New Perspectives on Titanium Dioxide and Zinc Oxide as Inorganic UV Filters: Advances, Safety, Challenges, and Environmental Considerations
Abstract
:1. Introduction
2. UV Radiation—Characteristics and Biological Effects
3. General Characteristics of TiO2 and ZnO
4. Green Synthesis Methods of TiO2 and ZnO Nanoparticles
5. Health Concerns
6. Environmental Aspects
7. Establishment of the Efficacy of Inorganic UV Filters—How Scientific/Specialized Literature Deals with This Task
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, S.; Lim, H.W. A Review of Inorganic UV Filters Zinc Oxide and Titanium Dioxide 2018. Photodermatol. Photoimmunol. Photomed. 2019, 35, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Balogh, T.S.; Valéria, M.; Velasco, R.; Pedriali, C.A.; Kaneko, T.M.; Baby, A.R. Proteção à Radiação Ultravioleta: Recursos Disponíveis Na Atualidade Em Fotoproteção. An. Bras. Dermatol. 2011, 86, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Biniek, K.; Levi, K.; Dauskardt, R.H. Solar UV Radiation Reduces the Barrier Function of Human Skin. Proc. Natl. Acad. Sci. USA 2012, 109, 17111–17116. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, T.S.; De Souza, S.O. Protetores Solares e Os Efeitos Da Radiação Ultravioleta. Sci. Plena 2008, 4, 1–7. [Google Scholar]
- Lima, F.V.; Martins, T.E.A.; Morocho-Jácome, A.L.; Almeida, I.F.; Rosado, C.F.; Velasco, M.V.R.; Baby, A.R. Analytical Tools for Urocanic Acid Determination in Human Samples: A Review. J. Sep. Sci. 2021, 44, 438–447. [Google Scholar] [CrossRef]
- Parrado, C.; Gilaberte, Y.; Philips, N.; Juarranz, A.; Gonzalez, S. Fern Extract, Oxidative Stress, and Skin Cancer. In Cancer; Elsevier: Amsterdam, The Netherlands, 2021; pp. 387–398. [Google Scholar]
- Flor, J.; Davolos, M.R.; Correa, M.A. Protetores Solares. Química Nova 2007, 30, 153–158. [Google Scholar] [CrossRef]
- Manaia, E.B.; Kaminski, R.C.K.; Corrêa, M.A.; Chiavacci, L.A. Inorganic UV Filters. Braz. J. Pharm. Sci. 2013, 49, 201–209. [Google Scholar] [CrossRef]
- Addor, F.A.S.; Barcaui, C.B.; Gomes, E.E.; Lupi, O.; Marçon, C.R.; Miot, H.A. Sunscreen Lotions in the Dermatological Prescription: Review of Concepts and Controversies. An. Bras. Dermatol. 2022, 97, 204–222. [Google Scholar] [CrossRef]
- Azim, S.A.; Bainvoll, L.; Vecerek, N.; DeLeo, V.A.; Adler, B.L. Sunscreens Part 2: Regulation and Safety. J. Am. Acad. Dermatol. 2024, 92, 689–698. [Google Scholar] [CrossRef]
- Serpone, N.; Dondi, D.; Albini, A. Inorganic and Organic UV Filters: Their Role and Efficacy in Sunscreens and Suncare Products. Inorganica Chim. Acta 2007, 360, 794–802. [Google Scholar] [CrossRef]
- Couteau, C.; Philippe, A.; Galharret, J.-M.; Metay, E.; Coiffard, L. UV Filters in Everyday Cosmetic Products, a Comparative Study. Environ. Sci. Pollut. Res. 2023, 31, 2976–2986. [Google Scholar] [CrossRef] [PubMed]
- Herzog, B.; Hüglin, D.; Borsos, E.; Stehlin, A.; Luther, H. New UV Absorbers for Cosmetic Sunscreens—A Breakthrough for the Photoprotection of Human Skin. Chimia 2004, 58, 554. [Google Scholar] [CrossRef]
- Serpone, N. Sunscreens and Their Usefulness: Have We Made Any Progress in the Last Two Decades? Photochem. Photobiol. Sci. 2021, 20, 189–244. [Google Scholar] [CrossRef] [PubMed]
- Herzog, B.; Giesinger, J.; Settels, V. Insights into the Stabilization of Photolabile UV-Absorbers in Sunscreens. Photochem. Photobiol. Sci. 2020, 19, 1636–1649. [Google Scholar] [CrossRef]
- Lopes, F.M.; Da Cruz, R.D.O.; de Aleluia Batista, K. Radiação Ultravioleta E Ativos Utilizados Nas Formulações De Protetores Solares Resumo. Ens. Ciência Ciências Biológicas Agrárias Da Saúde 2012, 16, 183–199. [Google Scholar]
