An Analytical Framework for the Selective Extraction and Determination of Nine Multiclass Endocrine-Disrupting Chemicals from Haircare Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instrumentation and Conditions
2.3. Optimized Final Methods
2.4. Method Validation Results
3. Results
3.1. Method Validation
3.2. Application to Real Samples
4. Discussion
4.1. EDCs and Transdermal Permeation Through the Scalp
4.2. Implications Concerning Regulatory Limits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Endocrine Society. Common EDCs and Where They Are Found. Available online: https://www.endocrine.org/topics/edc/what-edcs-are/common-edcs (accessed on 11 May 2025).
- Kalofiri, P.; Biskanaki, F.; Kefala, V.; Tertipi, N.; Sfyri, E.; Rallis, E. Endocrine Disruptors in Cosmetic Products and the Regulatory Framework: Public Health Implications. Cosmetics 2023, 10, 160. [Google Scholar] [CrossRef]
- Archer, C.B. Functions of the Skin. In Rook’s Textbook of Dermatology; Wiley: Hoboken, NJ, USA, 2010; pp. 1–11. [Google Scholar]
- Li, A.; Zhuang, T.; Song, M.; Cao, H.; Gao, Y.; Zheng, S.; Liang, Y.; Jiang, G. Occurrence, placental transfer, and health risks of emerging endocrine-disrupting chemicals in pregnant women. J. Hazard. Mater. 2023, 459, 132157. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No. 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Off. J. Eur. Union. 2009, L342, 59–209.
- Bodin, L.; Rogiers, V.; Bernauer, U.; Chaudhry, Q.; Coenraads, P.J.; Dusinska, M.; Ezendam, J.; Gaffet, E.; Galli, C.L.; Granum, B.; et al. Opinion of the Scientific Committee on Consumer Safety (SCCS)—Final Opinion on propylparaben (CAS No 94-13-3, EC No 202-307-7). Regul. Toxicol. Pharmacol. 2021, 125, 105005. [Google Scholar] [CrossRef]
- Berggren, E. Current trends in safety assessment of cosmetics ingredients. Regul. Toxicol. Pharmacol. 2022, 134, 105228. [Google Scholar] [CrossRef]
- Siquier-Dameto, G.; Boisnic, S.; Verdú, E. Revitalizing Effect on the Scalp After Injection with a Mechanically Stabilized Hyaluronic Acid Complex in Subjects with Androgenetic Alopecia. J. Clin. Med. 2024, 13, 6878. [Google Scholar] [CrossRef]
- Gu, Y.; Bian, Q.; Zhou, Y.; Huang, Q.; Gao, J. Hair follicle-targeting drug delivery strategies for the management of hair follicle-associated disorders. Asian J. Pharm. Sci. 2022, 17, 333–352. [Google Scholar] [CrossRef] [PubMed]
- Ogiso, T.; Shiraki, T.; Okajima, K.; Tanino, T.; Iwaki, M.; Wada, T. Transfollicular drug delivery: Penetration of drugs through human scalp skin and comparison of penetration between scalp and abdominal skins in vitro. J. Drug Target. 2002, 10, 369–378. [Google Scholar] [CrossRef]
- Ellis, H.; Mahadevan, V. The surgical anatomy of the scalp. Surgery 2014, 32, e1–e5. [Google Scholar] [CrossRef]
- Fransway, A.F.; Fransway, P.J.; Belsito, D.V.; Yiannias, J.A. Paraben Toxicology. Dermatitis 2019, 30, 32–45. [Google Scholar] [CrossRef]
- Martín-Pozo, L.; Gómez-Regalado, M.d.C.; Moscoso-Ruiz, I.; Zafra-Gómez, A. Analytical methods for the determination of endocrine disrupting chemicals in cosmetics and personal care products: A review. Talanta 2021, 234, 122642. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, A.; Degenhardt, O.S.; McDonald, G.R.; Narang, D.; Paulsen, I.M.; Kozuska, J.L.; Holt, A. On the disruption of biochemical and biological assays by chemicals leaching from disposable laboratory plasticware. Can. J. Physiol. Pharmacol. 2012, 90, 697–703. [Google Scholar] [CrossRef] [PubMed]
- European Union Guidelines. ICH Guideline Q2(R2) on Validation of Analytical Procedures; European Medicines Agency: Amsterdam The Netherlands, 2022. [Google Scholar]
