± 0.00 b | 9 ± 0.00 a | - |
B. cereus NCTC 11145 | 10 ± 0.00 a | 9 ± 0.00 b | 8 ± 0.00 c | 9 ± 0.00 b | - |
S. aureus ATCC 25923 | 8 ± 0.00 a | 8 ± 0.00 a | - | - | - |
L. monocytogenes NBIMCC 8632 | 8 ± 0.00 a | 8 ± 0.00 a | 8 ± 0.00 a | 8 ± 0.00 a | - |
E. faecalis ATCC 29212 | 8 ± 0.00 | - | - | - | - |
S. enteritidis ATCC 13076 | 9 ± 0.00 a | 8 ± 0.00 b | 8 ± 0.00 b | 8 ± 0.00 b | - |
K. pneumoniae ATCC 13883 | 9 ± 0.00 b | 10 ± 0.00 a | 9 ± 0.00 b | 9 ± 0.00 b | - |
E. coli ATCC 25922 | 10 ± 0.00 b | 9 ± 0.00 c | 10 ± 0.71 a | - | - |
P. vulgaris ATCC 6380 | - | - | 8 ± 0.00 a | 8 ± 0.00 a | - |
P. aeruginosa ATCC 9027 | 8 ± 0.00 b | 8 ± 0.00 b | 8 ± 0.00 b | 9 ± 0.00 a | - |
C. albicans NBIMCC 74 | - | 8 ± 0.00 a | 8 ± 0.00 a | 8 ± 0.00 a | - |
S. cerevisiae ATCC 9763 | - | 8 ± 0.00 b | 9 ± 0.00 a | 9 ± 0.00 a | - |
A. niger ATCC 1015 | - | - | - | - | - |
A. flavus | 12 ± 0.00 a | - | - | 12 ± 0.71 a | - |
P. chrysogenum | 13 ± 0.71 a | 12 ± 0.00 b | 11 ± 0.00 c | 11 ± 0.00 c | - |
F. moniliforme ATCC 38932 | - | 8 ± 0.00 b | 8 ± 0.00 b | 10 ± 0.00 a | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batovska, D.; Panova, N.; Gerasimova, A.; Tumbarski, Y.; Ivanov, I.; Dincheva, I.; Yotkovska, I.; Gentscheva, G.; Nikolova, K. Chamomile Matters: Species- and Producer-Dependent Variation in Bulgarian Matricaria recutita L. and Chamaemelum nobile L. Essential Oils and Their Cosmetic Potential. Cosmetics 2025, 12, 123. https://doi.org/10.3390/cosmetics12030123
Batovska D, Panova N, Gerasimova A, Tumbarski Y, Ivanov I, Dincheva I, Yotkovska I, Gentscheva G, Nikolova K. Chamomile Matters: Species- and Producer-Dependent Variation in Bulgarian Matricaria recutita L. and Chamaemelum nobile L. Essential Oils and Their Cosmetic Potential. Cosmetics. 2025; 12(3):123. https://doi.org/10.3390/cosmetics12030123
Chicago/Turabian StyleBatovska, Daniela, Natalina Panova, Anelia Gerasimova, Yulian Tumbarski, Ivan Ivanov, Ivayla Dincheva, Ina Yotkovska, Galia Gentscheva, and Krastena Nikolova. 2025. "Chamomile Matters: Species- and Producer-Dependent Variation in Bulgarian Matricaria recutita L. and Chamaemelum nobile L. Essential Oils and Their Cosmetic Potential" Cosmetics 12, no. 3: 123. https://doi.org/10.3390/cosmetics12030123
APA StyleBatovska, D., Panova, N., Gerasimova, A., Tumbarski, Y., Ivanov, I., Dincheva, I., Yotkovska, I., Gentscheva, G., & Nikolova, K. (2025). Chamomile Matters: Species- and Producer-Dependent Variation in Bulgarian Matricaria recutita L. and Chamaemelum nobile L. Essential Oils and Their Cosmetic Potential. Cosmetics, 12(3), 123. https://doi.org/10.3390/cosmetics12030123