- Freire, T.B.; de Castro Lima, C.R.R.; de Oliveira Pinto, C.A.S.; Borge, L.F.; Baby, A.R.; Velasco, M.V.R. Evaluation of Interaction between Natural Antioxidants and Chemical Sunscreens Aiming the Photoprotective Efficacy. J. Therm. Anal. Calorim. 2022, 147, 7829–7836. [Google Scholar] [CrossRef]
- de Oliveira Pinto, C.A.S. Influência Da Rutina Na Fotoestabilização Da Avobenzona (Filtro UVA) e Do ρ-Metoxicinamato de Octila (Filtro UVB); Universidade de São Paulo: São Paulo, Brazil, 2014. [Google Scholar]
- Smijs, T.G.; Pavel, S. Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreens: Focus on Their Safety and Effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef]
- Nery, É.M.; Martinez, R.M.; Velasco, M.V.R.; Baby, A.R. A Short Review of Alternative Ingredients and Technologies of Inorganic UV Filters. J. Cosmet. Dermatol. 2021, 20, 1061–1065. [Google Scholar] [CrossRef]
- Infante, V.H.P.; Maia Campos, P.M.B.G.; Calixto, L.S.; Darvin, M.E.; Kröger, M.; Schanzer, S.; Lohan, S.B.; Lademann, J.; Meinke, M.C. Influence of Physical–Mechanical Properties on SPF in Sunscreen Formulations on Ex Vivo and in Vivo Skin. Int. J. Pharm. 2021, 598, 120262. [Google Scholar] [CrossRef]
- Bispo, M.d.O.; Morocho-Jácome, A.L.; Escudeiro, C.C.; Martinez, R.M.; de Oliveira Pinto, C.A.S.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. Photoprotective Efficacy of the Association of Rosmarinic Acid 0.1% with Ethylhexyl Methoxycinnamate and Avobenzone. Cosmetics 2023, 10, 11. [Google Scholar] [CrossRef]
- Diffey, B. When Should Sunscreen Be Applied: The Balance between Health Benefit and Adverse Consequences to Humans and the Environment. Int. J. Cosmet. Sci. 2023, 45, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Marcelino, P.d.S.; Martinez, R.M.; Daneluti, A.L.M.; Morocho-Jácome, A.L.; Pessoa, F.V.L.S.; Rijo, P.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. In Vitro Photoprotection and Functional Photostability of Sunscreen Lipsticks Containing Inorganic Active Compounds. Cosmetics 2023, 10, 46. [Google Scholar] [CrossRef]
- Machado, G.T.; Chiabai, C.R.; Pinheiro, M.S.; Pinto, C.A.S.d.O.; Baby, A.R.; Andrade, G.R.S.; Pessoa, F.V.L.S. In Vitro Photoprotective Efficacy and Photostability of Synthesized Star-Shaped ZnO Nanoaggregates Associated with Ethylhexyl Methoxycinnamate and Butyl Methoxydibenzoylmethane. J. Photochem. Photobiol. B 2024, 261, 113068. [Google Scholar] [CrossRef] [PubMed]
- Jesus, A.; Augusto, I.; Duarte, J.; Sousa, E.; Cidade, H.; Cruz, M.T.; Lobo, J.M.S.; Almeida, I.F. Recent Trends on UV Filters. Appl. Sci. 2022, 12, 12003. [Google Scholar] [CrossRef]
- US FDA. U.S. Food and Drug Administration Over-the-Counter Monograph M020: Sunscreen Drug Products for Over-the-Counter Human Use. Available online: https://dps-admin.fda.gov/omuf/omuf/sites/omuf/files/primary-documents/2022-09/Final%20Administrative%20Order%20OTC000006_M020-Sunscreen%20Drug%20Products%20for%20OTC%20Human%20Use.pdf (accessed on 2 April 2025).
- ANVISA. Brazilian Health Regulatory Agency. Resolução—RDC No 600, de 9 de fevereiro de 2022. Available online: https://anvisalegis.datalegis.net/action/ActionDatalegis.php?acao=abrirTextoAto&tipo=RDC&numeroAto=00000600&seqAto=000&valorAno=2022&orgao=RDC/DC/ANVISA/MS&codTipo=&desItem=&desItemFim=&cod_menu=1696&cod_modulo=134&pesquisa=true (accessed on 3 April 2025).
- EU. European Union. Regulation (Ec) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02009R1223-20190813 (accessed on 3 April 2025).