- European Union. Amending Annex V to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on Cosmetic Products; No 1003/2014; European Union: Brussels, Belgium, 2014. [Google Scholar]
- Song, S.; He, Y.; Zhang, T.; Zhu, H.; Huang, X.; Bai, X.; Zhang, B.; Kannan, K. Profiles of parabens and their metabolites in paired maternal-fetal serum, urine and amniotic fluid and their implications for placental transfer. Ecotoxicol. Environ. Saf. 2020, 191, 110235. [Google Scholar] [CrossRef]
- Hines, E.P.; Mendola, P.; von Ehrenstein, O.S.; Ye, X.; Calafat, A.M.; Fenton, S.E. Concentrations of environmental phenols and parabens in milk, urine and serum of lactating North Carolina women. Reprod. Toxicol. 2015, 54, 120–128. [Google Scholar] [CrossRef]
- Yang, D.; Kong, S.; Wang, F.; Tse, L.A.; Tang, Z.; Zhao, Y.; Li, C.; Li, M.; Li, Z.; Lu, S. Urinary triclosan in south China adults and implications for human exposure. Environ. Pollut. 2021, 286, 117561. [Google Scholar] [CrossRef]
- Gao, Q.; Song, Y.; Jia, Z.; Huan, C.; Cao, Q.; Wang, C.; Mao, Z.; Huo, W. Association of exposure to a mixture of phenols, parabens, and phthalates with altered serum thyroid hormone levels and the roles of iodine status and thyroid autoantibody status: A study among American adults. Ecotoxicol. Environ. Saf. 2024, 282, 116754. [Google Scholar] [CrossRef]
- Vandenberg, L.N. Chapter Five—Low-Dose Effects of Hormones and Endocrine Disruptors. In Vitamins & Hormones; Litwack, G., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 94, pp. 129–165. [Google Scholar]
- Neri, I.; MacCallum, J.; Di Lorenzo, R.; Russo, G.; Lynen, F.; Grumetto, L. Into the toxicity potential of an array of parabens by biomimetic liquid chromatography, cell viability assessments and in silico predictions. Sci. Total. Environ. 2024, 917, 170461. [Google Scholar] [CrossRef]
- Engeli, R.T.; Rohrer, S.R.; Vuorinen, A.; Herdlinger, S.; Kaserer, T.; Leugger, S.; Schuster, D.; Odermatt, A. Interference of Paraben Compounds with Estrogen Metabolism by Inhibition of 17β-Hydroxysteroid Dehydrogenases. Int. J. Mol. Sci. 2017, 18, 2007. [Google Scholar] [CrossRef] [PubMed]
- Sree, C.G.; Buddolla, V.; Lakshmi, B.A.; Kim, Y.-J. Phthalate toxicity mechanisms: An update. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 263, 109498. [Google Scholar] [CrossRef]
- Tang, B.; Zheng, J.; Xiong, S.-M.; Cai, F.-S.; Li, M.; Ma, Y.; Gao, B.; Du, D.-W.; Yu, Y.-J.; Mai, B.-X. The accumulation of organic contaminants in hair with different biological characteristics. Chemosphere 2023, 312, 137064. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, N.; Sun, S.; Wang, S.; Li, X.; Pan, J.; Li, M.; Lang, L.; Yue, Z.; Zhou, B. Exposure estimates of parabens from personal care products compared with biomonitoring data in human hair from Northeast China. Ecotoxicol. Environ. Saf. 2023, 267, 115635. [Google Scholar] [CrossRef] [PubMed]
- Gonkowski, S.; Tzatzarakis, M.; Kadyralieva, N.; Vakonaki, E.; Lamprakis, T. Exposure assessment of dairy cows to parabens using hair samples analysis. Sci. Rep. 2024, 14, 14291. [Google Scholar] [CrossRef]
- Tian, X.; Huang, K.; Liu, Y.; Jiang, K.; Liu, R.; Cui, J.; Wang, F.; Yu, Y.; Zhang, H.; Lin, M.; et al. Distribution of phthalate metabolites, benzophenone-type ultraviolet filters, parabens, triclosan and triclocarban in paired human hair, nail and urine samples. Environ. Pollut. 2023, 333, 122083. [Google Scholar] [CrossRef]
- Yu, Y.-Q.; Yang, X.; Wu, X.-F.; Fan, Y.-B. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front. Bioeng. Biotechnol. 2021, 9, 646554. [Google Scholar] [CrossRef]