- Olejnik, A.; Goscianska, J. Hybrid Systems Based on Avobenzone–Wrinkled Mesoporous Silica as Ingredients of Sunscreen Formulations. Microporous Mesoporous Mater. 2024, 367, 112949. [Google Scholar] [CrossRef]
- Ambrogi, V.; Latterini, L.; Marmottini, F.; Pagano, C.; Ricci, M. Mesoporous Silicate MCM-41 as a Particulate Carrier for Octyl Methoxycinnamate: Sunscreen Release and Photostability. J. Pharm. Sci. 2013, 102, 1468–1475. [Google Scholar] [CrossRef]
- Daneluti, A.L.M.; Guerra, L.O.; Velasco, M.V.R.; do Rosário Matos, J.; Baby, A.R.; Kalia, Y.N. Preclinical and Clinical Studies to Evaluate Cutaneous Biodistribution, Safety and Efficacy of UV Filters Encapsulated in Mesoporous Silica SBA-15. Eur. J. Pharm. Biopharm. 2021, 169, 113–124. [Google Scholar] [CrossRef]
- Daneluti, A.L.M.; Neto, F.M.; Ruscinc, N.; Lopes, I.; Robles Velasco, M.V.; Do Rosário Matos, J.; Baby, A.R.; Kalia, Y.N. Using Ordered Mesoporous Silica SBA-15 to Limit Cutaneous Penetration and Transdermal Permeation of Organic UV Filters. Int. J. Pharm. 2019, 570, 118633. [Google Scholar] [CrossRef]
- Sarruf, F.D.; Contreras, V.J.P.; Martinez, R.M.; Velasco, M.V.R.; Baby, A.R. The Scenario of Clays and Clay Minerals Use in Cosmetics/Dermocosmetics. Cosmetics 2024, 11, 7. [Google Scholar] [CrossRef]
- US FDA. U.S. Food and Drug Administration. Questions and Answers: FDA Posts Deemed Final Order and Proposed Order for over-the-Counter Sunscreen. Available online: https://www.fda.gov/drugs/understanding-over-counter-medicines/questions-and-answers-fda-posts-deemed-final-order-and-proposed-order-over-counter-sunscreen (accessed on 21 April 2024).
- Wang, L.; Yu, J. Principles of Photocatalysis. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–52. [Google Scholar]
- CDC. Centers for Disease Control and Protection. Ultraviolet Radiation. Available online: https://www.cdc.gov/radiation-health/features/uv-radiation.html?CDC_AAref_Val=https://www.cdc.gov/nceh/features/uv-radiation-safety/index.html (accessed on 10 April 2024).
- Ngoc, L.T.N.; Tran, V.V.; Moon, J.-Y.; Chae, M.; Park, D.; Lee, Y.-C. Recent Trends of Sunscreen Cosmetic: An Update Review. Cosmetics 2019, 6, 64. [Google Scholar] [CrossRef]
- Jansen, R.; Wang, S.Q.; Burnett, M.; Osterwalder, U.; Lim, H.W. Photoprotection: Part I. Photoprotection by naturally occurring, physical, and systemic agents. J. Am. Acad. Dermatol. 2013, 69, e1–e853. [Google Scholar] [CrossRef] [PubMed]
- Jesus, A.; Sousa, E.; Cruz, M.; Cidade, H.; Lobo, J.; Almeida, I. UV Filters: Challenges and Prospects. Pharmaceuticals 2022, 15, 263. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.L.; Lim, H.W.; Mohammad, T.F. Sunscreens and Photoaging: A Review of Current Literature. Am. J. Clin. Dermatol. 2021, 22, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Young, A.R.; Claveau, J.; Rossi, A.B. Ultraviolet Radiation and the Skin: Photobiology and Sunscreen Photoprotection. J. Am. Acad. Dermatol. 2017, 76, S100–S109. [Google Scholar] [CrossRef]
- WHO. World Health Organization. Ultraviolet Radiation. Available online: https://www.who.int/news-room/fact-sheets/detail/ultraviolet-radiation#:~:text=Wear%20protective%20clothing.,cannot%20be%20covered%20by%20clothes (accessed on 2 March 2024).
- de Alves, G.A.D.; Cuelho, C.H.F.; Fonseca, M.J.V.; Maia Campos, P.M.B.G. Development of Topical Formulations Containing 20% of Coated and Uncoated Zinc Oxide Nanoparticles: Stability Assessment and Penetration Evaluation by Reflectance Confocal Laser Microscopy. Cosmetics 2023, 11, 6. [Google Scholar] [CrossRef]
- Osmond-McLeod, M.J.; Oytam, Y.; Rowe, A.; Sobhanmanesh, F.; Greenoak, G.; Kirby, J.; McInnes, E.F.; McCall, M.J. Long-Term Exposure to Commercially Available Sunscreens Containing Nanoparticles of TiO2 and ZnO Revealed No Biological Impact in a Hairless Mouse Model. Part Fibre Toxicol. 2015, 13, 44. [Google Scholar] [CrossRef]
- Couteau, C.; Alami, S.; Guitton, M.; Paparis, E.; Coiffard, L.J.M. Mineral Filters in Sunscreen Products—Comparison of the Efficacy of Zinc Oxide and Titanium Dioxide by in Vitro Method. Pharmazie 2008, 63, 58–60. [Google Scholar]
- Grande, F.; Tucci, P. Titanium Dioxide Nanoparticles: A Risk for Human Health? Mini-Rev. Med. Chem. 2016, 16, 762–769. [Google Scholar] [CrossRef]
- Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical Applications of TiO2 Nanostructures: Recent Advances. Int. J. Nanomed. 2020, 15, 3447–3470. [Google Scholar] [CrossRef]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N. Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef]
- Racovita, A.D. Titanium Dioxide: Structure, Impact, and Toxicity. Int. J. Environ. Res. Public Health 2022, 19, 5681. [Google Scholar] [CrossRef] [PubMed]
- Neta, I.A.B.; Mota, M.F.; Lira, H.L.; Neves, G.A.; Menezes, R.R. Nanostructured Titanium Dioxide for Use in Bone Implants: A Short Review. Cerâmica 2020, 66, 440–450. [Google Scholar] [CrossRef]
- de Paula, L.R.; Parussulo, A.L.A.; Araki, K.; Toma, H.E. Reliable and Fast Sensor for in Vitro Evaluation of Solar Protection Factor Based on the Photobleaching Kinetics of a Nanocrystalline TiO2/Dye UV-Dosimeter. Sens. Actuators B Chem. 2011, 156, 325–331. [Google Scholar] [CrossRef]
- Yuan, S.; Huang, J.; Jiang, X.; Huang, Y.; Zhu, X.; Cai, Z. Environmental Fate and Toxicity of Sunscreen-Derived Inorganic Ultraviolet Filters in Aquatic Environments: A Review. Nanomaterials 2022, 12, 699. [Google Scholar] [CrossRef]
- SCCS. Scientific Committee on Consumer Safety. Opinion for Clarification of the Meaning of the Term “Sprayable Applications/Products” for the Nano Forms of Carbon Black CI 77266, Titanium Oxide and Zinc Oxide. Available online: https://health.ec.europa.eu/publications/revision-opinion-clarification-term-sprayable-applicationsproducts-nano-forms-carbon-black-ci-77266_en (accessed on 2 April 2025).
- EU. European Union. Commission Regulation (EU) 2016/621 of 21 April 2016 Amending Annex VI to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on Cosmetic Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0621 (accessed on 4 April 2025).
- EU. European Union. Commission Regulation (EU) 2016/1143 of 13 July 2016 Amending Annex VI to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on Cosmetic Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R1143 (accessed on 4 April 2025).
- Aravind, M.; Amalanathan, M.; Mary, M.S.M. Synthesis of TiO2 Nanoparticles by Chemical and Green Synthesis Methods and Their Multifaceted Properties. SN Appl. Sci. 2021, 3, 409. [Google Scholar] [CrossRef]
- Dréno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of Titanium Dioxide Nanoparticles in Cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 34–46. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Cole, C.; Shyr, T.; Ou-Yang, H. Metal Oxide Sunscreens Protect Skin by Absorption, Not by Reflection or Scattering. Photodermatol. Photoimmunol. Photomed. 2016, 32, 5–10. [Google Scholar] [CrossRef]
- Lin, C.-C.; Lin, W.-J. Sun Protection Factor Analysis of Sunscreens Containing Titanium Dioxide Nanoparticles. J. Food Drug Anal. 2011, 19, 5. [Google Scholar] [CrossRef]
- Ghamarpoor, R.; Fallah, A.; Jamshidi, M. Investigating the Use of Titanium Dioxide (TiO2) Nanoparticles on the Amount of Protection against UV Irradiation. Sci. Rep. 2023, 13, 9793. [Google Scholar] [CrossRef]
- Kubáč, L.; Akrman, J.; Kejlová, K.; Bendová, H.; Klánová, K.; Hladíková, Z.; Pikal, P.; Kovaříková, L.; Kašparová, L.; Jírová, D. Characteristics of Titanium Dioxide Microdispersions with Different Photo-Activity Suitable for Sunscreen Formulations. Int. J. Pharm. 2015, 481, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.P.; Acharya, D.; Hala, V.; Daware, S.; Vora, L.K. Sunscreens: A Comprehensive Review with the Application of Nanotechnology. J. Drug. Deliv. Sci. Technol. 2023, 86, 104720. [Google Scholar] [CrossRef]