- Fore, J. A review of skin and the effects of aging on skin structure and function. Ostomy Wound Manag. 2006, 52, 24–35, quiz 36–37. [Google Scholar]
- van der Schyff, V.; Suchánková, L.; Kademoglou, K.; Melymuk, L.; Klánová, J. Parabens and antimicrobial compounds in conventional and “green” personal care products. Chemosphere 2022, 297, 134019. [Google Scholar] [CrossRef] [PubMed]
- Pagoni, A.; Arvaniti, O.S.; Kalantzi, O.-I. Exposure to phthalates from personal care products: Urinary levels and predictors of exposure. Environ. Res. 2022, 212, 113194. [Google Scholar] [CrossRef]
- Aldegunde-Louzao, N.; Lolo-Aira, M.; Herrero-Latorre, C. Phthalate Esters in Different Types of Cosmetic Products: A Five-Year Quality Control Survey. Molecules 2024, 29, 4823. [Google Scholar] [CrossRef]
- Huaijun, X.; Wenjing, H.; Qing, X.; Tong, X.; Minghua, Z.; Jingwen, C. Face mask—A potential source of phthalate exposure for human. J. Hazard. Mater. 2022, 422, 126848. [Google Scholar] [CrossRef]
- Ocaña-González, J.A.; Villar-Navarro, M.; Ramos-Payán, M.; Fernández-Torres, R.; Bello-López, M.A. New developments in the extraction and determination of parabens in cosmetics and environmental samples. A review. Anal. Chim. Acta 2015, 858, 1–15. [Google Scholar] [CrossRef]
- Dural, E. Determination of Selected Phthalates in Some Commercial Cosmetic Products by HPLC-UV. Comb. Chem. High. Throughput Screen. 2020, 23, 1010–1022. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.D.; Lee, J.Y.; Kwack, S.J.; Shin, C.Y.; Jang, H.J.; Kim, H.Y.; Kim, M.K.; Seo, D.W.; Lee, B.M.; Kim, K.B. Risk Assessment of Triclosan, a Cosmetic Preservative. Toxicol. Res. 2019, 35, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Heena; Kaur, R.; Rani, S.; Malik, A.K. Simple and rapid determination of phthalates using microextraction by packed sorbent and gas chromatography with mass spectrometry quantification in cold drink and cosmetic samples. J. Sep. Sci. 2016, 39, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Labat, L.; Kummer, E.; Dallet, P.; Dubost, J.P. Comparison of high-performance liquid chromatography and capillary zone electrophoresis for the determination of parabens in a cosmetic product. J. Pharm. Biomed. Anal. 2000, 23, 763–769. [Google Scholar] [CrossRef]
- Esmaeili Nasrabadi, A.; Ramavandi, B.; Bonyadi, Z.; Farjadfard, S.; Fattahi, M. Landfill leachates as a significant source for emerging pollutants of phthalic acid esters: Identification, occurrence, characteristics, fate, and transport. Chemosphere 2024, 356, 141873. [Google Scholar] [CrossRef]
Calibration Parameters | MP | EP | iPrP | PrP | iBuP | BuP | BzP | TCS | DBP | DEHP |
---|---|---|---|---|---|---|---|---|---|---|
Linear range | 1–30 µg mL−1 | |||||||||
Slope | 939.3 | 1341.6 | 801.4 | 803.9 | 748.7 | 874.5 | 1139.8 | 914.5 | 762.5 | 210.8 |
Intercept | 1261.5 | −1114.2 | 398.4 | −9.2834 | −711.1 | −930.3 | −2305 | −768.1 | −628.2 | 177.9 |
R2 | 0.9879 | 0.9976 | 0.9824 | 0.9933 | 0.9886 | 0.9915 | 0.9794 | 0.9941 | 0.9873 | 0.9988 |
Repeatability (n = 5) RSD % | 5.1 | 5.2 | 2.1 | 1.1 | 5.7 | 4.9 | 16.6 | 6.7 | 14.5 | 35.8 |
Intermediate precision (n = 10) RSD % | 6.7 | 9.9 | 4.5 | 2.6 | 6.4 | 4.6 | 13.1 | 8.3 | 11.1 | 25.6 |
LOQ µg mL−1 | 1.0040 | 0.6209 | 0.6039 | 0.1746 | 0.5029 | 0.3434 | 0.5022 | 0.6150 | 1.1231 | 5.8147 |
LOD µg mL−1 | 0.3012 | 0.1863 | 0.1812 | 0.0524 | 0.1509 | 0.1030 | 0.1507 | 0.1845 | 0.3369 | 1.7444 |
Matrix effect | 79.545 | 82.596 | 81.877 | 72.998 | 85.291 | 82.268 | 90.384 | 84.183 | 91.793 | 78.507 |