- Mascarenhas-Melo, F.; Mathur, A.; Murugappan, S.; Sharma, A.; Tanwar, K.; Dua, K.; Singh, S.K.; Mazzola, P.G.; Yadav, D.N.; Rengan, A.K.; et al. Inorganic Nanoparticles in Dermopharmaceutical and Cosmetic Products: Properties, Formulation Development, Toxicity, and Regulatory Issues. Eur. J. Pharm. Biopharm. 2023, 192, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Morsella, M.; d’Alessandro, N.; Lanterna, A.E.; Scaiano, J.C. Improving the Sunscreen Properties of TiO 2 through an Understanding of Its Catalytic Properties. ACS Omega 2016, 1, 464–469. [Google Scholar] [CrossRef]
- Catalano, R.; Masion, A.; Ziarelli, F.; Slomberg, D.; Laisney, J.; Unrine, J.M.; Campos, A.; Labille, J. Optimizing the Dispersion of Nanoparticulate TiO2-Based UV Filters in a Non-Polar Medium Used in Sunscreen Formulations—The Roles of Surfactants and Particle Coatings. Colloids Surf. A Physicochem. Eng. Asp. 2020, 599, 124792. [Google Scholar] [CrossRef]
- Jansen, R.; Osterwalder, U.; Wang, S.Q.; Burnett, M.; Lim, H.W. Photoprotection: Part II. Sunscreen: Development, efficacy and controversies. J. Am. Acad. Dermatol. 2013, 69, e1–e867. [Google Scholar] [CrossRef]
- Rossano, M.; Hucher, N.; Picard, C.; Colletta, D.; Le Foll, F.; Grisel, M. Effects of Aging on Structure and Stability of TiO2 Nanoparticle-Containing Oil-in-Water Emulsions. Int. J. Pharm. 2014, 461, 89–96. [Google Scholar] [CrossRef]
- Lewicka, Z.A.; Yu, W.W.; Oliva, B.L.; Contreras, E.Q.; Colvin, V.L. Photochemical Behavior of Nanoscale TiO2 and ZnO Sunscreen Ingredients. J. Photochem. Photobiol. A Chem. 2013, 263, 24–33. [Google Scholar] [CrossRef]
- Janczarek, M.; Szaferski, W. Titanium Dioxide as a Safe Additive to Sunscreen Emulsions. Chem. Process Eng. 2023, 43, 483–490. [Google Scholar] [CrossRef]
- Lyons, A.B.; Trullas, C.; Kohli, I.; Hamzavi, I.H.; Lim, H.W. Photoprotection beyond Ultraviolet Radiation: A Review of Tinted Sunscreens. J. Am. Acad. Dermatol. 2021, 84, 1393–1397. [Google Scholar] [CrossRef]
- Huston, M.; DeBella, M.; DiBella, M.; Gupta, A. Green Synthesis of Nanomaterials. Nanomaterials 2021, 11, 2130. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M.G.M.; Shaban, M. A Review on Green Synthesis of TiO2 NPs: Photocatalysis and Antimicrobial Applications. Polymers 2022, 14, 1444. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Huang, Y.; Zhu, S.; Abbes, N.; Jing, X.; Zhang, L. A Review of the Green Synthesis of ZnO Nanoparticles Using Plant Extracts and Their Prospects for Application in Antibacterial Textiles. J. Eng. Fiber Fabr. 2021, 16, 155892502110462. [Google Scholar] [CrossRef]
- Meulenkamp, E.A. Synthesis and Growth of ZnO Nanoparticles. J. Phys. Chem. B 1998, 102, 5566–5572. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Mahmoud, Z.H.; Abdullaev, S.; Ali, F.K.; Ali Naeem, Y.; Mzahim Mizher, R.; Morad Karim, M.; Abdulwahid, A.S.; Ahmadi, Z.; Habibzadeh, S.; et al. Nano Titanium Oxide (Nano-TiO2): A Review of Synthesis Methods, Properties, and Applications. Case Stud. Chem. Environ. Eng. 2024, 9, 100626. [Google Scholar] [CrossRef]
- Porrawatkul, P.; Nuengmatcha, P.; Kuyyogsuy, A.; Pimsen, R.; Rattanaburi, P. Effect of Na and Al Doping on ZnO Nanoparticles for Potential Application in Sunscreens. J. Photochem. Photobiol. B 2023, 240, 112668. [Google Scholar] [CrossRef]
- Roopan, S.M.; Bharathi, A.; Prabhakarn, A.; Abdul Rahuman, A.; Velayutham, K.; Rajakumar, G.; Padmaja, R.D.; Lekshmi, M.; Madhumitha, G. Efficient Phyto-Synthesis and Structural Characterization of Rutile TiO2 Nanoparticles Using Annona Squamosa Peel Extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 98, 86–90. [Google Scholar] [CrossRef]
- Rasmussen, K.; Rauscher, H.; Mech, A.; Riego Sintes, J.; Gilliland, D.; González, M.; Kearns, P.; Moss, K.; Visser, M.; Groenewold, M.; et al. Physico-Chemical Properties of Manufactured Nanomaterials—Characterisation and Relevant Methods. An Outlook Based on the OECD Testing Programme. Regul. Toxicol. Pharmacol. 2018, 92, 8–28. [Google Scholar] [CrossRef]
- SCCS. Scientific Committee on Consumer Safety. Guidance on the Safety Assessment of Nanomaterials in Cosmetics. Available online: https://health.ec.europa.eu/publications/sccs-guidance-safety-assessment-nanomaterials-cosmetics-2nd-revision_en (accessed on 4 April 2025).
- US FDA. U.S. Food and Drug Administration. Guidance for Industry: Safety of Nanomaterials in Cosmetic Products. Available online: https://www.fda.gov/media/83957/download (accessed on 4 April 2025).
- Lu, P.J.; Fang, S.W.; Cheng, W.L.; Huang, S.C.; Huang, M.C.; Cheng, H.F. Characterization of Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreen Powder by Comparing Different Measurement Methods. J. Food Drug Anal. 2018, 26, 1192–1200. [Google Scholar] [CrossRef]
- Lu, P.-J.; Huang, S.-C.; Chen, Y.-P.; Chiueh, L.-C.; Shih, D.Y.-C. Analysis of Titanium Dioxide and Zinc Oxide Nanoparticles in Cosmetics. J. Food Drug Anal. 2015, 23, 587–594. [Google Scholar] [CrossRef]
- Bonetta, S.; Macrì, M.; Acito, M.; Villarini, M.; Moretti, M.; Bonetta, S.; Bosio, D.; Mariella, G.; Bellisario, V.; Bergamaschi, E.; et al. DNA Damage in Workers Exposed to Pigment Grade Titanium Dioxide (TiO2) and Association with Biomarkers of Oxidative Stress and Inflammation. Environ. Toxicol. Pharmacol. 2024, 105, 104328. [Google Scholar] [CrossRef] [PubMed]
- Hansa, J.; Merzenich, H.; Cascant Ortolano, L.; Klug, S.J.; Blettner, M.; Gianicolo, E. Health Risks of Titanium Dioxide (TiO2) Dust Exposure in Occupational Settings—A Scoping Review. Int. J. Hyg. Environ. Health 2023, 252, 114212. [Google Scholar] [CrossRef] [PubMed]
- IARC. International Agency for Research on Cancer. Carbon Black, Titanium Dioxide, and Talc IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Carbon-Black-Titanium-Dioxide-And-Talc-2010 (accessed on 8 February 2025).
- Warheit, D.B.; Donner, E.M. Risk Assessment Strategies for Nanoscale and Fine-Sized Titanium Dioxide Particles: Recognizing Hazard and Exposure Issues. Food Chem. Toxicol. 2015, 85, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.D.; Stotland, M.; Ellis, J.I. The Safety of Nanosized Particles in Titanium Dioxide– and Zinc Oxide–Based Sunscreens. J. Am. Acad. Dermatol. 2009, 61, 685–692. [Google Scholar] [CrossRef]
- El-Said, K.S.; Ali, E.M.; Kanehira, K.; Taniguchi, A. Molecular Mechanism of DNA Damage Induced by Titanium Dioxide Nanoparticles in Toll-like Receptor 3 or 4 Expressing Human Hepatocarcinoma Cell Lines. J. Nanobiotechnol. 2014, 12, 48. [Google Scholar] [CrossRef]
- Næss, E.M.; Hofgaard, A.; Skaug, V.; Gulbrandsen, M.; Danielsen, T.E.; Grahnstedt, S.; Skogstad, A.; Holm, J. Titanium Dioxide Nanoparticles in Sunscreen Penetrate the Skin into Viable Layers of the Epidermis: A Clinical Approach. Photodermatol. Photoimmunol. Photomed. 2016, 32, 48–51. [Google Scholar] [CrossRef]
- Mohammed, Y.H.; Holmes, A.; Haridass, I.N.; Sanchez, W.Y.; Studier, H.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Support for the Safe Use of Zinc Oxide Nanoparticle Sunscreens: Lack of Skin Penetration or Cellular Toxicity after Repeated Application in Volunteers. J. Investig. Dermatol. 2019, 139, 308–315. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, R.K.; Gaur, K.; Cátala Torres, J.F.; Loza-Rosas, S.A.; Torres, A.; Saxena, M.; Julin, M.; Tinoco, A.D. Fueling a Hot Debate on the Application of TiO2 Nanoparticles in Sunscreen. Materials 2019, 12, 2317. [Google Scholar] [CrossRef]
- Ryu, H.J.; Seo, M.Y.; Jung, S.K.; Meang, E.-H.; Lee, S.-Y.; Jang, D.-H.; Lee, T.-J.; Jo, K.-Y.; Kim, Y.-R.; Cho, K.-B.; et al. Zinc Oxide Nanoparticles: A 90-Day Repeated-Dose Dermal Toxicity Study in Rats. Int. J. Nanomed. 2014, 9, 137–144. [Google Scholar] [CrossRef]
- Surekha, P.; Kishore, A.S.; Srinivas, A.; Selvam, G.; Goparaju, A.; Reddy, P.N.; Murthy, P.B. Repeated Dose Dermal Toxicity Study of Nano Zinc Oxide with Sprague-Dawley Rats. Cutan. Ocul. Toxicol. 2012, 31, 26–32. [Google Scholar] [CrossRef]