MP | EP | iPrP | PrP | iBuP | BuP | BzP | TCS | DBP | DEHP | |
---|---|---|---|---|---|---|---|---|---|---|
N | 380 | 521 | 1187 | 1347 | 3320 | 3977 | 7455 | 15595 | 15830 | 26050 |
h | 0.395 | 0.288 | 0.126 | 0.111 | 0.045 | 0.038 | 0.020 | 0.010 | 0.009 | 0.006 |
hr | 79 | 58 | 25 | 22 | 9 | 8 | 4 | 2 | 2 | 1 |
k | 1.51 | 2.69 | 4.36 | 4.75 | 7.28 | 7.54 | 8.37 | 11.31 | 11.57 | 14.64 |
R | 3.50 | 3.45 | 4.45 | 1.08 | 7.15 | 0.79 | 2.89 | 11.90 | 1.06 | 13.23 |
T | 0.4487 | 0.5599 | 1.2919 | 0.5495 | 0.9679 | n.d. | 0.4004 | 0.3615 | 0.3672 | 0.3531 |
Product | MP % | EP % | iPrP % | PrP % | iBuP % | BuP % | Sum of PBs % * | TCS μg/100 g | DBP μg/100 g | DEHP μg/100 g |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.28 | nd | nd | nd | nd | nd | nd | nd | 151.01 | 23.62 |
2 | nd | nd | nd | nd | nd | np | nd | nd | 279.59 | nd |
3 | nd | nd | nd | nd | nd | 0.23 | nd | nd | 248.31 | nd |
4 | <LOQ | <LOQ | nd | <LOQ | np | <LOQ | na | nd | 213.61 | 66.50 |
5 | 0.23 | nd | nd | nd | nd | nd | nd | nd | 194.58 | nd |
6 | nd | nd | nd | nd | nd | nd | nd | nd | 723.95 | nd |
7 | 0.24 | nd | nd | nd | np | nd | nd | nd | 196.27 | nd |
8 | 0.10 | nd | nd | 0.18 | nd | nd | 0.28 | nd | 294.18 | nd |
9 | <LOQ | 0.12 | nd | <LOQ | nd | <LOQ | na | nd | 251.40 | nd |
10 | nd | nd | nd | nd | nd | nd | nd | nd | 266.75 | nd |
11 | 0.21 | nd | nd | 0.31 | nd | nd | 0.52 | nd | 224.46 | nd |
12 | nd | nd | nd | nd | nd- | nd | nd | nd | 248.13 | nd |
13 | nd | nd | nd | nd | nd | nd | nd | nd | 278.51 | nd |
14 | nd | nd | nd | nd | nd | nd | nd | nd | 300.88 | nd |
15 | <LOQ | 0.15 | nd | nd | nd | nd | na | nd | 293.85 | nd |
16 | <LOQ | 0.16 | nd | nd | nd | nd | na | nd | 335.24 | nd |
17 | <LOQ | nd | nd | nd | nd | nd | nd | nd | 189.45 | nd |
18 | nd | nd | nd | nd | nd | nd | nd | nd | 279.59 | nd |
19 | <LOQ | nd | nd | nd | nd | nd | nd | nd | 224.77 | nd |
20 | nd | nd | nd | nd | nd | nd | nd | nd | 247.85 | nd |
21 | nd | nd | nd | nd | nd | nd | nd | nd | 274.18 | nd |
22 | nd | nd | nd | nd | nd | nd | nd | nd | 481.73 | nd |
23 | nd | nd | nd | nd | nd | nd | nd | nd | 190.58 | nd |
24 | nd | nd | nd | nd | nd | nd | nd | nd | 1042.58 | nd |
25 | nd | nd | nd | nd | nd | nd | nd | nd | 314.21 | nd |
26 | nd | nd | nd | nd | nd | nd | nd | nd | 257.18 | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neri, I.; Di Lorenzo, R.; Russo, G.; Di Serio, T.; Grumetto, L.; Laneri, S. An Analytical Framework for the Selective Extraction and Determination of Nine Multiclass Endocrine-Disrupting Chemicals from Haircare Products. Cosmetics 2025, 12, 116. https://doi.org/10.3390/cosmetics12030116
Neri I, Di Lorenzo R, Russo G, Di Serio T, Grumetto L, Laneri S. An Analytical Framework for the Selective Extraction and Determination of Nine Multiclass Endocrine-Disrupting Chemicals from Haircare Products. Cosmetics. 2025; 12(3):116. https://doi.org/10.3390/cosmetics12030116
Chicago/Turabian StyleNeri, Ilaria, Ritamaria Di Lorenzo, Giacomo Russo, Teresa Di Serio, Lucia Grumetto, and Sonia Laneri. 2025. "An Analytical Framework for the Selective Extraction and Determination of Nine Multiclass Endocrine-Disrupting Chemicals from Haircare Products" Cosmetics 12, no. 3: 116. https://doi.org/10.3390/cosmetics12030116
APA StyleNeri, I., Di Lorenzo, R., Russo, G., Di Serio, T., Grumetto, L., & Laneri, S. (2025). An Analytical Framework for the Selective Extraction and Determination of Nine Multiclass Endocrine-Disrupting Chemicals from Haircare Products. Cosmetics, 12(3), 116. https://doi.org/10.3390/cosmetics12030116