- Panchatcharam, M.; Miriyala, S.; Gayathri, V.S.; Suguna, L. Curcumin Improves Wound Healing by Modulating Collagen and Decreasing Reactive Oxygen Species. Mol. Cell. Biochem. 2006, 290, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Okada, T.; Konishi, H.; Tsuji, T. The Effect of Reactive Oxygen Species on the Biosynthesis of Collagen and Glycosaminoglycans in Cultured Human Dermal Fibroblasts. Arch. Dermatol. Res. 1993, 285, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Gamer, A.O.; Leibold, E.; van Ravenzwaay, B. The in Vitro Absorption of Microfine Zinc Oxide and Titanium Dioxide through Porcine Skin. Toxicol. Vitr. 2006, 20, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Rowenczyk, L.; Duclairoir-Poc, C.; Barreau, M.; Picard, C.; Hucher, N.; Orange, N.; Grisel, M.; Feuilloley, M. Impact of Coated TiO2-Nanoparticles Used in Sunscreens on Two Representative Strains of the Human Microbiota: Effect of the Particle Surface Nature and Aging. Colloids Surf. B Biointerfaces 2017, 158, 339–348. [Google Scholar] [CrossRef]
- Sendra, M.; Sánchez-Quiles, D.; Blasco, J.; Moreno-Garrido, I.; Lubián, L.M.; Pérez-García, S.; Tovar-Sánchez, A. Effects of TiO2 Nanoparticles and Sunscreens on Coastal Marine Microalgae: Ultraviolet Radiation Is Key Variable for Toxicity Assessment. Environ. Int. 2017, 98, 62–68. [Google Scholar] [CrossRef]
- Chatzigianni, M.; Pavlou, P.; Siamidi, A.; Vlachou, M.; Varvaresou, A.; Papageorgiou, S. Environmental Impacts Due to the Use of Sunscreen Products: A Mini-Review. Ecotoxicology 2022, 31, 1331–1345. [Google Scholar] [CrossRef]
- Tran, H.-T.; Dang, B.-T.; Thuy, L.T.T.; Hoang, H.-G.; Bui, X.-T.; Le, V.-G.; Lin, C.; Nguyen, M.-K.; Nguyen, K.-Q.; Nguyen, P.-T.; et al. Advanced Treatment Technologies for the Removal of Organic Chemical Sunscreens from Wastewater: A Review. Curr. Pollut. Rep. 2022, 8, 288–302. [Google Scholar] [CrossRef]
- Narla, S.; Lim, H.W. Sunscreen: FDA Regulation, and Environmental and Health Impact. Photochem. Photobiol. Sci. 2020, 19, 66–70. [Google Scholar] [CrossRef]
- Schneider, S.L.; Lim, H.W. Review of Environmental Effects of Oxybenzone and Other Sunscreen Active Ingredients. J. Am. Acad. Dermatol. 2019, 80, 266–271. [Google Scholar] [CrossRef]
- da Silva, C.P.; Emídio, E.S.; de Marchi, M.R.R. The Occurrence of UV Filters in Natural and Drinking Water in São Paulo State (Brazil). Environ. Sci. Pollut. Res. 2015, 22, 19706–19715. [Google Scholar] [CrossRef]
- Suh, S.; Pham, C.; Smith, J.; Mesinkovska, N.A. The Banned Sunscreen Ingredients and Their Impact on Human Health: A Systematic Review. Int. J. Dermatol. 2020, 59, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Harper, B.J.; Harper, S.L. Comparative Dissolution, Uptake, and Toxicity of Zinc Oxide Particles in Individual Aquatic Species and Mixed Populations. Environ. Toxicol. Chem. 2019, 38, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Sibiya, A.; Jeyavani, J.; Santhanam, P.; Preetham, E.; Freitas, R.; Vaseeharan, B. Comparative Evaluation on the Toxic Effect of Silver (Ag) and Zinc Oxide (ZnO) Nanoparticles on Different Trophic Levels in Aquatic Ecosystems: A Review. J. Appl. Toxicol. 2022, 42, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.B.; Pawlowski, S.; Kellermann, M.Y.; Petersen-Thiery, M.; Moeller, M.; Nietzer, S.; Schupp, P.J. Toxic Effects of UV Filters from Sunscreens on Coral Reefs Revisited: Regulatory Aspects for “Reef Safe” Products. Environ. Sci. Eur. 2021, 33, 74. [Google Scholar] [CrossRef]
- Gondikas, A.P.; von der Kammer, F.; Reed, R.B.; Wagner, S.; Ranville, J.F.; Hofmann, T. Release of TiO2 Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake. Environ. Sci. Technol. 2014, 48, 5415–5422. [Google Scholar] [CrossRef]
- Ginzburg, A.L.; Blackburn, R.S.; Santillan, C.; Truong, L.; Tanguay, R.L.; Hutchison, J.E. Zinc Oxide-Induced Changes to Sunscreen Ingredient Efficacy and Toxicity under UV Irradiation. Photochem. Photobiol. Sci. 2021, 20, 1273–1285. [Google Scholar] [CrossRef]
- Ko, H.-H.; Chen, H.-T.; Yen, F.-L.; Lu, W.-C.; Kuo, C.-W.; Wang, M.-C. Preparation of TiO2 Nanocrystallite Powders Coated with 9 Mol% ZnO for Cosmetic Applications in Sunscreens. Int. J. Mol. Sci. 2012, 13, 1658–1669. [Google Scholar] [CrossRef]
- Nakamura, I.; Mastelaro, G.; Borges, I.; Shao, Y.; Cruz, K.; Schlossman, D. Evaluating the Synergy Between Naturally Coated Zinc Oxides in SPF 50+/UVA Balanced Sunscreens. Available online: https://www.koboproductsinc.com/Downloads/KoboProducts-IFSCC-2024-ZnO-Size-Synergy.pdf (accessed on 8 February 2025).
- Couteau, C.; Coiffard, L. The Interest in Nanomaterials for Topical Photoprotection. Cosmetics 2015, 2, 394–408. [Google Scholar] [CrossRef]
- Kim, N.; Kim, Y.; Yun, J.-M.; Jeong, S.-K.; Lee, S.; Lee, B.Z.; Shim, J. Surface Coating of Titanium Dioxide Nanoparticles with a Polymerizable Chelating Agent and Its Physicochemical Property. ACS Omega 2023, 8, 18743–18750. [Google Scholar] [CrossRef]
- Kockler, J.; Oelgemöller, M.; Robertson, S.; Glass, B.D. Photostability of Sunscreens. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 91–110. [Google Scholar] [CrossRef]
- Reinosa, J.J.; Leret, P.; Álvarez-Docio, C.M.; del Campo, A.; Fernández, J.F. Enhancement of UV Absorption Behavior in ZnO–TiO2 Composites. Boletín Soc. Española Cerámica Vidr. 2016, 55, 55–62. [Google Scholar] [CrossRef]
- Rosado, C.; Tokunaga, V.K.; Sauce, R.; de Oliveira, C.A.; Sarruf, F.D.; Parise-Filho, R.; Maurício, E.; de Almeida, T.S.; Velasco, M.V.R.; Baby, A.R. Another Reason for Using Caffeine in Dermocosmetics: Sunscreen Adjuvant. Front. Physiol. 2019, 10, 519. [Google Scholar] [CrossRef] [PubMed]
- Couteau, C.; Diarra, H.; Coiffard, L. Effect of the Product Type, of the Amount of Applied Sunscreen Product and the Level of Protection in the UVB Range on the Level of Protection Achieved in the UVA Range. Int. J. Pharm. 2016, 500, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Portilho, L.; Aiello, L.M.; Vasques, L.I.; Bagatin, E.; Leonardi, G.R. Effectiveness of Sunscreens and Factors Influencing Sun Protection: A Review. Braz. J. Pharm. Sci. 2022, 58, e20693. [Google Scholar] [CrossRef]
Benefits | Production of vitamin D3 [38,39] |
Improvement of well-being by the induction of β-endorphin expression [38] | |
Antimicrobial activity [40] | |
Improvement of cardiovascular health [38] | |
Potential harm | Thickening of the stratum corneum [41] |
Hyperpigmentation [40] | |
Increase in pigment heterogeneity [41] | |
Degradation of collagen in dermis [41] | |
Dermal elastosis [41] | |
Immunosuppression [39] | |
Photoaging [39,42] | |
Increased risk of development of cataracts [38,39] | |
Sunburn and inflammation [39] | |
Mutagenesis of keratinocytes and melanocytes [38,41,42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araki, S.M.; Baby, A.R. New Perspectives on Titanium Dioxide and Zinc Oxide as Inorganic UV Filters: Advances, Safety, Challenges, and Environmental Considerations. Cosmetics 2025, 12, 77. https://doi.org/10.3390/cosmetics12020077
Araki SM, Baby AR. New Perspectives on Titanium Dioxide and Zinc Oxide as Inorganic UV Filters: Advances, Safety, Challenges, and Environmental Considerations. Cosmetics. 2025; 12(2):77. https://doi.org/10.3390/cosmetics12020077
Chicago/Turabian StyleAraki, Stephany Mayumi, and André Rolim Baby. 2025. "New Perspectives on Titanium Dioxide and Zinc Oxide as Inorganic UV Filters: Advances, Safety, Challenges, and Environmental Considerations" Cosmetics 12, no. 2: 77. https://doi.org/10.3390/cosmetics12020077
APA StyleAraki, S. M., & Baby, A. R. (2025). New Perspectives on Titanium Dioxide and Zinc Oxide as Inorganic UV Filters: Advances, Safety, Challenges, and Environmental Considerations. Cosmetics, 12(2), 77. https://doi.org/10.3390/cosmetics12020077